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Mata-Pérez C, Sánchez-Vicente I,
Arteaga N, Gómez-Jiménez S,
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Functions of nitric oxide-
mediated post-translational
modifications under
abiotic stress
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Noelia Arteaga, Sara Gómez-Jiménez, Andrea Fuentes-Terrón,
Cylia Salima Oulebsir , Mónica Calvo-Polanco, Cecilia Oliver
and Óscar Lorenzo

Institute for Agrobiotechnology Research (CIALE), Faculty of Biology, University of Salamanca,
Salamanca, Spain
Environmental conditions greatly impact plant growth and development. In the

current context of both global climate change and land degradation, abiotic

stresses usually lead to growth restriction limiting crop production. Plants have

evolved to sense and respond to maximize adaptation and survival; therefore,

understanding the mechanisms involved in the different converging signaling

networks becomes critical for improving plant tolerance. In the last few years,

several studies have shown the plant responses against drought and salinity, high

and low temperatures, mechanical wounding, heavy metals, hypoxia, UV

radiation, or ozone stresses. These threats lead the plant to coordinate a

crosstalk among different pathways, highlighting the role of phytohormones

and reactive oxygen and nitrogen species (RONS). In particular, plants sense

these reactive species through post-translational modification (PTM) of

macromolecules such as nucleic acids, proteins, and fatty acids, hence

triggering antioxidant responses with molecular implications in the plant

welfare. Here, this review compiles the state of the art about how plant

systems sense and transduce this crosstalk through PTMs of biological

molecules, highlighting the S-nitrosylation of protein targets. These molecular

mechanisms finally impact at a physiological level facing the abiotic stressful

traits that could lead to establishing molecular patterns underlying stress

responses and adaptation strategies.
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Background

Plants, as sessile organisms, are regularly challenged by several

abiotic stresses involving water availability, temperature

fluctuations, UV radiation, or the presence of heavy metals in

land. Under normal conditions, aerobic metabolism results in the

production of reactive oxygen species (ROS) highlighting

superoxide anion (O  :−
2 ), hydrogen peroxide (H2O2), or hydroxyl

radical (·OH). Likewise, reactive nitrogen species (RNS) are another

group of molecules derived from nitric oxide (·NO) including free

radicals like ·NO or nitrogen dioxide (·NO2) and non-radicals such

as S-nitrosothiols (SNO) or peroxynitrite (ONOO−) (Halliwell,

2006; del Rıó, 2015). A NO gasotransmitter has been described to

play key regulatory roles in almost all aspects of the plant life cycle

as well as responses to (a)biotic stresses with miscellaneous

mechanisms that have not been fully understood yet (Freschi,

2013; Yu et al., 2014; Puyaubert and Baudouin, 2014a; Domingos

et al., 2015; Trapet et al., 2015; Fancy et al., 2017; Begara-Morales

et al., 2018).

The exposure to environmental perturbations leads to the

accumulation of reactive oxygen and nitrogen species (RONS) in

cells. Such increase prompts a reprogramming of their metabolism,

especially aimed to neutralize such oxidative or nitrosative stresses

(Apel and Hirt, 2004; Radi, 2012). Moreover, abnormal amounts of
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RONS cause the oxidation of cellular components hampering

enzymatic activities or affecting organelle integrity. On the other

hand, to counteract the action of these reactive species, enzymatic

and molecular antioxidants are produced at the cellular level. These

RONS impact plant function through post-translational

modifications (PTMs) of macromolecules such as proteins,

nucleic acids, or lipids (Figure 1). Cysteine (Cys) and methionine

(Met) are the most oxidation-susceptible residues within amino

acids. The free thiol group (-SH) of Cys can be gradually oxidized to

S-nitrosothiol (-SNO), sulfenic acid (-SOH), disulfide bridge (-SS-),

a covalent attachment of glutathione (S-glutathionylation, -SSG),

sulfinic acid (-SO2H), or sulfonic acid (-SO3H) (Spoel and Van

Ooijen, 2014). Most of these modifications are readily reversible,

with the latter two often described as irreversible. In fact, the

reversibility of modifications happening in this intrinsically

nucleophilic amino acid provides many different cellular signaling

opportunities to regulate plant function.

Furthermore, ·NO can interact with ROS, especially with O  :−
2 to

generate ONOO−, which mediates the irreversible nitration of

tyrosine residues (NO2-Tyr) within proteins, a PTM that alters the

protein conformation and mostly provokes loss of function or activity

(Radi, 2004). More attention has been given to S-nitrosylation, a PTM

resulting from the reversible and covalent S-linked NO group to the

reactive -SH of a Cys residue (Figure 1). S-nitrosylation is considered
FIGURE 1

Nitric oxide is considered an essential gasotransmitter for the transduction of bioactivity in plants. Although the main effects described correspond
to protein targets, other molecules are susceptible to be modified by NO—including nucleic acids or fatty acids—highlighting molecular points to be
explored in future research. Created by BioRender.com.
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one of the key mechanisms for the transduction of ·NO bioactivity in

plants. This modification modulates protein activities through several

mechanisms, including stability, conformation, subcellular

localization, biochemical activity, or even protein–protein

interactions (Hess et al., 2005; Astier et al., 2011; Astier et al., 2012;

Lamotte et al., 2014).

On the other hand, nitration of nucleic acids by RNS also

represents one of the key mechanisms mediating the biological

activity of NO in all types of organisms (Figure 1). Nitration of

nucleotides was first described in the early 1990s with the

identification of 8-nitroguanine (Yermilov et al., 1995a; Yermilov

et al., 1995b; Pinlaor et al., 2003; Ma et al., 2004), 8-nitroguanosine

(Niles et al., 2001; Akaike et al., 2003), and 8-nitroguanosine 3’5’-

cyclic monophosphate (8-nitro-cGMP) (Sawa et al., 2007) in animal

systems. It is noteworthy that 8-nitro-cGMP, being a unique dual

signaling molecule, was described to hold powerful redox and

electrophilic activities among the identified nitrated guanine

derivatives (Sawa et al., 2007). The electrophilic properties of 8-

nitro-cGMP can irreversibly modify protein thiols through a novel

PTM known as S-guanylation (Sawa et al., 2007). It was firstly

considered as a marker of nitrosative stress in degenerative diseases,

cancer, or other inflammatory conditions (Ohshima et al., 2006);

however, recent studies have evidenced biological activities and

signaling functions of 8-nitro-cGMP through S-guanylation in

animal systems (Ihara et al., 2011; Nishida et al., 2016). In plants,

there is still insufficient information about the role of nitrated

nucleotides on physiology and signaling. However, recent

observations have shown the implication of cGMP and 8-nitro-

cGMP in Arabidopsis thaliana stomatal guard cells opening (Joudoi

et al., 2013; Honda et al., 2015).

Finally, fatty acids, especially polyunsaturated fatty acids

(PUFAs), are also targeted by RONS. PUFAs are major

components of plant membranes and react with ROS through so-

called lipid oxidation events, highlighting the peroxidation

reactions resulting in the formation of a lipid radical (Vistoli

et al., 2013, Alché, 2019). These events occur in plants as a

signaling mechanism and after a plethora of stress conditions

including high light intensity (Yin et al., 2010). Furthermore,

PUFAs, through the activity of lipoxygenase enzymes, are

precursors of different signaling molecules, including oxylipins or

other oxidized fatty acids, deriving in the production of key

phytohormones such as jasmonates (JAs) (Wasternack and Song,

2017). However, a growing body of plant studies is drawing

attention to the modification of unsaturated fatty acids by NO

and nitrite (NO   −
2 )-derived RNS leading to nitro-fatty acid (NO2-

FA) formation. NO2-FAs are endogenously present in plant systems

mainly in the form of nitro-linolenic (NO2-Ln) and nitro-oleic

(NO2-OA) acids with relevant physiological roles as signaling

molecules in (a)biotic stresses, growth, and development (Mata-

Pérez et al., 2016c; Arruebarrena Di Palma et al., 2020; Di Fino et al.,

2020; Vollár et al., 2020). The mechanisms of action described for

NO2-FAs involve the ability to act as NO donors, hence modifying

proteins through S-nitrosylation (Lima et al., 2005; Gorczynski

et al., 2007; Faine et al., 2010; Mata-Pérez et al., 2016b) or

nitroalkylation (Figure 1). The latter is a reversible process based

on the strong electrophilicity of the b-carbon adjacent to the nitro
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group (-NO2) and its appetence for soft nucleophiles like Cys or

histidine (His) residues (Baker et al., 2007; Geisler and Rudolph,

2012). Thus, nitroalkylation has the capacity to regulate

physiological processes in eukaryotes by modulating the activity

of transcription factors (TFs) and enzymatic reactions (reviewed in

Schopfer et al., 2011; Aranda-Caño et al., 2019). Recently, it has

been demonstrated that RONS may be responsible for

compromising the stability of this PTM, at least in vitro. The

oxidation of NO2-FA-protein adducts through RONS such as

H2O2 or ONOO
− leads to the release of free NO2-FAs. Therefore,

this oxidation-mediated rupture might act as a mechanism to keep

the protein targets sequestered and subsequently released after

nitro-oxidative stress (Padilla et al., 2017).

Considering the accumulation of ROS and RNS is a key feature

underlying abiotic stressful traits; here, we compile the state of the

art about how plants sense, transduce, and integrate the crosstalk

between RONS and their impact on plant function and metabolism

that could lead us to establish molecular patterns underlying abiotic

stress responses and subsequent adaptation strategies in a

constantly changing environment.
Drought and salt stress

Plants show a dramatic increase in RONS levels (Bolwell and

Wojtaszek, 1997; Navrot et al., 2007; Moreau et al., 2010) that

should be controlled to avoid toxic concentrations and to maintain

the redox balance during stress. In fact, the alleviation of salt or

drought stress through NO is also observed when rat nitric oxide

synthase (NOS) is overexpressed in Arabidopsis and rice (Shi et al.,

2012; Cai et al., 2015). However, RONS can mainly transmit their

activity through PTMs and, among those mediated by RNS,

highlight cysteine S-nitrosylation or tyrosine nitration of

proteins (Figure 2).

In Arabidopsis, NO-mediated S-nitrosylation has been reported

for several TFs involved in abiotic stress responses such as MYB2 or

ABI5 (Serpa et al., 2007; Albertos et al., 2015). These TFs participate

in abscisic acid (ABA)-mediated regulation under drought stress.

MYB2, a member of the MYB TF family, was described to undergo

S-nitrosylation at Cys53, affecting its DNA binding activity, and

indicated to be involved in ABA signaling (Serpa et al., 2007). ABI5

is involved in the repression of germination and seedling

establishment (Lopez-Molina and Chua, 2000; Finkelstein et al.,

2002). This TF works in the core of ABA signaling together with

PYR/PYL/RCAR receptors, PP2C phosphatases, and SnRK2 kinases

(Skubacz et al., 2016). ABI5, being a pivotal NO sensor in seeds, is

influenced by NO at transcriptional and post-translational levels.

Albertos et al. (2015) showed that S-nitrosylation of ABI5 at Cys153

facilitates its degradation through the proteasome, therefore leading

to both seed germination and seedling growth under favorable

conditions, demonstrating an antagonism role between NO and

ABA during this process. Moreover, NO also impacts ABA

perception through the tyrosine nitration and S-nitrosylation of

PYR/PYL/RCAR receptors (Castillo et al., 2015). ABA is considered

a stress-related hormone; in fact, ABA levels increase during water

deficiency (reviewed in Swamy and Smith, 1999). In addition,
frontiersin.org
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abiotic stress conditions are known to be accompanied by an

increase in RONS, and ABA increase also leads to the

accumulation of NO and ROS. This scenario prompts a rise of

peroxynitrite (ONOO−) content that mediates the nitration of ABA

receptors rendering the proteins inactive, targeting them for

proteasome degradation and possibly acting as a rapid

mechanism to reduce ABA effects. By contrast, S-nitrosylation of

ABA receptors does not alter their function in vitro, suggesting that

different NO-related PTMs may act throughout the ABA signaling

cascade to attenuate ABA-triggered responses (Castillo et al., 2015).

Furthermore, NO regulates the OPEN STOMATA 1 (OST1)/

SUCROSE NONFERMENTING 1 (SNF1)-related protein kinase

2.6 (SnRK2.6) by S-nitrosylation at Cys137 in cell guards, showing a

negative regulation of ABA signaling (Wang et al., 2015). This PTM

induces a negative effect on stomata closure during drought stress,

observed in cell guards from NO over-accumulating mutants of

Arabidopsis (atgsnor1-2). Consequently, the S-nitrosylation of

SnRK2.6 disrupts the ABA-dependent stomata closure (Wang

et al., 2015). In the same species, a differential Tyr-nitrated

protein profile was observed between wild-type plants and

kea1kea2 (K+/H+ antiporters) knockout mutants. The latter has

closed stomata and shows a higher capacity to resist drought stress

compared to the wild-type accession; both results suggest that

impaired chloroplast K+ could affect the expression of nitrated
Frontiers in Plant Science 04
proteins (Sánchez-McSweeney et al., 2021). Also related to stomatal

opening, it has been shown that 8-nitro-cGMP induced stomatal

closure in the light, while cGMP did not (Joudoi et al., 2013). The

signaling action of 8-nitro-cGMP is mediated by the modulation of

Ca2+ channels, leading to the activation of SLAC1 (SLOW ANION

CHANNEL 1), hence promoting stomatal closure. Furthermore, a

metabolite derived from 8-nitro-cGMP, the 8-SH-cGMP, is also

involved in the closure of stomata pores (Honda et al., 2015);

however, the involvement of S-guanylation has yet not

been evidenced.

A common and widely described feature underlying salt stress is

the increase of the NO and the SNO content (Valderrama et al.,

2007; Begara-Morales et al., 2014; Jain et al., 2018). First studies

about the involvement of NO-PTMs under salinity were carried out

in olive plants where an increase of NO and SNO levels together

with a rise of the protein tyrosine nitration profile were described

(Valderrama et al., 2007). Sunflower seedlings exposed to NaCl

exhibited enhanced tyrosine nitration of cytosolic and oil bodies’

proteins with an enhanced gradient of nitrated proteins from the

root tip to the differentiation zone and from the outer layers to the

deep-seated cells (David et al., 2015). These results led the authors

to think that this is a mechanism to keep oil bodies so that plants

can survive longer under salt stress. Jain and Bhatla (2018)

demonstrated that the tyrosine nitration of cytosolic peroxidase
FIGURE 2

Different abiotic situations promote a redox imbalance linked to nitro-oxidative stress. Plant adaptation implies molecular strategies triggered by NO
modifications to alleviate negative effects to readjust their growth and development. Created by BioRender.com.
frontiersin.org
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leads to an increase in its activity after NO exogenous treatment in

sunflower seedling cotyledons. However, there is a discrepancy in

this regard because the nitration of another peroxidase from the

ascorbate–glutathione cycle, the ASCORBATE PEROXIDASE

(APX) from Pisum sativum, leads to a reduction of its H2O2

detoxification activity (Begara-Morales et al., 2014). This

discrepancy might be explained by the different tissues or plant

species explored. Curiously, APX enzyme shows a dual regulation

by NO due to the fact that GSNO prompts the enhancement of the

activity through S-nitrosylation. In fact, under salinity conditions,

pea plants show that APX is S-nitrosylated; this PTM leads to an

increase in its activity (Begara-Morales et al., 2014). Despite the fact

that PTM has not been demonstrated, several studies have shown

the effect of NO in APX activity under salinity and non-stress

conditions. On one hand, several works reveal that APX activity is

inhibited after pharmacological treatments with NO donors in

different plant species including tobacco and sweet pepper fruits

(Clark et al., 2000; González-Gordo et al., 2022). Conversely, an

increased APX activity has been demonstrated in sweet potato or

soybean plants exposed to NO donors (Keyster et al., 2011; Lin

et al., 2011); these results highlight that depending on the plant

species and the source of NO applied, the impact on APX

bioactivity might vary. On the other hand, the protective effect of

NO on different plant species (i.e., barley, soybean, or mustard)

exposed to salt stress through the increase of APX activity (Egbichi

et al., 2014; Fatma et al., 2016; Yin et al., 2021) and under drought

stress in watermelon plants (Hamurcu et al., 2020) has been

revealed. Recently, Arabidopsis APX recombinant protein has

been shown to be modulated by nitroalkylation, specifically by

NO2-Ln (Aranda-Caño et al., 2019). This modification leads to a

decrease in its enzymatic activity under normal conditions,

therefore showing how different NO-related molecules can

differentially modulate protein bioactivity. Although this result

has been observed under non-stress conditions, nitroalkylation of

the peroxiredoxin Tsa1—involved in ROS alleviation—from

Saccharomyces cerevisiae by NO2-OA is abolished under heat

stress (Aranda-Caño et al., 2022). The authors considered that

nitroalkylation of Tsa1, in the absence of stress, is a way to keep the

enzyme sequestered and inactive, while, upon stress, where a rise of

RONS takes place, the enzyme can be released and trigger its

antioxidant properties. We cannot rule out that something similar

might be happening to APX where, upon drought or salinity stress,

nitroalkylation can release APX, leading to H2O2 detoxification.

Similarly in pea plants, Camejo et al. (2013) demonstrated that

salinity stress induces the S-nitrosylation of PEROXIREDOXIN IIF

(PrxIIF) in the mitochondria, which reduces its peroxidase activity,

due to a conformational change in the protein structure, acquiring a

transnitrosylase activity and subsequently broadening the effects of

protein S-nitrosylation (Camejo et al., 2013; Camejo et al., 2015).

Finally, there are other pieces of evidence about NO implication

during salt stress alleviation that are described below. Polyamine

(PA) biosynthesis is activated and induces the accumulation of

H2O2 and several antioxidant activities during salinity (Tanou et al.,

2014). In citrus plants, putrescine or spermidine led to the

suppression of protein carbonylation and tyrosine nitration

whereas protein S-nitrosylation was elicited by these molecules.
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Furthermore, a proteomic approach on citrus plants concomitantly

exposed to PAs and NaCl showed the S-nitrosylation of catalase

enzyme, which was accompanied by an induction of its enzymatic

activity, suggesting an interplay between protein S-nitrosylation and

protein carbonylation (Tanou et al., 2014). The positive role of NO

in salt stress alleviation is also evident in tomato seedlings, showing

an increase in S-nitrosylated proteins under NaCl treatment (Wang

et al., 2022; Wei et al., 2022). Some of them are involved in MAPK

signaling showing a downregulation in S-adenosyl-L-methionine

(SAM) proteins like SAM1 and SAM3 (precursor of ethylene

biosynthesis), SnRK, and PP2C, and upregulation of MAPK,

MAPKK, and MAPKK5 at the transcriptional level when plants

grew under salt stress plus GSNO, protecting tomato seedlings from

this stress (Wei et al., 2022). Another evidence about the role of NO

during salt stress alleviation is the increase of the tomato

MONODEHYDROASCORBATE REDUCTASE (MDHAR)

activity through S-nitrosylation after exposure to salt stress, due

to the important role of this enzyme during the ascorbic acid

regeneration during ROS detoxification (Qi et al., 2020).
High and low-temperature stress

Heat and cold stresses promote changes that affect plants at the

molecular level leading to plant dysfunction (Sánchez-Vicente and

Lorenzo, 2021). The tolerance of plants to non-optimal

temperatures seems to be linked to the redox regulatory system,

which integrates information from metabolism through thiol-

containing proteins to modulate cell status and minimize cellular

damage (Dietz, 2008).

Heat stress (HS) deeply impacts plant development, including

seed yield losses and crop quality (Sehgal et al., 2018), seed

germination in Arabidopsis (Toh et al., 2008), leaf senescence in

bent grass (Rossi et al., 2017), and photosynthetic damage (Wang

et al., 2018). HS causes an increment in the oxidation level in both the

nucleus and cytosol, which could be related to both genetic and

epigenetic adaptive reprogramming (Babbar et al., 2021). The role of

NO has been widely described under high temperatures (Lee et al.,

2008), having shown that mutants impaired in NO homeostasis

display abnormal growth and development, and the seed production

is compromised under different temperatures (Sánchez-Vicente

and Lorenzo, 2021). In addition, both deficient and SNO/NO over-

accumulators are affected in the response to HS and thermotolerance

capacities (Lee et al., 2008; Xuan et al., 2010). NO mechanisms during

plant acclimation to HS include activation of cellular responses

through the S-nitrosylation of the trihelix TF GT-1, which promotes

its binding toHEAT SHOCK TRANSCRIPTION FACTORA2 (HsfA2)

promoter (He et al., 2022). During germination, Cys S-nitrosylation

has been described as an important PTM, where high temperature and

the photoreceptor phytochrome B (phyB) modulate antagonistically

LONG HYPOCOTYL IN FAR-RED (HFR1)-SNO to coordinate seed

thermotolerance (Ying et al., 2022).

Tyr nitration is also a PTM closely related to HS response. Large-

scale analyses have shown great changes in the nitroproteome of

Helianthus annuus seedlings exposed to HS, with the

FERREDOXIN–NADP REDUCTASE (FNR) (Chaki et al., 2011)
frontiersin.org
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and CARBONIC ANHYDRASE (CA) being two of these proteins

modulated by Tyr nitration (Chaki et al., 2013). These modifications

inhibit its activity, finally impacting the photosynthesis process. Also

related to nitration but of fatty acids (NO2-FAs), it has been shown

that exogenous treatments with NO2-Ln induce the expression of

genes involved in the HS response and the acquisition of

thermotolerance, highlighting heat shock proteins (HSPs) and heat

shock TFs (HSFs) (Mata-Pérez et al., 2016a).

Like HS, cold stress constitutes a harmful situation as an

important yield-limiting factor. Under low temperatures, plants

suffer changes at the biochemical and physiological levels, leading to

transcriptional modifications, cellular dysfunction, changes in the

membrane composition and fluidity, metabolic imbalance, and

changes in enzyme activity (Manasa et al., 2022). Plant

acclimation and adaptation to cold conditions implies a profound

reorganization of transcriptome, metabolome, and proteome. In

Brassica juncea, low-temperature stress led to important differences

in the nitrosoproteome, which can be related to cold stress-induced

photosynthetic inhibition (Abat and Deswal, 2009). In this context,

previous research showed modulation of cold-responsive proteins

by S-nitrosylation as an important cue to attenuate stress, focusing

on the regulation of nuclear trafficking to control cellular

metabolism and redox status (Sehrawat et al., 2019). Furthermore,

it has been recently described a rise in the S-nitrosylation level by

brassinosteroids under low-temperature conditions in mini-

Chinese cabbage seedlings to ameliorate plant damage (Gao et al.,

2022). Furthermore, NO acts downstream of H2O2 and cooperates

with JAs in freeze tolerance (Liu et al., 2019). In Pisum sativum, an

increase in both S-nitrosylation and Tyr nitration has been detected

during cold stress situations (Corpas et al., 2008; Airaki et al., 2012),

highlighting the central role of PTMs during its perception and

response. Both S-nitrosylation and Tyr nitration play a role during

cold stress responses, controlling photosynthetic, metabolic,

defense, and signaling-related proteins that lead to adaptive

responses, highlighting HSPs, GST, DHAR, RuBisCO, GAPDH,

and SAHH1/HOG1 (Sehrawat et al., 2013; Puyaubert et al., 2014b).

These results point to a possible crosstalk between different redox

PTMs during stress adaptation, involving genetic and metabolic

reprogramming. Overall, results derived from these studies show

how PTMs, and especially those triggered by RONS, are crucial for

the perception and response to stressful situations related to drastic

temperature alterations.
Mechanical wounding

From all the stress a plant faces, injury is one of the most

common; it can be caused by (a)biotic factors such as rain, wind,

herbivores, and insects. It offers an easy way of entry for

opportunistic pathogens through the open wounds. The defenses

activated by mechanical injury (wounding) are like the ones

activated by herbivores and insects (Reymond et al., 2000;

Arimura et al., 2005; Rehrig et al., 2014); thus, they can mimic a

biotic stress-like trait.

In response to pathogens and wounding, the emerging signaling

molecules in plant immunity activation are ROS (Mittler et al.,
Frontiers in Plant Science 06
2011; Suzuki and Mittler, 2012). When an injury occurs, the

immediate region is the first to react. Among the changes that

take place in the plant are alterations in the Ca2+ concentration in

the plasma, the synthesis of secondary messengers, RONS, and a

sharp increase in the levels of fight hormones such as JA and ABA

(Mostafa et al., 2022). A cell-to-cell process allows Ca2+ and ROS to

go through the xylem, parenchyma, and phloem tissues to reach the

undamaged areas of the plant (Farmer and Ryan, 1992). A feedback

loop between NO and ROS has been shown to exist, and ROS/NO

balance is a crucial factor in determining how cells respond to

abiotic stress caused by antioxidant defenses and ROS generation.

Direct NO-dependent protein regulation is the subject of another

area of study, particularly through the main NO-PTMs such as S-

nitrosylation and protein nitration (Figure 2) (Neill et al., 2003;

Neill et al., 2007; Astier et al., 2012). The NO2-Tyr levels in

sunflower hypocotyl cells have been shown to rise following

mechanical damage (Chaki et al., 2010). The authors suggested

that the damage resulted in a buildup of GSNO under oxidative

stress. The process of tyrosine nitration brought on by ONOO−

production may be mediated by S-nitrosothiols (SNOs). This is

most likely caused by the fact that in the presence of oxygen (O2),

GSNO degrades to the subsequent radicals, glutathione (GS) and

ONOO−, which are responsible for the observed rise in protein

tyrosine nitration levels. In conclusion, sunflower seedlings are

subjected to nitrosative stress, and SNO may act as a unique

injury signal in plants (Chaki et al., 2010).

Extrafascicular phloem (EFP) is a defensive structure against

herbivorous animals developed by cucurbits. Mechanical leaf

wounding induces a systemic wound response through the tight

regulation of RONS signaling. Quickly after the injury, the

activities of key antioxidant enzymes like dehydroascorbate

reductase (DHAR), glutathione reductase (GR), and ascorbate

peroxidase (APX) decreased together with ascorbate and

glutathione content. Opposite behavior on NO-PTMs was

observed with a decrease in protein S-nitrosylation and an

increase in protein tyrosine nitration over time. Collectively, the

accumulation of ROS within the EFP leads to a change in RONS

composition from NO to its more nitrating species including

ONOO− and NO2 curving the stress dynamics and the redox

status after mechanical wounding (Gaupels et al., 2016). Another

study performed in sea rockets (Cakile maritima L.) pinched with

striped-tip forceps showed a differential modulation in the

damaged hypocotyls and unwounded organs. Wounded

hypocotyls exhibited an active RONS metabolism with increased

protein nitration in green cotyledons causing long-distance signals

that could elicit responses in unwounded tissues. These data,

therefore, confirm the existence of local and long-distance

responses that counteract negative effects and provide

appropriate responses, enabling the wounded seedlings to

survive (Houmani et al., 2018).

Other studies in tomato plants have shown that NO may have a

role in downregulating the expression of wound-inducible genes

during pathogenesis (Orozco-Cárdenas and Ryan, 2002). To

activate wound signaling, tomato plants respond to injury and

elicitors by accumulating high amounts of H2O2, and it has been

suggested that NO may function as an antioxidant, preventing ROS
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Mata-Pérez et al. 10.3389/fpls.2023.1158184
damage to plant cells and tissues (Lin et al., 2011). Closely related,

mechanical wounding enhances freezing tolerance in untreated

systemic leaves of wheat plants through the accumulation of NO

and H2O2 and further modifications in the photosystem and

antioxidant system (Si et al., 2017). Also, after injuring potato

leaflets, a NO burst takes place, which is required to start the

healing process (Parıś et al., 2007). Overall, RONS are key molecules

in mediating the response of the plant to mechanical injuries.
Heavy metals

The definition of heavy metals (HMs) was established by

Hawkers in 1997 as the group of metals and metalloids with an

atomic density greater than 4 g/cm3, or five times or more than that of

water (Hawkes, 1997). However, their chemical properties make

HMs both indispensable and toxic, even at low concentrations, for

plants (Duruibe et al., 2007; Zitka et al., 2013). HMs are classified as

essentials and nonessentials. Essential HMs, like Cu, Fe, Mn, Co, Zn,

or Ni, are required for fundamental biological processes as they serve,

for instance, as enzyme cofactors, whereas nonessential HMs, such as

Cd, Pb, Hg, Cr, and Al, are not required by plants for their metabolic

processes (Zitka et al., 2013; Raychaudhuri et al., 2021).

HMs have been considered major environmental pollutants

altering plant metabolism, growth, and biomass production

(Nagajyoti et al., 2010) and essential HMs are even toxic at

excessive concentrations (Rascio and Navari-Izzo, 2011; Hossain

et al., 2012). Those elements negatively affect plant molecular

physiology and biochemistry by generating several stresses

including oxidative and nitrosative ones (Hoque et al., 2021). The

major risk of HM poisoning is the enhanced production of ROS

(Figure 2), as they usually interfere with natural ROS metabolism

and homeostasis, exposing cells to oxidative stress (Nagajyoti et al.,

2010; Zitka et al., 2013; Zandi and Schnug, 2022). With this aim,

numerous studies have demonstrated a relationship between ROS-

scavenging systems and HMs in different plant species such as

Colobanthus quitensis (Contreras et al., 2018), Vaccinium myrtillus

L. (Kandziora-Ciupa et al., 2013), and Pteris vittate, which is

considered an HM-resistant plant (Srivastava et al., 2005).

Furthermore, RNS metabolism has also been defined as a

mechanism of response against HMs, where NO has shown a

protective effect under HMs throughout protein S-nitrosylation

(Figure 2), as previously reviewed (Gill et al., 2013; Romero-

Puertas et al., 2013; Saxena and Shekhawat, 2013). There is also

an overproduction of ONOO− in Arabidopsis root peroxisomes

(Corpas and Barroso, 2014) and an alteration of the protein tyrosine

nitration profile under HMs (Feigl et al., 2016; Kolbert et al., 2018)

or its derivatives such as arsenate (Leterrier et al., 2012) or indium

(Zhao et al., 2022). The response to HMs is usually linked to RONS

production and antioxidant system modulation. For example, the

presence of Cd in wheat has shown that NO can significantly

increase plant resistance by reducing ROS accumulation as well as

increasing the antioxidant defense system and nutrient assimilation

(Kaya et al., 2020), therefore reinforcing the role of NO in

alleviating abiotic stress. In the case of Zn, an interplay between

H2O2 and S-nitrosothiol signaling has been described in
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reductase by Zn-induced H2O2 (Kolbert et al., 2019).

Furthermore, the protective role of NO in Cd toxicity has been

related to the reduction of lipid peroxidation and the inhibition of

H2O2 accumulation at a molecular level in barley, where SNP

application significantly reduced Cd growth inhibitory effects by

the improvement in chlorophyll content, regulating the activity of

antioxidant enzymes and causing a decrease in lipid peroxidation

and MDA content (Alp et al., 2022). In addition, as NO is tightly

associated with phytohormone signaling, some studies have been

aimed to understand how the interaction between NO and

phytohormones is altered during HM stress and tolerance

(Asgher et al., 2017; Demecsová and Tamás, 2019; Pande et al.,

2022). In this context, NO has been shown to reduce Al

accumulation in the root apices of wheat regulating the hormonal

equilibrium of gibberellins and auxin, enhancing plant tolerance to

Al stress (He et al., 2012). There is a complex NO-auxin crosstalk

involved in HM stress, where long-term Cu2+ exposure causes an

increase in NO production and a repression of auxin by inhibiting

PIN1-mediated auxin transport-dependent gene expression in

Arabidopsis root tips (Kolbert et al., 2012). In the case of

Medicago truncatula, NO supplementation improves Cd stress

tolerance by reducing the activity of IAA oxidase to maintain

auxin equilibrium (Xu et al., 2010). Something similar happens in

tomato roots during Cd stress, where the addition of IAA with Cd

upregulates components of the AsA-GSH cycle for balancing ROS

(Khan et al., 2019).

Thus, a clear relationship between RONS metabolism as a

defense mechanism against HMs toxicity has been reported.

Several studies carried out in plants have demonstrated the

impact of potentially toxic HMs on the homeostasis of ROS-

scavenging systems and the protective effects of NO under

HM stress.
Hypoxia

Plants, as aerobic organisms, rely on oxygen for their

respiration and mitochondrial energy generation. However,

different developmental and environmental conditions can lead to

decreased O2 levels (Weits et al., 2021) such as soil waterlogging and

submergence (caused by excessive rain) or pathogen infection. As a

result, plants face hypoxia stress when partial O2 deficiency (usually

between 1% and 5% O2) limits aerobic respiration, while anoxia

takes place in total O2 depletion (Sasidharan et al., 2017). This

situation leads to stress-related effects such as lack of energy,

saturated electron transfer chain, or high levels of reducing

equivalents, thus constraining growth and crop productivity

(reviewed in Jethva et al., 2022).

To survive during environmentally low O2 conditions, plants

have developed several morphological and physiological

mechanisms of adaptation (Kende et al., 1998; Drew et al., 2000).

O2 deficiency significantly decreases ATP content due to

restrictions on aerobic metabolism (Bailey-Serres and Voesenek,

2008). As a result, plants need to re-route their energy metabolism

to guarantee survival, leading to cell acidification and the
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accumulation of RONS like NO, which potentially lead to cell

damage when their production exceeds threshold levels (Hebelstrup

and Møller, 2015; Turkan, 2018). However, under moderate

concentrations, these factors act as key signaling molecules

involved in stress adaptation responses through transcriptional

regulation, enzyme activity, and secondary messengers that help

maintain cellular homeostasis (Gaupels et al., 2011; Mengel et al.,

2013; Lamotte et al., 2015).

Although RONS are involved in many processes aimed to get a

fine-tuned response to hypoxia, we have focused on key PTMs

triggered by NO (Manrique-Gil et al., 2021) (Figure 2). S-

nitrosylated proteins potentially implicated in flooding signaling

and adaptation include ACONITASE (Gupta et al., 2012),

CYTOCHROME C OXIDASE (COX) (Millar and Day, 1996),

PHYTOGLOBIN 1 (PGB1) (Perazzolli et al., 2004), membrane-

bound NADPH oxidases (RBOHs) (Yun et al., 2011), and GSNO

REDUCTASE 1 (GSNOR1) (Zhan et al., 2018).

Under hypoxia, inhibition of ACONITASE by S-nitrosylation

leads to the accumulation of several metabolic intermediates such as

citrate, which induces ALTERNATIVE OXIDASE 1A (AOX1A)

expression and increases its activity in Arabidopsis (Gupta et al.,

2012). NO is an inducer for AOX (Royo et al., 2015), but a NO burst

may inhibit COX activity (Millar and Day, 1996; Brown, 2001). This

altered bioactivity of AOX and COX suggests that NO plays a role in

plant mitochondrial respiration under hypoxic conditions

(reviewed in Sasidharan et al., 2018). In this context, AOX

induction can promote anaerobic ATP synthesis, which increases

energy efficiency as an adaptive response to hypoxia (Millar and

Day, 1996; Vishwakarma et al., 2018). This suggests that AOX

overexpression in crops could be a target in breeding programs

aimed at flooding and waterlogging tolerance. In addition, redox

mechanisms are also involved in the post-translational regulation of

AOX activity by the formation of a thiohemiacetal at CysI with 2-

oxo acids (Gupta et al., 2009; Selinski et al., 2017; Selinski et al.,

2018). Under normoxia, AOX limits uncontrolled ROS production

by preventing over-reduction of the electron transport chain

(reviewed in Selinski et al., 2018). However, under hypoxic

conditions, AOX limits superoxide generation and increases NO

production, thus preventing nitro-oxidative stress during re-

oxygenation (Vishwakarma et al., 2018; Jayawardhane et al.,

2020). In 2018, Vishwakarma and colleagues concluded that AOX

has a distinct role depending on the O2 availability since AOX can

produce NO under hypoxia whereas it scavenges NO in

normoxic conditions.

Another crucial strategy of adaptation under hypoxia relies on

the phytoglobin/NO cycle, in which phytoglobins (PGBs) modulate

NAD(P)+ and nitrate regeneration under hypoxia, which, in turn,

fuels glycolysis and ATP production (Perazzolli et al., 2004;

Igamberdiev et al., 2005; Gupta and Igamberdiev, 2016). This

cycle helps to retain the energy status of the plant through NO

scavenging by PGB1 via S-nitrosylation (Perazzolli et al., 2004;

Rubio et al., 2019), metal nitrosylation (Perazzolli et al., 2004), and

Tyr nitration (Sainz et al., 2015).

RBOHs are key proteins involved in plant responses to hypoxia

by modulating ROS signaling (Rajhi et al., 2011; Pucciariello et al.,

2012; Yeung et al., 2018). In several species, RBOH-mediated ROS
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accumulation in the root cortical cells leads to programmed cell

death and thus to the generation of flooding-induced aerenchyma

tissue (Rajhi et al., 2011; Yamauchi et al., 2014; Yamauchi et al.,

2017). The impact of RBOH in ROS production is tightly regulated

via several PTMs, including NO-mediated S-nitrosylation (Yun

et al., 2011). Yun et al. studied the NO and reactive oxygen

intermediaries’ (ROIs’) involvement in hypersensitive response

(HR) during microbial infection. Their results show that S-

nitrosylation of AtRBOHD at Cys 890 reduces its activity,

limiting the cell death caused by stress-induced oxidative bursts.

NO signaling is also linked to autophagy in the hypoxic

response in Arabidopsis since S-nitrosylation of GSNOR1 at Cys

10 induces conformational changes that lead to its selective

degradation in the autophagosome (Zhan et al., 2018). NO can

also react with O−
2 , producing ONOO− and reducing H2O2

generation, which might avoid cell death (Chen et al., 2009).

NO-related PTMs are thought to be involved in hyponastic leaf

movement (Hebelstrup et al., 2012) and aerenchyma generation

(Wany et al., 2017), both ethylene-mediated flood-adaptive traits

(reviewed in Sasidharan et al., 2021). Regarding aerenchyma

formation, Wany, Kumari, and Gupta demonstrated that not only

ethylene, but also hypoxia-induced NO plays an important role in

root cortical cell death. It has been reported that NO modulates

ROS production, lipid peroxidation, and tyrosine nitration, but its

mechanistic role in aerenchyma generation is still unknown.

However, the observation of a nitrosylated 63-kDa protein

suggests that ONOO− and changes in protein activity may be

involved. NO is also important for these ethylene-mediated

adaptive responses since it can activate ethylene biosynthesis,

potentially by S-nitrosylation of key enzymes such as ACC

synthase and oxidase (Li et al., 2016).
UV radiation

Plants and algae produce organic matter from CO2 and water

using light energy in a process called photosynthesis, which takes

place in the chloroplasts. However, light is one of the major stress

factors resulting in ROS generation in chloroplasts that produces

photo-oxidative damage, the inhibition of photosynthesis, and cell

death (Li et al., 2009; Shi et al., 2022). Light information is perceived

by both chloroplasts, where photosynthesis takes place, and

photoreceptors, which act in response to light initiating a signaling

process (Li et al., 2009).

UV-B (280-315 nm) is a minor component of sunlight that is

receiving special interest from researchers as it is increasing because

of stratospheric ozone reduction (Caldwell et al., 2003). As happens

in several stress responses, hormones act downstream of the UV-B

signaling pathway (Vanhaelewyn et al., 2016). In response to UV-B,

the production of ROS increases, with multiple sources responsible

for this production (Mackerness et al., 2001). This increase in ROS

levels leads to the production of hormones such as salicylic acid,

ethylene, and JA, which play a role in response to multiple stress

conditions (Reymond and Farmer, 1998). UV resistance locus8

(UVR8) is a photoreceptor (Kliebenstein et al., 2002) that localizes

as a dimer in the cytoplasm and, in the presence of UV-B,
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accumulates as monomers in the nucleus where it interacts with the

multifunctional E3 ubiquitin ligase CONSTITUTIVELY

PHOTOMORPHOGENIC (COP1), abolishing its function and, as

a consequence, causing the accumulation of its targets such as

ELONGATED HYPOCOTYL5 [HY5, a basic leucine zipper (bZIP)

TF] andHY5 HOMOLOG (HYH) (Kaiserli and Jenkins, 2007; Brown

and Jenkins, 2008; Favory et al., 2009). Both HY5 and HYH play an

antagonistic role to PHYTOCHROME INTERACTING FACTOR1

(PIF1) and PIF3 in regulating cell death and photooxidative response

(Chen et al., 2013; Vanhaelewyn et al., 2016). In parallel, NO levels

increase in response to UV-B in plants (Mackerness et al., 2001;

Zhang et al., 2003) and it acts as an important factor in protecting

plants against UV-B effects. It has been reported that when plants

with a decrease of endogenous NO are exposed to UV-B radiation,

damaged symptoms are enhanced (Cassia et al., 2019). The

perception of UV-B by UVR8 leads to an increase in these NO

levels regulating the stomatal closure, protecting the microtubules

organization, scavenging ROS, and upregulating HY5 (Krasylenko

et al., 2012; Tossi et al., 2014; Li et al., 2022). Moreover, UV-B light

response includes a crosstalk among H2O2 (produced by AtRBOHD

and AtRBOHF), NO, and UVR8 (He et al., 2013; Wu et al., 2016).

However, the precise role of NO in this relationship among them has

not been studied yet, opening the possibility of a post-translational

regulation of some of the key proteins in UV-B response by NO.
Ozone

Tropospheric ozone (O3) is considered a major phytotoxic air

pollutant that causes detrimental effects in ecosystems and

agricultural systems worldwide (Ainsworth et al., 2012; Tai et al.,

2021; Wu et al., 2022), and it is formed through the action of light-

driven chemical reactions involving nitrogen oxides (NOx) and

volatile organic compounds. Ozone is a powerful oxidizing agent

that accesses plants via stomata and breaks into ROS in the apoplast

(Ainsworth, 2017; Waszczak et al., 2018). High levels of O3 in plants

induce decreases in photosynthesis and stomatal conductance rates,

photosynthetic proteins, and pigments (Brosché et al., 2010;

Kontunen-Soppela et al., 2010; Ainsworth, 2017; Nanni et al.,

2022), chloroplast development (Nagatoshi et al., 2016), and cell

death (Overmyer et al., 2005; Horak et al., 2016; Sierla et al., 2018).

Transcriptional reprogramming in O3-affected plants has been

identified in several species (revised in Morales et al., 2021), and

the TF families studied include the Ethylene Response Factors (ERF),

TGA,WRKY (Xu et al., 2015; Hoang et al., 2017; Morales et al., 2021),

and cysteine-rich receptor-like kinases (CRKs) encoding regulators of

hormone signaling (Wrzaczek et al., 2010). Furthermore, the

mechanisms of plant responses to O3 have been linked to the

function of the mitogen-activated protein kinase 12 (MAPK12) and

the transcription reprogramming of the plants. Among them, the TF

GOLDEN2-LIKE (GLK1 and GLK2) was related to the O3 tolerance

of plants through the regulation of stomatal movement (Fiscus et al.,

2005; Puckette et al., 2008; Brosché et al., 2010; Nagatoshi et al., 2016;

Mills et al., 2018) and the WKRY and MYB families of TFs with the

control of anthocyanin and proanthocyanidin biosynthesis (Duan

et al., 2018; Zhang et al., 2022). Moreover, it has been shown that O3
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stimulates the production of NO (Ederli et al., 2006; Ahlfors et al.,

2009; Kabange et al., 2022), probably by the action of the nitrate

reductase (NR) (Xu et al., 2012). NO induced by ozone will contribute

to the generation of ROS and different signaling pathways in plants

(Hasan et al., 2021; Mukherjee, 2022), possibly altering NO-ROS

balancing or the plant hormonal homeostasis (Ahlfors et al., 2009).

The mechanisms of NO regulation induced by O3 were studied

through the proteome analysis in poplar leaves. High levels of O3

induced changes in total nitrite and S-nitrosothiol contents and

affected the S-nitrosylated status of proteins (Figure 2) (Vanzo

et al., 2014). Hence, key proteins related to the phenylpropanoid

pathway (PAL2), photosynthetic activity (Chlorophyll a/b binding

proteins), and cell wall composition (alpha-N-arabinofuranosidase)

were significantly de-nitrosylated after ozone exposure, while others

were putative targets of S-nitrosylation, such as the Ribulose-

phosphate 3-epimerase, the Peroxiredoxin 5, and the Tubulin

alpha-chain (revised in Vanzo et al., 2014).

In conclusion, the mechanisms of plant responses to high O3 are

complex and far from being completely understood. The exposure of

plants to O3 will promote different molecular and physiological

responses related to ROS and NO that will vary according to the

plant sensitivity to this pollutant, with broad implications on plant

defense mechanisms that will be critical for their adaptation to a

constantly changing environment.
Conclusions and future perspectives

Plant welfare and crop yield are continuously influenced by

environmental factors, pests, or nutrient availability in the soil.

Abiotic stresses hamper plant fitness by impacting the

morphology, biochemistry, and physiology, which are tightly

connected to the growth and yield of the plant. Nitro-oxidative

stress is a common feature underlying abiotic stresses. The ROS

and RNS produced can transduce their bioactivity through the

post-translational modification of biomolecules, therefore

modulating the molecular mechanisms involved in the redox

control of plant processes. Although many nitrated and S-

nitrosylated proteins have been identified, new protein

modifications mediated by nitro-fatty acids or nucleic acids—

including nitroalkylation or S-guanylation—have been scarcely

explored during abiotic stress. In this context, more research is

needed to better comprehend the biological implications of these

NO-modified biomolecules into the redox regulation of abiotic

stresses. The data provided here expand our understanding of how

NO and NO-related molecules, through the post-translational

modification of biomolecules, can modulate the redox fitness,

therefore providing the biological framework for future research

to improve plant tolerance to abiotic stress.
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Caldwell, M. M., Ballaré, C. L., Bornman, J. F., Flint, S. D., Björn, L. O., Teramura, A.
H., et al. (2003). Terrestrial ecosystems, increased solar ultraviolet radiation and
interactions with other climatic change factors. Photochem. Photobiol. Sci. 2:1, 29–38.
doi: 10.1039/b211159b

Camejo, D., del Carmen Romero-Puertas, M., Rodrıǵuez-Serrano, M., Sandalio, L.
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Houmani, H., Rodrıǵuez-Ruiz, M., Palma, J. M., and Corpas, F. J. (2018). Mechanical
wounding promotes local and long distance response in the halophyte cakile maritima
through the involvement of the ROS and RNS metabolism. Nitric. Oxide 74, 93–101.
doi: 10.1016/j.niox.2017.06.008

Igamberdiev, A. U., Baron, K., Manac’h-Little, N., Stoimenova, M., and Hill, R. D.
(2005). The Haemoglobin/Nitric oxide cycle: Involvement in flooding stress and effects
on hormone signalling. Ann. Bot. 96, 557–564. doi: 10.1093/aob/mci210

Ihara, H., Sawa, T., Nakabeppu, Y., and Akaike, T. (2011). Nucleotides function as
endogenous chemical sensors for oxidative stress signaling. J. Clin. Biochem. Nutr. 48,
33–39. doi: 10.3164/jcbn.11-003FR

Jain, P., and Bhatla, S. C. (2018). Tyrosine nitration of cytosolic peroxidase is probably
triggered as a long distance signaling response in sunflower seedling cotyledons subjected to
salt stress. PloS One 13, e0197132. doi: 10.1371/journal.pone.0197132

Jain, P., von Toerne, C., Lindermayr, C., and Bhatla, S. C. (2018). S-nitrosylation/
denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings.
Physiol. Plant. 162, 49–72. doi: 10.1111/ppl.12641

Jayawardhane, J., Cochrane, D. W., Vyas, P., Bykova, N. V., Vanlerberghe, G. C., and
Igamberdiev, A. U. (2020). Roles for plant mitochondrial alternative oxidase under
normoxia, hypoxia, and reoxygenation conditions. Front. Plant Sci. 11. doi: 10.3389/
fpls.2020.00566

Jethva, J., Schmidt, R. R., Sauter, M., and Selinski, J. (2022). Try or die: Dynamics of
plant respiration and how to survive low oxygen conditions. Plants 11, 205.
doi: 10.3390/plants11020205

Joudoi, T., Shichiri, Y., Kamizono, N., Akaike, T., Sawa, T., Yoshitake, J., et al. (2013).
Nitrated cyclic GMP modulates guard cell signaling in arabidopsis. Plant Cell 25, 558–
571. doi: 10.1105/tpc.112.105049

Kabange, N. R., Mun, B. G., Lee, S. M., Kwon, Y., Lee, D., Lee, G. M., et al. (2022).
Nitric oxide: A core signaling molecule under elevated GHGs (CO2, CH4, N2O,
O3)-mediated abiotic stress in plants. Front. Plant Sci. 13. doi: 10.3389/
fpls.2022.994149

Kaiserli, E, and Jenkins, GI (2007). UV-B promotes rapid nuclear translocation of
the UV-B-specific signaling component UVR8 and activates its function in the nucleus.
Plant Cell 19 (8), 2662–73.
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Mata-Pérez, C., Sánchez-Calvo, B., Begara-Morales, J. C., Carreras, A., Padilla, M. N.,
Melguizo, M., et al. (2016b). Nitro-linolenic acid is a nitric oxide donor. Nitric. Oxide
57, 57–63. doi: 10.1016/j.niox.2016b.05.003
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Sánchez-McSweeney, A., González-Gordo, S., Aranda-Sicilia, M. N., Rodrıǵuez-
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