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Low availability of phosphorus (P) in both acidic and alkaline soils is a major

problem for sustainable improvement in wheat crops yield. Optimization of

crops productivity can be achieved by increasing the bioavailability of P by

phosphate solubilizing Actinomycetota (PSA). However, their effectiveness may

vary with changing agro-climatic conditions. In this regard, a greenhouse

experiment was conducted to assess the interaction inoculation of five

potential PSA (P16-P18-BC3-BC10 and BC11) and RPs (RP1- RP2-RP3 and RP4)

on the growth and yield of wheat crop in unsterilized P- deficient alkaline and

acidic soils. Their performance was compared with single super phosphate (TSP)

and reactive RP (BG4). The in-vitro tests showed that all PSA colonize wheat root

and form a strong biofilm except Streptomyces anulatus strain P16. Our findings

revealed that all PSA significantly improve the shoot/root dry weights, spike

biomass, chlorophyll contents as well as nutrients uptake in plants fertilized with

RP3 and RP4. However, the combined application of Nocardiopsis alba BC11

along with RP4 in alkaline soil, was effective in optimizing wheat yield attributes

and improve the yield biomass up to 19.7% as compared to the triple

superphosphate (TSP). This study supports the view that the inoculation with

Nocardiopsis alba BC11 has a broad RP solubilization and could alleviate the

agricultural losses due to P limitation in acidic and alkaline soils.

KEYWORDS

Actinomycetota, rock phosphate, wheat plant growth, acid and alkaline soil,
nutrient uptake
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1 Introduction

The bioavailability of major plant nutrients, especially

phosphorus (P), affects plant growth and yield (Fageria and

Nascente, 2014). Several reports have shown that the deficiency of

P has become a threat to soil fertility and crop productivity affecting

30-50% of the cultivated land in the world and causing a yield loss

in the range of 10% to 15% (Shenoy and Kalagudi, 2005; Ringeval

et al., 2017). The direct application of RP, as an alternative P source,

is currently attracting increased interest due to its relatively low

costs and its utilization potential (Vuuren et al., 2010; Hellal et al.,

2019). Nonetheless, its low solubility is a major obstacle to its direct

application, especially in alkaline soils (Arcand and Schneider,

2006). Therefore, developing novel strategies to enhance RP

solubilization and improve its agronomic efficiency has become a

pivotal research challenge (Veneklaas et al., 2012; Numan et al.,

2018; Yagi et al., 2020). A considerable number of soil

microorganisms from bacterial genera (Bacillus, Pseudomonas,

and Rhizobium) and fungal genera (Penicillium and Aspergillus)

are effective in releasing P from total soil phosphorus through

solubilization/mineralization (Kalayu, 2019; Fahsi et al., 2021;

Mahdi et al., 2021a; Mahdi et al., 2021b). These phosphate

solubilizing microorganisms (PSM) are believed to provide an

eco-friendly and economically sound approach to overcome the P

scarcity (Pathak et al., 2017; Anand et al., 2023). PSM also play a

dominant role in the plant growth via the synthesis and through a

secretion of a plethora of beneficial substances such as auxins,

cytokinins, and gibberellic acid, as well as ethylene, hydrogen

cyanide, and siderophores (Wahid et al., 2020; Yu et al., 2022).

These secondary metabolites are well documented to precisely

match the plant’s needs and safeguard plants from pathogen’s

infection (Yu et al., 2020; Chaudhry et al., 2021; Mowafy et al.,

2022). Application of such naturally occurring organisms

possessing multiple growth-promoting activities holds therefore

greater promise for increasing the productivity of many crops

(Wang et al., 2022). Among plant-growth promoting bacteria,

Actinomycetota have been reported to increase P solubilization in

soil by decreasing the soil pH through the production of organic

acids, phytohormones, chelating agents and siderophores (Hamdali

et al., 2008; Soumare et al., 2020a; Soumare et al., 2020b; Boubekri

et al., 2021). With their abilities to produce spores and to survive in

very competitive environments, Actinomycetota are considered the

most advantageous and suitable candidates for the production of

highly versatile biofertilizers (Boubekri et al., 2022). Furthermore,

these filamentous microorganisms are known for improving plant

tolerance to biotic and abiotic stresses and enhancing nutrient

availability and uptake (Bhatti et al., 2017; El-Badan et al. 2019;

El-Tarabily et al., 2020). However, the performance of these plant

growth promoting bacteria is severely influenced by environmental

factors such as soil pH. The composition and functionalities of the

microbial population are affected under soil alkaline or acidic

conditions, which induces changes in the nutrient dynamic (Nicol

et al., 2008; Souza et al., 2015; Neina, 2019). In this regard, variation

of soil pH is considered not only the main driving force for plant
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growth but also an important biomarker for P availability. The

available forms of P for plants (H2PO4
- and HPO4

2-) are maximized

at two main pH conditions: pH 4.5 and 6.5, where the degree of P

fixation by calcium (Ca), aluminum (Al), and iron (Fe) is

minimized (Penn and Camberato, 2019; Bouray et al., 2021).

Actinomycetota can extend the broader P solubilization spectrum.

Interestingly, our previous findings had already shown that

Actinomycetota inoculations not only improved wheat/maize

crops but also improved significantly the NPK statue of the plants

(Soumare et al., 2020a; Boubekri et al., 2021). However, their

combined use in releasing P from RP in unsterilized alkaline and

acidic soils have been little investigated. Therefore, it is challenging

to explore the effects of different application of RPs fertilized with

Actinomycetota strains on growth and yield of wheat crops in a

complex environmental condition using natural (unsterilized)

alkaline and acidic soils. In this study, we hypothesized that

combined use of Actinomycetota with RP is better approach to

improve wheat growth and yield and could be an efficient

biofertilizer adaptable for different soil types. Therefore, the main

objective of this study was to evaluate the effect of Actinomycetota-

RP-soil pH combinations on wheat plant growth in non-sterile

soil’s conditions. Overall, the specific objectives of this study are

as follows:
i. Evaluate the effect of five Actinomycetota strains on the

solubilization of four RPs grades in natural soil condition.

ii. Investigate the effect of soil pH on the stimulatory effect of

Actinomycetota-RPs combinations to promote wheat plant

growth under greenhouse conditions.

iii. Assess the effect of the Actinomycetota-RPs combinations

on nutrients uptake acquisitions.

iv. Suggest an environment-friendly P fertilizer based on

Actinomycetota and RP adapted for P-deficient alkaline and

acidic soils.
The findings of this study could provide an effective approach

for agronomic improvement of Actinomycetota inoculants to

enhance RP solubilization and promote wheat plant growth,

either in acidic or alkaline soils.
2 Materials and methods

2.1 PGPR characteristics of the
microbial strains

Strains used in this study were obtained from the Laboratory of

Biotechnology, Faculty of Science Cadi Ayyad of Marrakech.

Bacterial strains S. anulatus (P16), S. alboviridis (P18, BC3),

S.griseorubens (BC10) and N.alba (BC11) were isolated from

desert soil of Morocco and were previously selected for their

ability to solubilize different grade of RPs (RP1, RP2, RP3 and

RP4) and to stimulate plant growth in in-vitro (Table 1) (Soumare

et al., 2020a; Boubekri et al., 2021).
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2.2 Root colonization potential of
Actinomycetota strains

The ability of the selected Actinomycetota strains (P16 -P18

-BC3 -BC10 and BC11) to colonize wheat seed teguments was

assessed using scanning electron microscopy. The wheat seeds

(Triticum aestivum variety Vitron) were surface sterilized with 1%

sodium hypochlorite for 1 min and washed several times with sterile

distilled water. The sterilized seeds were germinated in the dark for

48h on Petri dish containing agar gel (0.7%). The germinated seeds

were treated with the Actinomycetota inoculums (P16, P18, BC3,

BC10 and BC11; at 108 CFU ml-1) for 12h, sown in the pots

containing sterilized coarse sand, and incubated in a growth

chamber for 15 days (Bringel, 1997; Miranda, 1997). At the end

of the incubation, wheat seedlings were removed carefully from the

pots and the roots were washed in 0.1 M phosphate buffer (pH 7.2).

The tip of the roots was cut into 4-5 mm long pieces and fixed in

2.5% glutaraldehyde, 0.1M phosphate buffer (pH 7.2) for 24h at 4°C.

Thereafter, the samples were dehydrated using a graded series of

ethanol solutions (30-100%). The dehydrated samples were then

freeze dried to avoid desiccation following the protocol of

(Gopalakrishnan et al., 2015). The processed samples were

mounted and coated with a thin layer of gold using an automated

sputter coater for 5 min and further scanned using the scanning

electron microscopy (SEM) Zeiss EVO 10 (Carl Zeiss Microscopy,

GmbH, Jena, Germany). The samples were operated at an

accelerating voltage of 10/20.00 kV.
2.3 Biofilm production assay

Biofilm formation was assessed using the colorimetric assay

(Christensen et al., 1985). Fresh overnight culture of each

Actinomycetota strains was diluted in tryptic soy broth (TSB) and

200 μl of each bacterial suspension (OD= 1) was inoculated in
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triplicate into a 48-well microtiter microplate. Uninoculated media

was used as negative control and Pseudomonas aeruginosa

suspension as a positive control. The microplate was incubated at

38°C for 24h. The supernatants were aspirated using VACUSIP

system and the bacterial pellets were washed three times with 200 μl

of phosphate-buffered saline (PSB). Afterwards, 2% of crystal violet

was added to each well for 20-40 min at room temperature to

monitor the biofilm formation. The excess dye was washed out with

distilled water. The bacterial biofilm was solubilized using 200 μl of

95% ethanol and the OD600nm was measured using the VICTOR

Nino ™ Multimode Plate Reader. The OD values were taken as an

index of biofilm formation. The ODc of the control (uninoculated

media) was subtracted from the ODT obtained in each treatment.
2.4 Greenhouse experiment design

A pot experiment was carried out to investigate the effects of

Actinomycetota-RPs combinations on wheat growth in acidic and

alkaline soils. Four different RPs (RP1, RP2, RP3 and RP4)

containing between 27.46% and 32.81% of P2O5 were used in this

study. The RPs were sieved (diameter between 100 and 200 μm) and

washed to remove the P available fractions. The experiment was

conducted from January 2019 to April 2020 at the experimental

farm of the Mohammed VI Polytechnic University, Benguerir,

Morocco. The acidic soil (sandy) was collected in the

experimental field of the National Institute of Agronomic

Research (INRA) in Laarache region, Morocco, while the alkaline

one (clay-loam) was taken from Marrakech region, Morocco. Their

chemical properties are presented in Table 2.

Six sterilized wheat seeds were sown in plastic pots, each pot

was previously filled with 4.5 Kg unsterilized soils. After

germination, plants were thinned to four per pot. The pots were

arranged in a completely randomized block design (RCBD) with 27

treatments and 5 replications. For each type of soil, controls and
TABLE 1 Plant Growth promoting Traits of the Actinomycetota strains.

Strains Max RP solubilization (mg/l) Potassium
solubilsation

(mg/l)

Max AIA
production

Siderophore
production

HCN Ammonia Accession
number

RP1 RP2 RP3 RP4

P16 1.6 ±
0.2a

5.9 ±
0.34b

3.1 ±
0.22d

14.1 ±
0.78c

– 57.73± 0.89c 1.555 ± 0.00b ++ + MT845227

P18 0.7 ±
0.1cd

11.5 ±
0.82a

30.9 ±
0.05a

31.5 ±
0.35a

3 ± 0.07d 82.92 ± 1.5b 1.477 ± 0.28ab ++ ++ MT845229

BC3 0.8 ±
0.05c

7.2 ±
0.54ab

30.9 ±
0.13a

30.1 ±
0.33ab

11 ± 0.52c 10.02 ± 2.34d 1.736 ± 0.00a + + MT845230

BC10 0.3 ±
0.17d

5.9 ±
0.76b

26.7 ±
0.6b

31.2 ±
0.17a

12.73 ± 0.35b 128.44 ± 4.08a 1.348 ± 0.00c ++ ++ MT845231

BC11 1.2 ±
0.1b

6.7 ±
0.83ab

21.7 ±
1.2c

7.7 ±
0.54d

17.8 ± 1.02a 82.33 ± 0.84b 1.552 ± 0.00b + + MT845232
RP(1, 2, 3 and 4) composition see (Boubekri et al., 2021). Different letters indicate significant differences (p <0.05).
+, high production; ++, very high production.
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inoculations treatments were carried out. The control treatments

are distributed as follows: (1) (C-) negative control (without

bacterial inoculation nor RP fertilization); (2) C+ (TSP) positive

control containing triple superphosphate (containing 46% of

soluble P2O5) and (3) BG4 reactive rock phosphate (29.75% of

P2O5) as a second positive control. The inoculated treatments

consist of a combination of strain (S. anulatus noted P16, S.

alboviridis noted P18, S. griseorubens noted BC3, S. griseorubens

noted BC10 and N. alba noted BC11) and RP (RP1, RP2, RP3 and

RP4). Microbial inoculation was performed after 7 days of

emergence by adding 2 mL of each Actinomycetota suspension

(OD = 1 corresponding to 7. 108 CFU) in the seedling rhizosphere

vicinity. The pots were watered regularly to maintain the soil at field

capacity. The TSP fertilizer was applied at the recommended rate of

130 kg/ha which provides 60 kg P2O5/ha. The amount of RP

providing the same amount of P2O5 was determined by

considering the total P content of each RP. To complete the

essential needs of the crop, nitrogen (N) and potassium (K) were

brought in the form of fertilizers with the respective doses of 100

Kg/ha for N, and 80 Kg/ha for K.

The percentage increment (IC) of shoot, root, and spike of the

Actinomycetota-RP inoculation was calculated according to the

following formula:

% IC =
Y(Actinomycetota − RP combination) − Y(BG4l)

Y (BG4)
� 100 :

Where Y (Actinomycetota-RP combination) is biomass yield

from the application of the Actinomycetota-RP combination and Y

(BG4) is biomass yield from the positive control BG4.
2.5 Plant analysis

After 4months, the plants have been removed and adhering particles

were washed with distilled water. Shoot, root dry weights and spike

biomass were measured after drying in a forced-air oven at 72°C for 48h.

Thereafter, the dry leaves were finely ground and homogenized to

determine the P and K concentrations. Each sample (0.5 g) was

digested and analyzed for P content according to the Molybdo-

phosphoric blue method (Murphy and Riley, 1962). P uptake per pot

was calculated by multiplying biomass (g) by P concentrations (mg/g).

The residual phosphorus in the soil was determined at harvest according

to Olsen (1954) method. The available K was determined by atomic

absorption spectrometer (SAA). The chlorophyll content was measured

from the middle part of the leaf using CL-O1 chlorophyll meter

(Hansatech instruments). For every measurement, the same part of the

leaf was placed between two clips and the chlorophyll content index was

determined in dual wavelength optical absorbance (620 and 940 nm).
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2.6 Statistical analysis

The data were collected in five replicates and subjected to one-

way ANOVA to examine the significance of differences and

variability at 95% confidence level (p<0.05). The Pearson

correlations between the plant growth parameters were

determined using SPSS 22. Software. Multivariate analyses were

applied to obtain more insight into the data matrix. Principal

component analysis (PCA) was performed to examine how

combined soil and rock phosphates influenced the biological

attributes of the Actinomycetota strains, and to determine which

inter-related parameters that influenced more the plant growth

promoting (PGP) potential of the strains. The PCA, boxplots, and

the effect size analysis were performed using R statistical package

3.2.5 (R Foundation for Statistical Computing). The graphics were

performed using GraphPad Prism 8 software.
3 Result

3.1 Root colonization and biofilm
production of Actinomycetota inoculums

Two weeks after Actinomycetota inoculation, plants roots were

analyzed with SEM to evaluate their colonization intensity. The

results are presented in Figure 1 and show that treated roots surface

were covered by Actinomycetota strains. This indicated that these

strains successfully colonized without damage to the root surface,

while those from un-inoculated plants did not. In addition, the

mycelial growth penetrating the outer layer of the root as well as

sporulation were observed for all the tested strains compared to the

un-inoculated controls. In addition, the extent of colonization was

more pronounced with N. alba strain BC11.

On the other hand, the crystal violet binding assay

demonstrated a strong biofilm formation in all Actinomycetota

strains compared to the non-inoculated control expected for S.

anulatus strain P16. The highest amount was recorded by N. alba

strain BC11 followed by S. griseorubens strain BC3 and S.

griseorubens strain BC10 (Figure 2).
3.2 Effect of soil pH-Actinomycetota and
RPs inoculations on biomass production
in wheat

Co-inoculations with the Actinomycetota strains and RPs

improved the yield and physiological parameters compared to the

uninoculated controls and displayed higher values than those
TABLE 2 Chemical properties of alkaline and acidic soils.

Soil types pH pH KCL EC (mS/cm) Total Nitrogen (%) C org (%) P (mg/kg) K2O(mg/kg)

Acidic 5.8 5.57 0.03 0.04 0.83 8 168

Alkaline 9 ND 0.19 ND 1 11 ND
ND, Not determined.
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inoculated with the RPs alone. The strains were more performant

with RP (RP3) and RP (RP4) regardless the type of soil used. In

alkaline soil, the highest shoot dry weight (SDW) (+42%), root dry

weight (RDW) (+69.5%), and spike biomass (+97%) were recorded

by the following treatments: BC3.RP4, P18.RP3, and BC3.RP4

respectively in comparison with their control RPs (Table 3).

However, in acidic soil, the highest agronomic performances of

growth and yield (+124.12%) were recorded for treatments fertilized

with RP3 rock. In addition, results have shown that Actinomycetota-

RP combination were agronomically more efficient in alkaline and

acidic soils as compared to positive control, BG4 (Table 3).
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3.3 Effect of Actinomycetota-RPs
combinations on P and K content in
plant tissues

The performance on P and K content in plant tissues of the

following combinations BC10.RP3, BC11.RP3, P18.RP4, BC3.RP4,

BC10.RP4, and BC11.RP4 are presented in Figure 3. A significant

improvement in P and K content in wheat plants tissues was noted

with the Actinomycetota-RP combinations compared to

uninoculated treatments (C-) and controls rocks (RP3 and RP4).

In fact, P uptake in the shoot increased by 80.10%, 137.63%, 34.9%,

189.78%, 68.81% and 162.90% respectively for BC10.RP3,

BC11.RP3, P18.RP4, BC3.RP4, BC10.RP4, and BC11.RP4

treatments as compared to the BG4 (Figure 3A). Furthermore, the

K content increased by 19.39% to 62.91% for the same treatments as

compared to the positive control TSP. In alkaline soil, results

showed that negative controls (C-) as well as BG4 treatments did

not significantly increase the P and K content in wheat plants

(Figure 3A). In addition, potassium and phosphorus deficiency

symptoms (necrosis of the leaf tips or margins and orangish

discoloration) were observed on the tips of the leaves for these

treatments (data not shown).

In acidic soil, the direct application of Actinomycetota and RP

significantly increased the P and K content in wheat plants

compared to control treatments, reactive rock BG4 (Figure 3B).

Interestingly, the highest total P content in plant tissues was

observed in the treatments N. alba strain/BC11.RP4 and S.

griseorubens strain/BC10.RP4 since they were performant as

compared to the BG4 but also increased the P content by 3.96%
FIGURE 2

Biofilm formation by the selected Actinomycetota strains. The values
represent means of replicates (n=3). Pseudomonas aeruginosa was
used as a positive control C+.
FIGURE 1

Root coloniztion by the Actinomycetota strains (P16, P18, BC3, BC10 and BC11) after 15 days of inoculations by scanning electron microsopy. Non-
bacterized (C-) root is shown in a. Insets show Actinomycetota attached to the root surface. Spores and hyphae are indicated by orange and white
arrows, respectively. Bar equals to 20µm.
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and 80.75% respectively in comparison with TSP. In general, the

amount of P and K content of wheat plants tissues were more

pronounced in alkaline soil than acidic soil.
3.4 Chlorophyll content

The results summarized in Table 4 show that the selected strains

increased the chlorophyll content in the leaves of wheat plants up to

31.32% and 42.29% in alkaline and acidic conditions respectively, as

compared to the use of BG4. The maximum chlorophyll contents

were recorded in the plants co-inoculated with N. alba strain

BC11.RP4 followed by S. griseorubens strain BC3.RP4 regardless

of soil type used. However, severe or prolonged P deficiency was

recorded in the control treatments (RPs and negative controls)

which showed a purple/brown leaves.
3.5 Determination of residual P and K
nutrients in soil

The effect of Actinomycetota-RPs on the residual P and K in soil

are presented in Table 5.

As compared to the BG4, the available P and K in all treatments

increased to different levels depending on the type of the soil used.

In acidic soil, the following treatments BC10.RP4, P18.RP4 and

BC11.RP4 increased the available P from 24.09% to 100% as

compared to BG4 and from 15.73% to 86.51% as compared to

TSP. However, a maximum of available K was recorded with the

treatment fertilized with BC11.RP4 with an increase of 3.63%

compared to BG4. On the other hand, when the Actinomycetota

strains were inoculated in alkaline soil, the combinations P18.RP4,

BC3.RP4 and BC11.RP4 were the most performant since they

increase up to 86.54% the available P and up to 61.01% the

available K in soil compared to BG4.
3.6 Correlation and multivariate analysis

According to the PCA analysis (Figure 4), the two principal

components (Dim1 and Dim2) account for 82% of the total

variation. The variation in the data is maximal with first axis

accounting for 69,3% followed by the second axis (12,7% of the

variance). Following this two first axis, the data are grouped into

two major clusters. The first cluster consists of treatments that

significantly increase the nutritional and agronomic parameters.

However, the second group summarized the less efficient treatments

that have a negative correlation with the tested parameters. In acidic

soil, the most efficient treatments follow each other in this order:

P18.RP4, BC3.RP4, BC10.RP4, BC11.RP3, and BC11.RP4 whereas

in alkaline soil the order is as follow: P16.RP3, P18.RP3, BC10.RP3,

BC11.RP3, BC10.RP4, BC11.RP4, BC3.RP4, P18.RP4, P16.RP4 and

P16.RP1. These findings showed a clear separation between the

fertilization under alkaline and acidic conditions.

The P-values of the MANOVA analysis between the different

interactions revealed significant interactions (p<0.001) between RPs
T
A
B
LE

3
A
g
ro

n
o
m
ic

e
ff
e
ct
iv
e
n
e
ss

o
f
A
ct
in
o
m
yc

e
to
ta
-R

P
co

m
b
in
at
io
n
in

al
ka

lin
e
/a
ci
d
ic

so
il
co

m
p
ar
e
d
w
it
h
B
G
4
In

al
ka

lin
e
so

il.

So
il
ty
pe

Tr
ea
tm

en
ts

Sh
oo

t
dr
y
w
ei
gh

t
Ro

ot
dr
y
w
ei
gh

t
Sp

ik
e
bi
om

as
s

RP
1

RP
2

RP
3

RP
4

RP
1

RP
2

RP
3

RP
4

RP
1

RP
2

RP
3

RP
4

A
lk
al
in
e
so
il

P
16

–
–

+
25
%
a

+
25
.2
%
b

–
+
2.
18
8%

c
+
30
.7
%
e

–
–

–
+
35
.5
%
a

+
54
%
c

P
18

–
–

+
13
.8
%
b

+
17
%
c

+
18
.5
%
a

+
15
.1
5%

b
+
69
.5
%
b

–
–

–
+
28
.2
%
b

+
82
%
b

B
C
3

+
1.
02
9%

b
–

–
+
42
.8
%
a

+
5.
51
%
b

–
+
47
.6
%
d

+
7.
4%

b
+
6.
43
%
a

–
–

+
97
%
a

B
C
10

+
5.
51
%
a

–
+
4.
5%

d
+
3.
8%

d
–

+
38
.5
8%

a
+
59
%
cd

–
+
4.
02
%
b

+
2.
43
%
b

+
26
%
b

+
35
.6
%
d

B
C
11

–
+
11
.8
8%

ab
+
7%

c
+
31
.3
6%

b
+
1.
60
%
c

–
+
90
%
a

+
27
.4
3a

+
6.
70
%
a

+
37
.6
9%

a
+
23
.3
%
c

+
59
%
c

A
ci
di
c
so
il

P
16

–
+
9.
22
%
c

+
32
.5
0%

a
–

+
12
.3
1%

c
+
7.
70
%
a

+
13
.0
4%

b
–

–
+
11
.1
5%

c
+
29
.8
2%

bc
–

P
18

+
39
.2
9%

a
–

+
10
.8
9%

c
+
27
.9
3%

a
+
28
.6
4%

b
–

–
+
12
.1
7%

d
+
76
.8
7%

b
–

+
6.
14
%
d

+
51
.8
5%

c

B
C
3

+
39
.6
0%

a
+
16
.8
6%

b
+
10
%
c

+
24
.7
2%

a
+
39
.9
5%

a
–

–
+
21
.9
5%

c
+
11
5%

a
+
40
.2
8%

b
+
20
.1
7%

c
+
59
.2
5%

b

B
C
10

+
0.
83
%
c

+
8.
57
%
c

+
29
.1
4%

b
+
15
.3
3%

b
–

–
–

+
30
.8
6%

b
+
51
.8
7%

c
+
14
.3
8%

c
+
12
4.
12
%
a

+
54
.6
2%

b

B
C
11

+
28
.1
7%

b
+
27
.4
%
a

+
28
.0
7%

b
+
8.
52
%
c

+
33
.9
1%

ab
+
5.
67
%
b

+
39
.9
5%

a
+
38
.2
6%

a
+
11
0.
62
%
a

+
53
.6
%
a

+
72
.3
7%

b
+
80
.5
5%

a

D
iff
er
en
t
le
tt
er
s
in
di
ca
te

si
gn
ifi
ca
nt

di
ffe
re
nc
es

(p
<0

.0
5)
.

frontiersin.org

https://doi.org/10.3389/fpls.2023.1154372
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Boubekri et al. 10.3389/fpls.2023.1154372
and Actinomycetota as well as the interactions between Soil, RPs,

and Actinomycetota for all the measured agronomic parameters

(Supplementary Data Table 1). However, the relationship between

soil pH, Spike, P content, and K content in wheat plant tissues was

found to be non-significant which confirms the poor availability of

nutrients in the soils used in this study.

Furthermore, the agronomic parameters (SDW, RDW, Spike)

and nutrient content (P and K) of plant tissues were significantly
Frontiers in Plant Science 07
correlated except for RDW which was weakly correlated with P

content (R2 = 0.270, p<0.001) and K content (R2 = 0.161)

(Supplementary Data Table 2).
3.7 Effect size analysis

The treatments effects in this experiment are generally so

pronounced when the plants were grown in alkaline soil than

acidic soil. In alkaline conditions, we only needed between 2 to 5

experimental units in each treatment to achieve 90% power except

the parameters P and K content (Table 6). The larger sample sizes

used provide additional power for making multiple comparisons

between treatments, ranging from 0.90 to 1. These coefficients are

judged to be high size by Cohen (1988) guidelines. For acidic soil,

the size of the effect so pronounced but more replications are

required in particular spike, SWD, and RDW.
4 Discussion

This study has demonstrated that the PSA effectively colonized

the wheat root surface and formed a strong biofilm along epidermal

tissues. This close interactions confers the Actinomycetota strains an

advantage to influence positively wheat growth, and yield

(Merzaeva and Shirokikh, 2006; Goudjal et al., 2016; van der Meij

et al., 2017). Our results are consistent with the findings of Mun

et al. (2020) that reported successful colonization of cucumber root

by Streptomyces LH4 and suggested that this phenomenon may

produce a staple effect by LH4 on the growth and defense system of

the plant. Moreover, it has been reported that biofilm formation is

considered a protective mechanism that is an additional advantage

for plants that safeguard them from external stresses and microbial

competition (Wu et al., 2019). The greenhouse experiments

demonstrated that the agronomic performances of the
FIGURE 3

Effect of Actinomycetota and RPs combinations on P and K uptakes in wheat plants tissue. (A) In alkaline conditions; (B) In acidic conditions.
Different letters indicate significant differences (p <0.05).
TABLE 4 Effect of Actinomycetota-RPs inoculations on chlorophyll
content of wheat plants.

Treatments Chlorophyll content index

Alkaline conditions Acidic conditions

C- 18.53 ± 0.104c 13.26 ± 0.155f

TSP 23.199 ± 0.48a 29.71 ± 0.51a

BG4 16.83 ± 0.233d 20.31 ± 0.212cd

RP3 17.57 ± 0.085cd 15.46 ± 0.314e

P16RP3 20.58 ± 0.075b 16.56 ± 0.32de

P18RP3 19.82 ± 0.19abc 17.183 ± 1.13d

BC3RP3 22.003 ± 0.671ab 22.98 ± 1.44c

BC10RP3 21.34 ± 0.09ab 26.27 ± 2.86ab

BC11RP3 21.93 ± 0.078ab 22.24 ± 2.94c

RP4 20.18 ± 1.57b 18.34 ± 1.75d

P16RP4 19.214 ± 0.023abc 18.376 ± 0.16d

P18RP4 20.58 ± 1.207b 25.76 ± 1.105abc

BC3RP4 22.10 ± 0.635ab 27.326 ± 0.56ab

BC10RP4 20.899 ± 1.78ab 26.103 ± 0.196abc

BC11RP4 22.101 ± 0.412ab 28.90 ± 0.512ab
Different letters indicate significant differences (p <t0.05).
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FIGURE 4

Principal components analysis of the wheat growth parameters and nutrient content across different Actinomycetota-RPs inoculations in different
soil pH. The points represent mean values of 5 replications of each treatment. Arrows indicate directions and strength of parameters in the dataset.
SDW, Shoot dry weight; RDW, Root Dry weight.
TABLE 5 Effect of Actinomycetota-RPs on available P and K in soil.

Soil conditions Treatments P (mg/kg) K (mg/kg)

Acidic conditions

P18.RP4 0.103 ± 0.011 b 0.742 ± 0.08 cd

BC3.RP4 0.064 ± 0.005 cd 0.836 ± 0.063 bcd

BC10.RP4 0.166 ± 0.018 a 0.842 ± 0.091 bcd

BC11.RP4 0.103 ± 0.008 bc 0.996 ± 0.07 bcd

BC10.RP3 0.08 ± 0.008 bcd 1.188 ± 0.114 a

BC11.RP3 0.061 ± 0.007 d 0.655 ± 0.073 de

BG4 0.083 ± 0.016 bcd 0.963 ± 0.188 abc

TSP 0.089 ± 0.003 bc 1.067 ± 0.035 ab

C- 0.027 ± 0.024 e 0.359 ± 0.323 e

Alkaline conditions

P18.RP4 0.097 ± 0.019 a 0.987 ± 0.192 a

BC3.RP4 0.089 ± 0.01 ab 0.902 ± 0.096 a

BC10.RP4 0.055 ± 0.016 c 0.607 ± 0.179 ab

BC11.RP4 0.078 ± 0.013 abc 0.741 ± 0.145 ab

BC10.RP3 0.052 ± 0.011 bc 0.649 ± 0.132 ab

BC11.RP3 0.056 ± 0.015 bc 0.732 ± 0.193 ab

BG4 0.05 ± 0.03 c 0.61 ± 0.354 ab

TSP 0.08 ± 0.013 abc 0.44 ± 0.248 b

C- 0.05 ± 0.024 c 0.43 ± 0.220 b
F
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TABLE 6 Effect size analysis.

Soil type Treatments Factors Size for 0.90 power Actual size Power for actual size

Acidic soil BC10RP3 SDW 10-11 5 0.55

RDW 5 5 1

Spike 12-13 5 0.45

P content 4-5 5 0.9999988

K content 5 5 1

BC11RP3 SDW 9-10 5 0.62

RDW 3-4 5 0.9999731

Spike 3-4 5 0.9999649

P content 3-4 5 0.9999813

K content 2 5 0.9990435

P18RP4 SDW 9-10 5 0.62

RDW 5-6 5 1

Spike 12-13 5 0.45

P content 5 5 1

K content 2-3 5 0.9971115

BC3RP4 SDW 14-15 5 0.40

RDW 7-8 5 0.66

Spike 10-11 5 0.55

P content 4-5 5 1

K content 4-5 5 1

BC10RP4 SDW 8 5 0.66

RDW 6-7 5 1

Spike 10-11 5 0.64

P content 7-8 5 1

K content 4-5 5 0.9999933

BC11RP4 SDW 6-7 5 1

RDW 10 5 0.56

Spike 10 5 0.55

P content 8 5 0.78

K content 4-5 5 1

Alkaline soil BC10RP3 SDW 3 5 0.9995942

RDW 4-5 5 1

Spike 4-5 5 1

P content 7-8 5 0.7391821

K content 3 5 0.9866806

BC11RP3 SDW 2-3 5 0.9899316

RDW 2 5 1

Spike 2-3 5 0.9904394

(Continued)
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Actinomycetota combined with RPs were greatly influenced by RP

grades, soil characteristics and soil pH (Table 3). The high

significant effect size indicate that our experiment is more likely

to lead to conclusive results as previously highlighted by Soumare

et al. (2015). In our study, the grade RP4 and RP3 containing the

highest P2O5 content (32.81% and 31.12% respectively), has

resulted in the best agronomic performance of wheat plant.

Similar studies have been reported by Xiao et al. (2008) and

Gomes et al. (2014) who have shown that the solubilization

capacity of microorganisms was also correlated positively with the

grade of RP. In this regard, our previous results in in-vitro screening

on NBRIP medium and in greenhouse with maize plants showed

the same trends (Soumare et al., 2020a; Boubekri et al., 2021). Even

though Actinomycetota strains could solubilize the RPs in both acid

and alkaline soil type as it has been demonstrated in this study, the

agronomic performances on wheat plants were more pronounced in

alkaline soil than acidic soil. The results obtained are in accordance

with those of Alam et al. (2022) who observed a marked increase in

all agronomic parameters of wheat when mineral P was applied

along with PSB in alkaline soil. Our findings are also consistent with

those of Amaresan et al. (2020) who have shown that

Actinomycetota grew much better in the pH 6.0 to 9.0 range than
Frontiers in Plant Science 10
in a more acidic or alkaline soil. In this regard, the highest shoot dry

weight (+42% compared to RP4) and root dry weights (+69.5%

compared to RP3) were always recorded when the wheat was

planted in alkaline soil (Table 3). Moreover, the combined

application of Actinomycetota resulted in higher spike yield of

19.7% in alkaline soil (N. alba BC11.RP4) and 4.97% in acidic soil

(S. griseorubens BC10.RP3) compared to the TSP treatment

(Table 3). In fact, the combined application of RP with soil

microorganisms is like a slow release biofertilizer which reduce

the P leaching in soil, which bring continuously the available

nutrients to plants (Wang et al., 2020). Indeed, if P is available in

large quantities as for TSP, it is subjected to leaching, complexation

with either calcium or aluminium (Bouray et al., 2021).

Interestingly, our findings highlight that the strains are

competitive with the native flora and there was no antagonism

between the inoculated Actinomycetota and the native

microorganisms since they effectively improved the wheat plant

growth under non-sterile substrate. The important influence of soil

pH on the performances of the Actinomycetota-RPs combinations

has been confirmed as our previous studies. It has been reported

that soil pH influences the microorganism activity and nutrients

solubility, thereby, affecting the growth and yields of plants (Gondal
TABLE 6 Continued

Soil type Treatments Factors Size for 0.90 power Actual size Power for actual size

P content 4-5 5 0.9091433

K content 2-3 5 0.993249

P18RP4 SDW 5 5 0.9427235

RDW 5 5 1

Spike 5 5 1

P content 4-5 5 0.999953

K content 4-5 5 0.999999

BC3RP4 SDW 2-3 5 0.9209139

RDW 5 5 1

Spike 5 5 0.9999999

P content 5 5 0.9999999

K content 5 5 1

BC10RP4 SDW 3-4 5 0.9801401

RDW 2-3 5 0.9873727

Spike 4-5 5 0.9999926

P content 17 5 0.4199026

K content 9 5 0.6613789

BC11RP4 SDW 2 5 0.9989766

RDW 2 5 1

Spike 4-5 5 0.9999995

P content 2-3 5 0.9977018

K content 2 5 0.9999378
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et al., 2021). P availability and mobility are low in most soils,

especially in acidic soils where P availability is mainly limited by

adsorption reactions due to low pH and high concentrations of

aluminum and iron oxides and hydroxides (Penn and Camberato,

2019). For instance, in acidic soils the plant growth is favored

because most micronutrients are more available to plants than in

neutral-alkaline soils.

In addition to soil pH, soil texture is also thought to be a key

factor affecting nutrient’s availability especially for P and K

(McLauchlan, 2006; Fageria and Moreira, 2011; Soumare et al.,

2022). In fact, results revealed that the agronomic performances of

wheat plants of clay-loamy soil are significantly different from that

of sandy soil. The highest performance was found in clay-loamy soil

than sandy soil is probably due to the high of water retention and

nutrient-holding capacities that are necessary for plant growth. In

sandy soil, the fine particles allows rapid leaching of nutrients from

soil (Carrenho et al., 2007; Afzal et al., 2011; Ouzounidou et al.,

2015). Our findings corroborate those of Egamberdiyeva (2007) and

Islam et al. (2018) who demonstrated a better stimulatory effect of

PSB in loamy soil than sandy soil. The increment of chlorophyll

content is considered to be a parameter which corresponds to an

increase in photosynthesis, and, consequently, to an increase in

production potential and plant vigor (Bashan et al., 2006; Pereira

et al., 2015). These results demonstrate the contribution of tested

strains (especially N. alba strain BC11with RP4 followed by S.

griseorubens strain BC3 with RP3) to plants P nutrition and

photosynthesis. In contrast, the treatments with prolonged P-

deficiency (control RPs and negative controls) showed a purples/

brown leaves which may result in the accumulation of

anthocyanins, consequently increasing the pigmentation of the

newest leaves and chlorophyll concentrations (Veazie et al., 2020).

This may be due to the greater solubilization/mobilization of P in

wheat plants which later, in turn, promotes N content in plants

(Adhikari et al., 2021). Plant nutrient status also changes with the

different Actinomycetota-RPs combinations in both acidic and

alkaline soils. In general, the inoculation of PSA significantly

compensated the nutrient deficiency especially P by stimulating

root development which led to a better adsorption of water and

nutrients. Indeed, it has been found that the addition of

Actinomycetota bio-inoculants along with RP fertilizations were

able to reverse the low level of P and K assimilation and

accumulation observed in the stems of negative controls and RPs

controls, reaching P assimilation levels similar to those observed in

the positive controls fertilized with TSP. The main reason could be

due to increased P and K availability in soil which is latter utilized

by the wheat plant itself for growth upon PSA inoculation. These

results were supported by Swarnalakshmi et al. (2013), where

combined application of PSB and RP significantly promotes

wheat plant P content in comparison with the mineral fertilizers

or with the single PSB inoculation. Similar results have been

reported by Dasila et al. (2023) who demonstrated that PSB

inoculation significantly improve the nutrition status of the

wheat plants.

In the present study, the highest increase in total P and K

content in plant tissues was observed in N. alba strain BC11.RP4

with an improvement up to 162.9% and 142.53% respectively in
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alkaline conditions compared to BG4. In addition, the inoculation

with the BC10.RP4 and BC11.RP4 increased the P content in soil by

more than 15.73% compared to the TSP. However, under acidic

conditions, BC10.RP4 followed byN. alba strain BC11.RP4 were the

most performant inoculums in terms of increasing the nutrient

uptake since the latter increased by up to 195.58% in the case of P

and 29.56% in the case of K compared to BG4. This observation

provides an explanation that inoculation of PSA promotes oil

nutrient status via solubilizing/mobilizing soil nutrients. These

findings were in tune with the studies of Hamdali et al. (2012);

Biglari et al. (2016); El-Badan et al. (2019); Vargas Hoyos et al.

(2021) who demonstrated that application of RP with

Actinomycetota strains enriched the rhizosphere with soil

available P compared to other treatments. Therefore, the increase

of the P and K availability under Actinomycetota-RP fertilization

suggest also that the inoculated bacterial strains positively compete

with existing natural bacteria. In addition, the Manova analysis

revea led s ign ificant in te rac t ions (p<0 .001 ) be tween

soil*RP*Actinomycetota and the agronomic parameters of wheat

plants which explained their synergic effects (Supplementary Data

Table 1). Thus, these results are in line with those reported by Mittal

et al. (2008) and Sharma et al. (2013) that have shown that the in

addition to the yield and wheat nutrient uptake improvement

obtained by the application of rock phosphate with PSB, the

subsequent crop will reap the benefits impaired by the PSB to the

soils. Finally, these findings suggest that the N. alba strain BC11 is a

valuable resource for sustainable agriculture and could help alleviate

agricultural losses due to P limitation in acid and alkaline soils while

maintaining and improving yields.
5 Conclusion

This first report of combining Actinomycetota-RP application

to promote wheat growth under natural alkaline and acidic soils

clearly indicated that the tested PSA are able to solubilize a broad

spectrum of RPs, but their efficiencies depend on RP grades, soil pH,

and soil type. Regardless of the soil type used, PSA along with RP3/

RP4 showed similar or high performance as compared to the

positive controls BG4 and TSP. This increase is due to their

ability to solubilize a broad spectrum of RP, to effectively colonize

the wheat root systems, to form a strong biofilm as well as their

capacity to produce plant growth promoting factors. Amongst the

PSA, N. alba strain BC11 along with RP4, was effective in

optimizing wheat yield attributes especially in alkaline soil. This

reveals the potential of this strain for biofertilizer applications and

its potential for sustainable agriculture and environment.

Combined application of Actinomycetota and RP is therefore an

emerging option for meeting agricultural challenges and providing

an excellent opportunity to develop environment-friendly

phosphorus biofertilizer adapted for P-deficient alkaline and

acidic soils. The positive outcome of this investigation shall be

verified in field conditions under diverse agro-climatic regions on a

variety of crops. Prior to recommend the suggested biofertilizer,

supplementary research is needed such as: optimizing the
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biofertilizer formulation, evaluate its shelf-life, and conduct a

market study for future commercialization.
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