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Algal symbiotic relationships in freshwater and marine environments
Living organisms have never been solitary individuals and symbiotic relationships are

challenging our very conception of the individual. Symbiosis, initially defined as a living

together of different organisms (De Bary, 1879; Raval et al., 2022) represents a range of

complex and intermingled relationships (mutualism, commensalism amensalism and

parasitism). Although actively debated with numerous theories on the origin of

eukaryotes, it is widely accepted that a metabolic symbiosis and successive

endosymbioses were important in the evolution of eukaryotes and their diversification

(Hartman and Fedorov, 2002; Sapp, 2004; Embley and Martin, 2006; Cenci et al., 2017;

Sibbald and Archibald, 2020; Gabaldon, 2021). Thus, symbiosis conceptually challenges

our view of the processes of evolution, beyond mutation, recombination and natural

selection (Margulis and Fester, 1991). The most studied symbioses involve complex

eukaryotes and microorganisms in both terrestrial and aquatic habitats (Bais et al., 2006;

The Human Microbiome Project Consortium, 2012; Blackall LLW, 2015), but a growing

number of studies reveal ubiquitous symbioses among microscopic life forms (Decelle

et al., 2012; Foster and Zehr, 2019). With its diversity and outcomes combining metabolic

capabilities of interacting partners, symbiosis is recognized as the most important

evolutionary process that has allowed the appearance of new genomes/species

throughout the history of life on Earth (Kiers and West, 2015; O’Malley, 2015).

Some symbioses are key to the existence of entire ecosystems such as the interactions

underpinning the success of coral reefs, the cnidarian-algae mutualism that provide habitat

for roughly one fourth of all marine life (Blackall LLW, 2015; Frankowiak et al., 2016). In

this symbiosis, metabolites from the animal host (corals, sea anemones, jellyfish, and

hydrocorals) are exchanged for microalgal exudates (Davy et al., 2012). Another symbiotic

interaction that deserves greater attention in microbial networks is between parasitic fungi

and phytoplankton as it has a significant impact on ecosystem functioning. These

symbiotic interactions cause the transfer of photosynthetic carbon to infecting fungi and

the stimulation of bacterial colonization on phytoplankton cells, altering ultimately

bacterial community composition and subsequently carbon flow (Tourneroche et al.,

2019; Klawonn et al., 2021). Although artificial, a beneficial symbiotic interaction was

reported between the freshwater chlorophyte, Chlamydomonas reinhardtii and diverse
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ascomycete fungi that provide nitrogen to the algae (Simon et al.,

2017). Recently, similar artificial symbiosis was reported in the

marine microalgae Nannochloropsis oceanica and a terrestrial

fungus, Mortierella elongate. Here, an unusual interaction takes

place as functional algal cells are included within fungal mycelium,

while in all known algae-fungus interactions, the algal cells

remained external to fungal hyphae (Du et al., 2018; Du et al.,

2019). This study showed the stability of the interaction with a

bidirectional exchange of nutrients suggesting this could be the

beginning of an endosymbiogenesis within eukaryotes.

Despite this recent recognition and striking importance,

symbiosis received less attention compared to other fields of

investigation and remains largely unexplored in particular in

aquatic biota where the nature of the environment, fluid,

represents an additional challenge. The advent of symbiosis as a

critical area of research is challenged by the difficulties in

maintaining symbiotic partners/holobiont alive in lab cultures, in

particular for obligate interactions when both partners are

dependent on each other for survival. Often, commonly used

culturing techniques are not suitable to species in symbiotic

relationships. The lack of knowledge about their genome

background and metabolic capabilities, to predict their nutrient

requirements and culture conditions, hinders the progress in this

field. However, recent and rapid advances in whole genome

sequencing of either individual species and/or meta-communities

helped to overcome some of these bottlenecks, using data mining

for designing custom based media that fulfill the needs of symbiotic

organisms (Leon et al., 2014; Jaswal et al., 2019; Lugli et al., 2019).

Another fundamental boost is undoubtedly the existence of

established model organisms that open up novel avenues of

investigations, which would otherwise be impossible or at least

difficult to achieve. A recent study that used both metagenomics

sequencing and a model species, the diatom Phaeodactylum

tricornutum, successfully identified an overlooked symbiosis

between microalgae and non-cyanobacteria diazotrophs (NCDs)

which challenges the long-held paradigm of dominance of

cyanobacteria interactions with microalgae over NCDs and brings

the first hints on how heterotrophic proteobacteria thrive in surface

waters and oxygenated areas (Chandola et al., 2022).

The articles included in this Research Topic provide a view of

how symbiotic interactions can help bypass environmental stresses

such as in Heo et al., where filamentous ascomycetes Arthrinium

species act as endosymbionts protecting brown algae from oxidative

stress. Miao et al. studied the diversity and function of gammarid

like animals that feed on the blooming green tides of Ulva prolifera

contributing to their containment and limiting their negative

impact on the environment. Lo et al. address the methodological

challenge of inferring phylogenetic relationships from large genome

assemblies in the (1-5Gb) genomes of Dinoflagellates Symbodinium,
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essential symbionts of corals. Their in silico analyses demonstrate

that a scalable k-mer approach largely agrees with the phylogenetic

signal inferred from the LSU rDNA sequence. The combination of

genomic and experimental data sometimes allows us to hypothesize

about the metabolic bases of coexistence, as in the case of

coexistence between Roseovarius and the green alga Ostreococcus

tauri, where the bacterial genomes encodes the metabolic pathway

to produce the vitamins needed by the microalgae (Vacant et al).

This study reports a stable coexistence maintaining the microalgae

and the bacterium over several years, unlike the dynamic

associations reported between Dinoroseobacter shibae and the

microalgae Prorocebtrum minimum (Mansky et al., 2021), or

Sulfitobacter and Emiliania huxleyi (Barak-Gavish et al., 2023).

The field of symbiosis in aquatic habitats is expanding quickly

with both in silico and experimental approaches, and many novel

insights into species interactions, their ecology and evolution are

expected in the near future.
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