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Genomic selection (GS) is an option for plant domestication that offers high

efficiency in improving genetics. However, GS is often not feasible for long-lived

tree species with large and complex genomes. In this paper, we investigated UAV

multispectral imagery in time series to evaluate genetic variation in tree growth

and developed a new predictive approach that is independent of sequencing or

pedigrees based on multispectral imagery plus vegetation indices (VIs) for slash

pine. Results show that temporal factors have a strong influence on the h2 of tree

growth traits. High genetic correlations were found in most months, and genetic

gain also showed a slight influence on the time series. Using a consistent ranking

of family breeding values, optimal slash pine families were selected, obtaining a

promising and reliable predictive ability based onmultispectral+VIs (MV) alone or

on the combination of pedigree and MV. The highest predictive value, ranging

from 0.52 to 0.56, was found in July. The methods described in this paper

provide new approaches for phenotypic selection (PS) using high-throughput

multispectral unmanned aerial vehicle (UAV) technology, which could potentially

be used to reduce the generation time for conifer species and increase the

genetic granularity independent of sequencing or pedigrees.

KEYWORDS
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1 Introduction

Tree breeding primarily mimics the natural selection of breeding domestication based

on cycles of selection, mating, and testing that have successfully increased tree productivity

and genetically improved tree materials for multiple traits (Pâques, 2013). However, forest

trees typically have long breeding cycles and large physical sizes, making breeding and
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progeny testing complex and expensive (Isik, 2014). Compared to

crop breeding, forest tree breeding is still in its infancy (Lyzenga

et al., 2021). The development of molecular genetic methods has

greatly improved selection efficiency. Many available molecular

markers are colocalized with functional genetic variation, and

breeders can use these markers to aid breeding (Lande and

Thompson, 1990; Wang et al., 2018). The goal of molecular

genetics is to identify the polymorphic markers or genes

associated with phenotypic variation in target traits (Rasmussen,

2020). However, most target traits are complex and influenced by

numerous genes, but each effect is small. Low-throughput marker

selection methods, such as microsatellites (Jarne and Lagoda, 1996)

and marker-assisted selection (MAS) (Ribaut and Hoisington,

1998), are outdated and not as successful as expected. Therefore,

genomic selection (GS) using genome-wide markers has been

proposed in breeding (Jannink et al., 2010). GS mainly aims to

calculate the genomic estimated breeding value (GEBV) of target

traits by estimating the effects of all loci using single nucleotide

polymorphism (SNP) markers, resulting in more comprehensive

and reliable selection (Newell and Jannink, 2014). GS has been

successfully applied in crop breeding, which can greatly improve the

prediction of breeding value (BV) and reduce the recurrent cycles of

selection. GS is becoming the most popular and successful strategy

for predicting breeding values of target traits for selection (Crossa

et al., 2017; O’Connor et al., 2021). As high-throughput sequencing

becomes more efficient and affordable, interest in GS has increased

in forest tree breeding (Grattapaglia et al., 2018; Ukrainetz and

Mansfield, 2020). However, GS may not always be appropriate for

tree species, especially conifers that have not been whole-genome

sequenced, such as slash pine (Scott et al., 2020), because these

candidates often have large, uncharacterized, and complex

genomes, making rapid assembly of reference genomes difficult;

without sufficient funding or prior genome characterization, GS

seems out of reach (Rincent et al., 2018).

There are two important kernel functions that have been used

primarily in GS, including the Gaussian kernel (GK) and the

genomic best linear unbiased predictor (GB) (Cuevas et al., 2016).

GB is a linear kernel that uses the marker matrix to compute the

genomic relationship matrix, also called the kinship matrix, while

GK is a covariance matrix that reveals the complex marker effects

and the possible interactions (Cuevas et al., 2019). The prediction of

GK usually performs better than GB in a single environmental

condition (Bandeira e Sousa et al., 2017). All these kernel functions

use a large number of molecular markers to predict the target traits,

which is similar to predictive models built using machine or deep

learning methods based on near-infrared spectroscopy (NIRS) or

hyperspectral data (Yoosefzadeh-Najafabadi et al., 2021; Li et al.,

2022). Therefore, it is plausible to use spectral data to estimate the

kinship matrix, similar to the use of markers (Van Tassel

et al., 2022).

Recently, phenomic selection (PS) has emerged to address these

issues by using high-dimensional secondary traits (HDSTs) (e.g.,

individual sample near-infrared (NIR) spectra or hyperspectral

imaging) instead of SNPs to estimate the realized genomic

relationship matrix (kinship matrix) between individuals, taking

advantage of algorithms and workflows developed for GS (Krause
Frontiers in Plant Science 02
et al., 2019; Adak et al., 2021). PS was first proposed by Rincent et al.

(2018), who compared the predictive ability of both NIRS and

molecular markers with two types of GS models, including the GB

and Bayesian LASSO (BL) models, respectively, and the results

showed that using NIRS provided similar or even better predictive

results than using molecular markers, depending on the trait of

interest and the different types of NIRS. Similar results have been

consistently shown in maize and soybean, where the use of NIRS or

hyperspectral imaging could generate competitive estimated

breeding values, called phenomic estimated breeding values

(PEBVs), rather than genomic estimated breeding values (GEBVs)

(Adak et al., 2021; Zhu et al., 2021; Weiß et al., 2022). However,

phenomic selection using unmanned aerial vehicle (UAV)-based

imagery has been less studied.

UAV-based remote sensing has been greatly facilitated for data

acquisition by advances in sensor technology, which has the

potential to increase fieldwork efficiency with less time to collect

spatial information than ground-based spectroscopy and to cover

large areas while maintaining accuracy and resolution.

UAVs can acquire various types of data, including spectral,

structural, thermal, and feature data, which have been widely used

in plant science to estimate various traits (Tsouros et al., 2019). For

example, UAV-based multispectral or hyperspectral imagery could

be used to estimate leaf chlorophyll content and nitrogen

concentration (Zheng et al., 2018), canopy structure information

such as height and canopy area from the Light Detection and

Ranging (LiDAR) system (Maesano et al., 2020) and real-time

kinematic (RTK) positioning system (Tao et al., 2021) for plant

biomass (Masjedi and Crawford, 2020; Nik Effendi et al., 2021) and

grain yield prediction (Li et al., 2020).

In addition, UAV-based imagery also provides a high-precision,

high-throughput method for field-based multitemporal

phenotyping data collection in the context of plant breeding. This

allows for the provision of dynamic information on plant growth

and performance (Dıáz-Varela et al., 2015; Song et al., 2022). For

example, the height data of sorghum and maize from different

groups of breeding material estimated by UAV-based imagery have

been used to detect the different growth stages (Han et al., 2018;

Pugh et al., 2018). UAV-based thermal imagery has been used for

high-throughput field phenotyping of black poplar response to

drought (Ludovisi et al., 2017). Therefore, UAV-based imagery is

very helpful for forest inventories because traditional measurements

of tree height and crown growth are difficult due to the difficulty in

determining the top of the tree crown and the two cross-crown

diameters to simplify the calculation of crown area (Guerra-

Hernández et al., 2017). With the specific wavelengths and the

RTK system, UAV-based multispectral imagery allows us to obtain

the growth parameters as well as the content of physiological and

photosynthetic pigments in the leaves.

Although there are achievements in growth trait detection and

leaf physiological prediction for plant breeding based on UAV-

based imagery, no research has been found on the use of

multitemporal HDSTs to perform phenomic selection of growth

traits in slash pine. In previous studies (Tao et al., 2021; Song et al.,

2022), we developed a UAV-based multispectral imagery

phenotyping method that successfully detected growth parameters
frontiersin.org
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such as tree height, crown area, and biomass, which were combined

to estimate genetic variation with various vegetation indices (VIs) in

slash pine (Pinus elliottii). However, previous studies did not

consider using the multispectral as an indicator to predict the

genetic parameter. Here, we further combined this methodology

with multitemporal growth and multispectral data in a slash pine

breeding plantation to evaluate the potential of linking high-

throughput phenotyping with growth parameters to perform

phenomic selection.

Slash pine is a typical conifer with a large, uncharacterized, and

complex genome, and the reference genome of slash pine is still

unavailable; therefore, genetic studies of slash pine are mainly based

on the transcriptome (Diao et al., 2019; Ding et al., 2022).

Therefore, we used slash pine breeding populations as model

materials to evaluate a novel approach for low-cost, high-throughput

phenomic selection of growth trait-based multispectral images. Our

objectives were to 1) estimate genetic variation in growth traits in

time series using UAV multispectral imagery; 2) evaluate the

predictive ability of the GB and GK models using time series

multispectral data for phenomic selection; and 3) develop new

predictive selection approaches that are independent of sequencing

or pedigrees in trees, especially in conifer breeding programs.
2 Methods and materials

2.1 Site description

The study was conducted on a slash pine population in a

national forest farm in Anhui, China; details can be found in

Song et al. (2022). There were twenty open-pollinated families

with a lattice incomplete block single-tree plot design planted in

2013 within two sites. Each block contained 20 trees, and the

spacing between each tree per block was 2 m×3 m. Each tree

represented a single family, with no replications within a block.

There were 2 sites, and each site contained 20 blocks. 30% of the

trees died (240/800) during these years. In total, there were 560

remaining individual trees. Tree canopies did not overlap. This

region has a subtropical temperate climate with an average

temperature of 15°C.
2.2 UAV flights and field data collection

Flights were performed monthly in 2021 (at the age of 8 years)

using DJI Phantom 4 Multispectral (DJI, Shenzhen, China), which

has 1 RGB camera and 5 wavelengths (450 nm ± 16 nm, 560 nm ±

16 nm, 650 nm ± 16 nm, 730 nm ± 16 nm, 840 nm ± 16 nm). This

UAV is equipped with an RTK system that can reduce the

horizontal and vertical positioning errors to 0.03 m and 0.06 m,

respectively. The output images from each multispectral camera are

in TIF format with a resolution of 1600×1300 pixels.

Flights were conducted at a fixed height of 35 m above ground

level during a sunny and less windy day in each month to ensure

high accuracy requirements and to reduce any systematic bias

caused by environmental factors. A standard reflectance panel
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was used during each flight to improve the consistency of the

spectral data. The operation was set to 80% overlap between images

and a forward speed of 5 m/s during the flights. The original images

were normalized to adjust the data and align the spectral

information across the images. The total area covered was 4.5 ha

and the duration of each flight was 1 hour. During the Covid-19, the

field trip was strictly restricted in February 2021, so data were not

available. To validate the accuracy of tree height and crown area

(CA) measurement by UAV images, the ground truth data of tree

height and CA were measured by randomly selected 100 trees in

July of 2021, with the high accuracy of RTK system, the UAV-based

tree height and CA have a high correlation with the ground truth,

with the R2 value higher than 0.85 (Song et al., 2022).
2.3 Image processing

In this study, the image processing methodology employed a

series of steps to extract essential information from the original

multispectral images of the plantation. The initial data processing

involved the use of DJI Terra software (version 3.3.0, Shenzhen,

China) to generate multispectral orthomosaics and dense 3D point

clouds of the entire plantation. These orthomosaic images, along

with the 3D point clouds, served as the basis for further analysis.

The orthomosaic images and 3D point clouds were then further

processed using the R software version 4.2.0 and the lidR package

version 4.0.0 (Roussel et al., 2020). The first step in data analysis was

the classification of ground points within the 3D point clouds using

the cloth simulation filtering (CSF) function, as proposed by Zhang

et al. (2016).This step was critical for creating a digital terrain model

(DTM) that accurately represented the bare ground surface.

With the classified ground points, the next step was to create

digital surface models (DSM) using a point-to-grid algorithm. The

resolution of both the DTM and the DSM was set at 0.5 m, ensuring

a high level of detail in the representation of terrain and surface

objects. The difference between the DSM and the DTM provided

the canopy height models (CHM), which indicate the height of

vegetation above the ground surface.

Using the CHM, individual trees were detected using the

dalponte2016 function with specific criteria, including a minimum

height threshold of 2.6 m and a maximum crown diameter of 2.5 m.

This step allowed for the identification and delineation of individual

trees within the study area.

For each detected individual tree, tree-level attributes such as

tree height and crown area were manually labeled. In addition,

relevant family, site, and block information was associated with

each tree to improve the accuracy and context of the tree-level data.

To represent the spatial extent of individual tree canopies, tree

crown polygons were generated from the manually labeled crown

areas using the raster package (Hijmans et al., 2015). Finally, the

spectra of each individual tree were extracted using the tree crown

polygons. This extraction involved collecting spectral information

from the multispectral orthomosaic images for all pixels within the

boundary of each tree crown.

Similar to previous studies (Tao et al., 2021; Song et al., 2022),

fifteen vegetation indices (VIs) were calculated for each pixel from all
frontiersin.org
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extracted tree images (Table 1). These VIs were then averaged at the

tree level based on the red, green, blue, red edge, and near-infrared

(NIR) spectra, providing valuable insights into the vegetation health

and other biophysical characteristics of the individual trees. The

comprehensive image processing methodology described above

ensured accurate data extraction and analysis, allowing researchers to

gain valuable information about the structure, health, and vegetation

dynamics of the plantation.
2.4 Genetic parameters

Estimates of genetic parameters for slash pine growth traits in

each month of the year were collected by fitting a general multiple

mixed linear model using restricted maximum likelihood (REML);

details can be found in (Li et al., 2018; Cuevas et al., 2019). A brief

description can be expressed as:

yi   = xim + bi + fi + ei (1)

yi is a vector containing the phenotypic values for both traits

(tree height and crown area) for the individual. xiis a vector linking

the fixed effects m to the observations for the individual. m is a

vector of fixed effect coefficients for the traits. bi is a vector

representing the random block effects for the individual. fi is a

vector representing the random family effects for the individual. ei is

a vector representing the random residual effects for the individual.

By stacking these vectors for all trees, we can represent the overall

model equation as:

Y   = Xm + Z1b + Z2f + e (2)
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where Y is a vector of phenotypic observations (containing

measurements for both traits). m is a vector of fixed effects,

representing the overall mean. b , f , and e are vectors of bivariate

random effects for block, family, and residual effects, respectively.X

is the incidence matrix linking observations to the fixed effects. Z1

and Z2 are incidence matrices linking observations to the

appropriate random effects for block and family, respectively. In

this model, the fixed effects represented by m(overall mean) are

connected to the phenotypic observations through the incidence

matrix X. Similarly, the random effects for block and family,

represented by b and f respectively, are linked to the observations

through the incidence matrices Z1 and Z2. The vector e accounts for

the residual effects, which are not explained by the fixed or random

effects. For each month, the equation can be:

Yi   = Xim + Zi1bi + Zi2 fi + ei (3)

Where Yi is the vector of bivariate phenotypic observations for

the ithmonth. m is the vector offixed effects, representing the overall

mean. bi , fi, and ei are the vectors of bivariate random effects for

block, family, and residual effects, respectively, specific to the ith
month. Xiis the incidence matrix linking observations to the fixed

effects for the ith month. Zi1and Zi2are the incidence matrices

linking observations to the appropriate random effects for block and

family, respectively, for the ithmonth. The variance components

were used to estimate the temporal narrow sense of h2 for trait i  and

the genetic correlations (rgij ) between trait iand trait j,

h2i =
2:5s 2

fi

s 2
fi + s2

bi + s 2
ei

(2)
TABLE 1 The spectral indices used in this study.lr, lb and lgare the reflectances at wavelength l.

Name Abbrev. Equation Reference

Normalized difference vegetation index NDVI (NIR − R)=(NIR + R) Peñuelas et al. (1993)

Optimized soil adjusted vegetation index OSAVI ((NIR − R)(1 + 0:16))=((NIR + R + 0:16)) Rondeaux et al. (1996)

Green normalized difference vegetation index GNDVI (NIR − G)=(NIR + G) Gitelson et al. (1996)

Soil adjusted vegetation index SAVI ((NIR − R)(1 + 0:5))=((NIR + R + 0:5)) Huete (1988)

Modified soil adjusted vegetation index MSAVI (2NIR + 1 − √ ((2NIR + 1) 2 − 8(NIR − R)   ))=2 Qi et al. (1994)

Triangular greenness index TGI − 0:5½(lr − lb)(R − G) − (lr − lg )(R − B)� (Hunt et al., 2011)

Green leaf index GLI (2G − R − B)=(2G + R + B) (Louhaichi et al., 2001)

Triangular vegetation index TVI 0.5[120(N-G)-200(R-G)] (Broge and Leblanc, 2001)

Red edge chlorophyll index RECI NIR=E − 1 Gitelson et al. (2003)

Leaf chlorophyll index LCI (NIR − E)=(NIR + R) Pu et al. (2008)

Anthocyanin reflectance index ARI G=NIR van den Berg and Perkins (2005)

Modified green red vegetation index MGRVI (G 2 − R 2)=(G 2 + R 2 ) Bendig et al. (2015)

Modified anthocyanin reflectance index MARI (G ( − 1) − E ( − 1))=NIR Gitelson et al. (2006)

Normalized difference red edge index NDRE (NIR − E)=(NIR + E) Barnes et al. (2000)

Red green blue vegetation index RGBVI (G 2 − R� B)=(G 2 + R� B) Bendig et al. (2015)
R: red bands, G: green bands, B: blue bands, E: red edge bands, NIR: near infrared bands.
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rgij=
s  
fijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
fi  
+ s 2

fj  

q (3)

where s 2
fi , s

2
bi  and  s 2

ei  are the temporal family, block and

residual variance for trait i, respectively, and s  
fij
is the estimated

family covariance between trait iand trait j. The genetic gain

represents the effectiveness of tree improvement and is measured

by the change in the mean breeding value of each trait population.

In this study, genetic gain (DGR) of each trait for each month was

calculated by subtracting the mean breeding value of selected ratio

growth traits from the total mean of growth traits by breeding value.

DGR = MBV � r  −TBV

Where TBV is the total mean of the growth traits determined by

breeding value, MBV is the mean breeding value of the top selected

proportions (r) of the growth traits in descending order. The

variable rdenotes the proportion of growth traits selected as

top performers.
2.5 Kernel methods

We performed two important GS methods, including GB and

GK kernels (Cuevas et al., 2019), to compare the phenomic

prediction accuracy, and we used multispectral as input instead of

SNP data. GB is a standard linear kernel, usually referred to as the

genomic relationship matrix (Cuevas et al., 2016). GB is described

as GB = XX 0
p , where X in our study is the kernel matrix formed based

on the multispectral and VIs matrix (M BLUP). GK, defined as G

K = exp( − hd2ii=q), is different from GB, which is defined as the

semiparametric model reproducing kernel Hilbert spaces (RKHS)

and appears as a reproducing kernel(González-Camacho et al.,

2012), where q and h are the median of the Euclidean squared

distance and the bandwidth parameter affecting the covariance

decay rate between genotypes, respectively. Specifically, for each

month, we randomly divided the data into an 80% training set for

model training and a 20% validation set for model validation. To

evaluate model stability, the data were randomly divided 100 times

for model training.
2.6 Phenotyping-based Wide Association
Analysis (PBWAS)

The PBWAS in our study was conducted according to the

principles of GWAS (Genome-Wide Association Study)

methodology. We considered each temporal month as a

chromosome, and a genome-wide association analysis (GWAS)

was applied to detect the multispectral and VIs (20 variables)

related to the growth traits at each temporal month level.

Thresholds of P< 10^-3 were used as the significance level to

identify associations between variables and traits. While a typical

threshold for GWAS is usually around 10^-4 to 10^-5, we chose a

relatively lower threshold given the smaller size and scope of our

study compared to traditional GWAS studies with larger genomic

datasets. The lower threshold allowed us to identify potentially
Frontiers in Plant Science 05
meaningful associations between the multispectral and VIs traits

and tree growth traits in the context of our specific study using

spectral data.

All statistical analyses were performed in R software. The BGGE

package (Granato et al., 2018) was used for GB and GK model

calibration, the sommer package was used for genetic parameter

analysis (Covarrubias-Pazaran, 2016), the statgenGWAS package

(van Rossum and Kruijer, 2020) was used for PBWAS analysis, and

the ggtree (Yu et al., 2017; Yu, 2020), ggplot2 (Wickham, 2011) and

CMplot packages (LiLin-Yin, 2022) were used for data visualization.
3 Results

3.1 The growth of height and CA in
different months

The average growth trait performance of 20 families is shown in

Figure 1. Since the growth rate can reflect the percentage change in

the indicator over a given time horizon, it can be seen that the

growth rate varies considerably among the families during the one-

year growth period according to Figure 1. The NDVI shows that all

trees have a high growth rate from April to September and a slow

growth rate from December to March, and families 3, 5, 10, 13, 14,

16, and 19 have a higher mean tree height than other families.

However, not all families had high mean tree height followed by

high mean CA; only three families, including 3, 10, 16, had both

high tree height and CA. Families 7 and 12 had relatively lower

mean tree height and CA than the other families, but their growth

rate (NDVI) from April to September was high. In general, the total

amount of tree height and CA started to increase in summer and

slowed down in winter (Figures 2A, B).
3.2 Genetic variation, correlations and
family selection

The variation of the estimate h2 for tree height, CA, VIs and the

spectral bands over 11 months is shown in Figure 3. A range of h2

from 0 to 0.41 was found for all traits. Temporal phenotypes have a

strong influence on the h2 estimates for all traits. All spectral bands

including red, blue, green and NIR had relatively low h2 in all

months with a range of 0 to 0.25. RGBVI, MGRVI, and LCI had

moderate h2 in March, with h2 values of 0.35, 0.31, and 0.31,

respectively, but low h2 values in all other months. The h2 values

of ARI, MACI, NDRE, GCI, GNDVI, LCI and RECI in the month of

October also showed relatively high values compared to other

months, with a range of 0.26 to 0.36. Tree height showed a strong

stable h2 in all months except Dec, ranging from 0.26 to 0.41. The

highest h2 for tree height was found in September, with a value of

0.41, but all spectral and VIs in September were low, with a range

from 0 to 0.19. The months had a strong influence on the h2 of CA;

the highest h2 of CA was found in January, June and July, and the

lowest h2 was found in April, with a value of 0.09.

Figure 4 shows the estimated genetic correlations between

multispectral, VIs and tree growth traits (height and CA) in
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different months. High genetic correlations were found from

January and July to December. Multispectral and VIs have no

significant genetic correlation with tree height or CA in March,

April and June, and the highest genetic correlations between tree
Frontiers in Plant Science 06
height and CA were found in October, with an rg value of 0.99. A

large number of correlations between multispectral, VIs and tree

growth traits (height and CA) were found in January, and red edge,

blue and green spectra had a significant positive correlation with
B

A

FIGURE 2

The density mean of tree height (A) and CA (B) in different months and seasons of the 560 slash pines in 2021.
FIGURE 1

The growth traits of tree height, CA and NDVI in different months. Jan, Mar, Apr, May, June, July, Aug, Sep, Oct, Nov, Dec are represented as
January, March, April, May, June, July, August, September, November, December, respectively.
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CA, with rg values of 0.79, 0.75 and 0.94, respectively. SAVI has a

significant positive correlation with height in December (rg=0.77)

and CA in May (rg=0.78), and the red spectra also have a strong

positive correlation with CA (rg=0.89). In addition, a strong

negative correlation was found between the blue spectra and CA

in May (rg=-0.82).

The breeding values ranked between multitemporal of all

families for tree height, CA, are shown in Figure 5. Although

each family has variable breeding values in different months,

most of the families are consistent between each month, and

breeding selection is possible for high tree height and CA families

in certain months. For tree height, family 19 had the highest

breeding values, in addition to families 6 and 10, which also had
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the highest breeding values in most months. For CA, families 6, 10

and 19 were found to have the highest breeding values for month

influence. Family 19 was also selected in January, March, May,

November, and December. Families 6, 10 and 19 show the highest

breeding value for tree height and CA.
3.3 Genetic gain

The top 10%, 20% and 30% genetic gains of the families for tree

height and crown in different months are shown in Figure 6. The

highest and lowest genetic gains for tree height and CA with strong

selection rates (top 10% and 20%) were found in September, July,

and December, April, with values of 0.35, 0.25, 0.8, and 0.53 for the

highest and 0.23, 0.18, 0.32, and 0.23 for the lowest, respectively. In

general, genetic gains increased as stronger selection rates were

applied to tree height and CA.
3.4 Phenomic selection using the GB and
GK kernels

The phenomic selection based only on multispectral+VIs (MV)

and the combination of MV and pedigree (MV+P) using the GB

and GK models is shown in Figure 7. Temporal time influenced the

predictive ability of PS, with a range from 0.13 to 0.56 for all traits

using two kernels (GB, GK). The average prediction of GB is similar

to that of the nonlinear kernel GK in all cases. Pedigree does not

improve the prediction ability compared to the kernels using MV

+P. Interestingly, the combination of pedigree with MV shows

similar prediction accuracy compared to the prediction using MV

only for the two kernels in some months (December, October, June,

May), but similar in January, March, and April. The highest

prediction ability for tree height and CA using GB and GK was

found in July, with a prediction ability value ranging from 0.52 to

0.56, followed by Dec. The lowest prediction ability for tree height
FIGURE 4

The genetic correlations between tree height and CA and
multispectral and VIs at 11 months in 2021. Red indicates genetic
correlations above 0.75 in absolute value. Blue color indicates CA;
green color indicates height.
FIGURE 3

Estimates of h2 from 11 months in 2021 for all traits, including five spectral bands, vegetation indices (VIs), and growth traits.
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and CA was found in June using GB and March and June using

GK, respectively.
3.5 PBWAS

PBWAS reveals 15 associations between significant multispectral,

VIs and tree height and CA with P< 10-3 in these 11 months

(Figure 8). Tree height was associated with 9 VIs from Jan to Dec,

including TGI in May and Sep, GLI in June, NIR in Aug, GNDVI in

Sep and ARI, MSAVI, and OSAVI in Oct. Six significant associations

emerged between multispectral, VIs and tree CA, including MARI in

Mar, Rededge and NIR in Apr, GLI in June and GNDVI in Sep.
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Among those, the GLI in June and GNDVI in Sep were associated

with both tree height and CA. Time series significantly influence the

association between multispectral, VIs and tree growth traits. No

associations were found to emerge with tree height in Jan, Mar, Apr,

July, Nov and Dec and Jan, May, July, Aug, Oct, Nov and Dec for

tree CA.
4 Discussion

UAV-based imagery has been shown to predict tree growth

traits at high throughput and to be used for breeding selection in

various tree species (Ota et al., 2017; Jang et al., 2020; Jones et al.,
FIGURE 6

Realized genetic gains of tree height and CA traits at age 8 for slash pine at different months in 2021.
FIGURE 5

Family rankings for tree height and CA in slash pine in different months. Each line represent one family. Family values are expressed as deviation
from each trait mean. AU: arbitrary units.
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2020; Rallo et al., 2020). Equipped with the RTK system, UAV

multispectral imagery provided high accuracy of 3D point cloud

data and spectral data for individual trees in forest plantations (Tao

et al., 2021). Supportive results were reported by Volpato et al.

(2021), who found that postprocessed kinematic (PPK) corrections

are an affordable method for plant height, and that PPK or RTK

corrections could greatly increase the accuracy of image

georeferencing and provide a promising method for plant height.

Therefore, UAV imagery is well suited to monitor plant growth

traits in a long time series, and successful studies have been

conducted in agriculture to estimate growth and yield for

breeding selection purposes, including soybean (Borra-Serrano

et al., 2020), cotton (Ashapure et al., 2020), sorghum (Masjedi

et al., 2020) and tomato (Chang et al., 2021). However, there is

limited research on monitoring tree growth in time series for

breeding selection purposes (Guerra-Hernández et al., 2017;

Solvin et al., 2020). Our study is the first to apply UAVs for tree

growth trait identification and the use of multispectral data to

perform multitemporal phenomic selection for tree growth traits in
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a slash pine breeding plantation. This comprehensive approach

integrating UAV, multispectral data and multi-temporal analysis

represents a unique contribution to the field of tree growth trait

identification and phenomic selection in a breeding program. UAV

imagery provides a cost- and time-saving phenotyping method for

individual tree estimation of growth-related traits, greatly

improving data collection over different months or years and

characterization of the genetic basis underlying phenotypic

differentiation (Masjedi and Crawford, 2020). Our approach

collected growth information through multitemporal flights

(n=11), each with low computational time, using a low-cost UAV

device. This approach has been shown to provide accurate estimates

of growth characteristics and VIs in slash pine plantations (Tao

et al., 2021). Similar indices have been widely used in many studies

at the individual tree level (Santini et al., 2019b; Santini et al., 2021).

Tree height and CA differences were detected among families

and increased during spring (March, April, May) and summer

(June, July and August) with the increase of tree growth

characteristics. However, with the limitation of low quality of
FIGURE 8

Results of the PBWAS using GWAS methodology based on multispectral and VIs for tree height and CA in 11 months in 2021. Each dot in a different
month is a representation of that multispectral or VIs.
FIGURE 7

Average Pearson’s correlations between observed and predicted values with standard deviation for 2 methods with 80% of the families in the training
set and 20% of the families in the test set. Methods GB and GK are GBLUP and Gaussian Kernel, respectively. The black line in each bar represents
the standard deviation (SD). The SD was calculated by training the model on 100 randomly divided subsets of the data and obtaining the standard
deviation of the predicted values across these subsets.
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RGB camera, there are some tree height and CA do not extract

correctly. which occurred that the tree height and CA for some trees

from January to May have a trend of decreasing. The h2 of tree

height remained relatively stable during the whole growth year in

2021, with a range from 0.22 to 0.41, and tree CA did not have a

stable h2. The highest h2 for CA was found in June and July. These

results are consistent with our previous study in which tree height

and CA had moderate h2 values of 0.37 and 0.30, respectively, in

July (Zhaoying Song et al., 2022). Moderate genetic variability in

tree growth traits has also been found in other tree species, for

example, a range of 0.21 to 0.30 and 0.19 to 0.28 h2 for tree height in

different ages of Norway spruce (Picea abies L. Karst.) were found

by Solvin et al. (2020) using UAV imagery. The consistency of the

families ranked in different months, and the moderate h2, selected

families with high genetic gains for both tree height and CA at

different selection ratios. In addition, the best month of selection for

tree height and CA was also found in our study.

Most multispectral and VIs in this paper have a large positive or

negative genetic correlation with tree height and CA in different

months, and multispectral and VIs have been shown to have a strong

correlation with plant photosynthetic status, which has the potential

to be used in plant phenomics approaches. Santini et al. (2021)

proposed that VIs show a strong relationship with aboveground

growth traits, whereas leaf biochemistry has no significant effect on

tree growth (Santini et al., 2019a). The strong genetic correlation

between VIs and tree growth traits suggests that a PS based on these

factors is possible. In this paper, we aim to apply a PS approach

similar to that first reported by Rincent et al. (2018), who used NIRS

as a low-cost, high-throughput phenotype to make predictions

instead of genetic markers. The only difference in our study is that

we use five spectral bands and many VIs as inputs instead of markers

to perform PS. Most of the canopy spectrum and VIs showed genetic

variability in different months, which is consistent with the results of

Rincent et al. (2018), who found that VIS-NIR wavelengths between

400-2500 nm mostly showed genetic variability. Therefore, Vis, like

NIRS, should be used to process PS instead of genetic markers. We

collected the spectrum and VIs from different growth months to

determine the temporal influence on PS performance. Since we do

not have marker data, the GB and GK models were performed based

on MV and the combination of MV and pedigree data. Although the

growth time influences the PS prediction, we still obtained the highest

PS prediction ability in July with a range of 0.52 to 0.56. A supported

study was reported by Rincent et al. (2018), who used NIRs and

obtained moderate PS predictive abilities ranging from 0.34 to 0.53

for wood properties in black poplar, but slightly lower predictive

abilities than those with SNPs. There were no significant differences

in the accuracy of the PS models generated by GB and GK in our

study. Moreover, the accuracy of both models was higher than the

range reported by Cuevas et al. (2019), for wheat data, where GB and

GK yielded a range between 0.349 and 0.367 for grain yield prediction

using NIR spectroscopy. The PS models generated in our study also

outperformed models using only genomic markers or a combination

of genomic markers, pedigrees, and NIRS, which had predictive

abilities ranging from 0.40 to 0.47. Cuevas et al. (2019) also

reported that the markers obtained slightly higher correlations

between observed and predicted values than pedigree + NIRS,
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indicating that even if PS is less accurate than GS in some cases, it

could be a feasible alternative and reliable method for filtering the

poor performing germplasm when markers are not available, which

could be a low-cost and high-throughput method independent of

sequencing or pedigrees for tree breeding selection, especially for tree

species with large and complex genomes without prior genome

characterization, GS is often costly and inaccessible.

We used GWAS methodology to reveal the significant VIs and

spectra associated with growth traits at different growth times,

which we call PBWAS. The results demonstrated the effectiveness

of combining phenomic information with UAV imagery to

characterize growth differentiation at different growth times in

slash pine. We identified relevant VI phenotypic associations for

tree height and CA in several months. These associations were

inconsistent across months for tree height and CA, as reported by

Roberts et al. (2016). NDVI, OSAVI, and GNDVI were found to be

saturated at high leaf area and may not capture individual

differences in tree growth. These indices were also found in our

work to be highly associated with tree growth in different months.

The strongest correlations between VIs and tree growth traits were

TGI and LCI in Sep, ARI in Oct, GLI in June, and NIR spectra in

Apr and Aug, respectively. TGI, LCI and GLI are the optimal

spectral indices for leaf nitrogen detection, which are highly related

to leaf chlorophyll content (Hunt et al., 2013; Lima et al., 2021). The

anthocyanin reflectance index (ARI) can be used to estimate

anthocyanin concentration (Kior et al., 2021). Santini et al. (2021)

found four SNPs associated with anthocyanin content in P.

halepensis, suggesting that VIs are associated with genomic

information. Some VIs, such as GLI in June and GNDVI in

September, showed associations with both tree height and crown

area (CA), suggesting the possibility of pleiotropy where these VIs

simultaneously influence both growth traits within the same month.

These results suggest that the detected spectrum and VIs across

different months deserve further attention in exploring their

potential adaptive role for slash pine.

In discussing the limitations of our study, it is important to

acknowledge the lack of a propagation of error analysis in our current

manuscript. We recognize the importance of such an analysis in

determining the reliability and applicability of our findings. However,

several factors prevented us from including a comprehensive error

propagation analysis in this study. First, the limitations of our

experimental design and data collection process, including sample

size limitations and measurement precision, may have affected the

feasibility of conducting a robust error propagation analysis. Second,

the selected data analysis methods, which rely on model-based

estimation and prediction, have inherent limitations with respect to

error propagation. Finally, given the scope and objectives of this

study, we faced time and resource constraints, as well as limitations in

data availability. As a result, a comprehensive analysis of error

propagation was beyond the scope of this study.
5 Conclusion

With the development of UAV technology, the collection of

multispectral or NIR spectra has greatly increased and conversely
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decreased in cost. In this paper, we use this technology to reinforce

the advantages of using the PS approach in Scots pine to estimate

the ability of PS used in conifers independent of sequencing or

pedigrees. The heritable variation of growth traits in time series was

evaluated, temporal growth strongly influenced the genetic

variation of growth traits, and the optimal breeding selection time

for tree growth traits was suggested. Two types of GS kernels,

including GB and GK, showed satisfactory prediction ability based

on the tree growth traits at different months using the pedigree and

MV instead of genomic markers, indicating that with high-

throughput UAV imagery, phenomic selection using multispectral

and VIs was possible and reliable. Our study provides insight into

the spectral processes reflecting phenotypic differentiation (in our

case, tree growth traits) in a time series of UAV technology. Our

new PS approach in slash pine bridges the gap between high-

dimensional secondary traits (in our study, multispectral imaging)

and individual phenotypes.
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Rallo, P., de Castro, A. I., López-Granados, F., Morales-Sillero, A., Torres-Sánchez, J.,
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