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Leaf area index (LAI) is an essential indicator for crop growthmonitoring and yield

prediction. Real-time, non-destructive, and accurate monitoring of crop LAI is of

great significance for intelligent decision-making on crop fertilization, irrigation,

as well as for predicting and warning grain productivity. This study aims to

investigate the feasibility of using spectral and texture features from unmanned

aerial vehicle (UAV) multispectral imagery combined with machine learning

modeling methods to achieve maize LAI estimation. In this study, remote

sensing monitoring of maize LAI was carried out based on a UAV high-

throughput phenotyping platform using different varieties of maize as the

research target. Firstly, the spectral parameters and texture features were

extracted from the UAV multispectral images, and the Normalized Difference

Texture Index (NDTI), Difference Texture Index (DTI) and Ratio Texture Index

(RTI) were constructed by linear calculation of texture features. Then, the

correlation between LAI and spectral parameters, texture features and texture

indices were analyzed, and the image features with strong correlation were

screened out. Finally, combined with machine learning method, LAI estimation

models of different types of input variables were constructed, and the effect of

image features combination on LAI estimation was evaluated. The results

revealed that the vegetation indices based on the red (650 nm), red-edge (705

nm) and NIR (842 nm) bands had high correlation coefficients with LAI. The

correlation between the linearly transformed texture features and LAI was

significantly improved. Besides, machine learning models combining spectral

and texture features have the best performance. Support Vector Machine (SVM)

models of vegetation and texture indices are the best in terms of fit, stability and

estimation accuracy (R2 = 0.813, RMSE = 0.297, RPD = 2.084). The results of this

study were conducive to improving the efficiency of maize variety selection and

provide some reference for UAV high-throughput phenotyping technology for

fine crop management at the field plot scale. The results give evidence of the

breeding efficiency of maize varieties and provide a certain reference for UAV

high-throughput phenotypic technology in crop management at the field scale.
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1 Introduction

Maize is one of the essential food crops in the world, and its

production mode and planting area are related to world food

security (Tester and Langridge, 2010). Leaf area index (LAI)

refers to the ratio of total green leaf area per unit land area to the

unit land area (Ke et al., 2016), which is one of the important

indexes for evaluating crop growth and ecological environment

research (Richardson et al., 2011). It is not only closely related to

crop photosynthesis (Duncan, 1971) and transpiration (Kang et al.,

2003), but also often used as one of the basis for yield estimation

(Duan et al., 2019; Fu et al., 2020). Therefore, efficient and precise

monitoring of maize LAI is crucial for gaining insights into maize

growth dynamics and optimizing maize breeding strategies.

However, the traditional methods to obtain LAI are mostly

destructive sampling methods, using leaf area meters to measure

isolated blades and calculate them (Yang et al., 2021). This method

is time-consuming, laborious and inefficient. Although non-

destructive monitoring of LAI can be achieved using handheld

instruments such as the SunScan Canopy Analyser (Oguntunde

et al., 2012) and the LAI-2200 (Wilhelm et al., 2000), the data

obtained using handheld instruments only represent LAI at a small

scale, making it difficult to realize rapid and nondestructive

monitoring at field scale (Liu et al., 2016). Satellite remote sensing

enables rapid and non-destructive monitoring of crop LAI at a

regional scale. (Chen et al., 2010). However, its susceptibility to

adverse weather conditions, low temporal and spatial resolution

limits its ability to meet the quantitative monitoring requirements at

the field and plot scales. The ground platform is mainly suitable for

small-scale crop growth monitoring, which is affected by the scope

of data acquisition and the cost of use, and cannot achieve rapid

monitoring at spatial scales.

In recent years, the continuous development of UAV flight

platforms and airborne sensor technology has promoted the

application of UAV remote sensing technology in agricultural and

forestry information monitoring. UAV remote sensing platforms

have the advantages of low cost, simple structure, high mobility and

high spatial and temporal resolution to make up for the shortage of

satellite and ground-based remote sensing platforms (Xie and Yang,

2020). The UAV platform, equipped with visible, multispectral, and

hyperspectral cameras, is used to acquire image data. Image

processing techniques are applied to extract essential information,

such as spectral features, texture, and point clouds, which are

subsequently used to build models for crop growth parameter

monitoring and yield estimation. (Liu et al., 2018; Sarkar et al.,

2021; Jiang et al., 2022). The model construction process often

involves a combination of non-linear relationships that affect the

model’s universality. Machine learning methods can effectively

solve the modell ing problem of non-linear relational

combinations and have been widely used in remote sensing

monitoring. Wang and Jiang (2021) used UAV multispectral

remote sensing data to achieve the monitoring of soybean leaf

area index, and the support vector machine (SVM) had better

predictions compared to the linear model (R2 = 0.688, RMSE =

0.016). Qi et al. (2020) achieved accurate estimation of peanut LAI
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(R2 = 0.968, RMSE = 0.165) using Back Propagation neural network

algorithm (BPNN) combined with UAV spectral features. Kanning

et al. (2018) extracted wheat canopy spectra based on UAV

hyperspectral images and constructed a model for monitoring

wheat LAI and chlorophyll using Partial Least Squares Regression

(PLSR), demonstrating the feasibility of UAV hyperspectral

imaging technology for monitoring crop growth parameters at the

field scale. Although spectral features combined with machine

learning algorithm can better estimate crop LAI, when LAI is

high, the estimation model constructed by various vegetation

indexes will appear “over-fitting” phenomenon (Hang et al.,

2021). In addition, UAV multispectral images offer limited

spectral information, and relying solely on spectral parameters

such as reflectance or vegetation index may result in “same

spectrum and different things” or “same thing and different

spectrum” scenarios (Liu et al., 2018). Thus, crop growth

monitoring should incorporate multiple data dimensions, such as

time and space, to account for spectral, temporal, and

spatial resolutions.

Texture features are also one of the image features of UAV

remote sensing imagery (Yang et al., 2021), and are widely used for

image classification and monitoring of crop growth physiological

indicators (Haralick et al., 1973; Coburn and Roberts, 2004; Li et al.,

2019). Chen et al. (2019) used spectral information and texture

information to estimate chlorophyll content of potatoes and found

that the fusion of vegetation index and texture features could

significantly improve the estimation accuracy of the model. Zhu

et al. (2022) developed a machine learning model for remote

sensing monitoring of Wheat Scab using multispectral and

texture features. Their results demonstrated that the fusion of

vegetation indices and texture parameters improved the accuracy

of Wheat Scab detection. However, little is known about field-scale

remote sensing monitoring of maize LAI using spectral and texture

features extracted from UAV multispectral imagery.

Based on the above problems, this study attempts to extract and

optimize the spectral and texture features from UAV multispectral

images. It combines the optimized features with SVM, Random

Forest (RF), BPNN and PLSR to build a field-scale corn LAI remote

sensing monitoring model. We compared the effects of spectral

features and texture features on LAI estimation. Furthermore, we

explored the influence of machine learning method synergistic

spectral and texture features on LAI estimation potential.
2 Materials and methods

2.1 Experimental design

This experiment was conducted in the maize experimental field

of Shanxi Agricultural University, Jinzhong City, Shanxi Province

(37°25′ N, 112°29′ E) (Figure 1).
The experimental area is located in Taigu District, with an

average altitude of about 780 m, belonging to a temperate

continental monsoon climate, with an average annual

temperature of 6-10 °, an average annual rainfall of 410-450 mm
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and a frost-free period of 160 days. The climatic conditions such as

light, heat and water are suitable for maize growth.

The experiment was conducted in a single-factor design with

140 maize varieties (Xinyu 303, Jinfeng 278, RP818, etc.),

each planted on an area of 75 m2, total 140 plots. In five key

growth periods of maize, namely, tasseling period (24 July, 2021),

silking period (4 August, 2021), flowering period (14 August, 2021),

filling period (25 August, 2021) and milk ripening period
Frontiers in Plant Science 03
(8 September, 2021), LAI was measured in areas with high

vegetation coverage and consistent growth.
2.2 UAV multispectral image acquisition

In this study, a Meridian M210 V2 quadcopter UAV (DJI

Innovations, Shenzhen, China) (Figure 2A) with a RedEdge-MX
A B C

FIGURE 2

UAV near ground remote sensing platform. (A) Four rotors UAV (B) Multispectral imaging system (C) The calibration panel.
A

B

C

FIGURE 1

Overview of the study area. (A) Geographical location of Taigu District (B) the location of the experiential area (C) the design of the field experience.
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imaging system (MicaSense, Seattle, WA, USA) (Figure 2B) was

used as a high-throughput remote sensing platform to acquire

multispectral images of maize during critical fertility periods.

RedEdge-MX dual-camera imaging system has 10 spectral

channels with a spectral range of 444-842 nm and can

simultaneously obtain 10 discontinuous multispectral images with

a resolution of 1280 × 960 pixels. The detailed band parameters are

shown in Table 1. The flight time is between 10:00 and 12:00, the

flight altitude is set to 60 m, and the forward overlap rate and side

overlap rate are set to 85%.
2.3 UAV multispectral image processing

After the flight, the original multispectral images acquired by

the UAV and the calibration plate (Figure 2C) images taken before

takeoff were imported into Pix4D mapper (Pix4D S.A., Lausanne,

Switzerland) together for image stitching and radiometric

calibration. After the stitching was completed, the software

automatically completed the radiometric calibration according to

the DN value of the calibration gray plate and the reflectance

calibration fitting equation. After completing the above

processing process, the orthoimage of each waveband were

obtained. The orthoimages were processed using ENVI Classic 5.5

(Harris Geospatial Solutions, Inc., Broomfield, CO, USA) for band

fusion to obtain multispectral image data.
2.4 Field data collection

In this study, we selected the SunScan Canopy Analyser to

measure maize LAI data while acquiring UAVmultispectral images.

During the data collection process, maize leaf area index was

measured by selecting three inter-row shaded locations of 1 meter

in length at random within each plot. The average of the three

measurements was used as the LAI value for the plot.
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2.5 Multispectral image features extraction

2.5.1 Selection of vegetation index
By combining different bands linearly or nonlinearly, the

vegetation indices constructed has certain indicative significance

for the dynamic changes of vegetation canopy information, which

not only reduces the influence of atmospheric and soil

environmental factors but also enhances the sensitivity of LAI to

canopy reflectivity. According to the previous research results (Qi

et al., 2020; Hang et al., 2021), we selected eight commonly used

vegetation indices to estimate LAI, and the specific calculation

formulas are shown in Table 2.

2.5.2 Texture features extraction
To improve computational efficiency, we select three bands of

red 650 nm, red edge 705 nm and near-infrared 842 nm for texture

feature extraction. Grey level co-occurrence matrix (GLCM) is one

of the most widely used methods in texture feature extraction

(Haralick et al., 1973). This method was proposed by Haralick in

1973, and is mainly used in machine vision, image classification,

image recognition and so on (Kavdir and Guyer, 2004; Adjed et al.,

2018; Vani et al., 2018). After radiation correction and image fusion,

eight texture features such as Mean (mean), variance (var),

homogeneity (hom), contrast (con), dissimilarity (dis), entropy

(ent), second moment (sm) and correlation (cor) were extracted

using the GLCM. A total of 24 texture feature values were selected

and the mean value extracted from the region of interest was used as

the texture feature value for the corresponding image.

In order to fully explore the application potential of texture

features in UAV multispectral images in maize LAI estimation, this

study used Matlab 2020a software(MathWorks, Natick,

Massachusetts, USA) to traverse and combine eight texture

feature values of three-band images and calculates three texture

indexes: normalized difference texture index(NDTI) (Zheng et al.,

2019), ratio texture index(RTI) and difference texture index(DTI)

(Hang et al., 2021). The specific calculation formulas are as follows:
TABLE 1 RedEdge-MX Dual multispectral cameras bands.

Band number Band name Center wavelength (nm) Bandwidth (nm)

B1 Coastal Blue* 444 28

B2 Blue 475 32

B3 Green* 531 14

B4 Green 560 27

B5 Red* 650 16

B6 Red 668 14

B7 Red edge* 705 10

B8 Red edge 717 12

B9 Red edge* 740 18

B10 Near infrared 842 57
*Indicates the bands of the RedEdge-MX Blue camera.
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NDTI ¼ ðT1-T2Þ=ðT1+T2Þ (1)

RTI ¼ T1=T2 (2)

DTI ¼ T1-T2 (3)

In the formula, T1 and T2 are texture eigenvalues of

random bands.
2.6 Model construction and evaluation

In this study, a total of 700 datasets were collected from five key

fertility periods of maize, each containing ground-truthed LAIs and

UAV image features such as vegetation indices and texture indices.

To ensure that each dataset could be involved in modeling and

validation, the datasets were randomly divided into 10 parts using

ten-fold cross-validation, with 90% (630 datasets) used for

modeling and 10% (70 datasets) for model validation. Each model

was trained 10 times to ensure robustness.

We developed 12 LAI estimation models for multiple fertility

stages by combining ground truth LAIs with various inputs using

four machine learning algorithms, namely SVM, RF, BPNN, and

PLSR. The model inputs consisted of univariate and multivariate

factors, where the former comprised vegetation indices and texture

indices, and the latter involved their combination.
Fron
(1) The support vector machine is a popular machine learning

algorithm for pattern recognition and nonlinear regression

(Cortes and Vapnik, 1995). In this study, we used the SVM

algorithm with a radial basis function (RBF) to construct

maize LAI estimation models using various predictors. The

SVM model requires tuning of the penalty factor c and the

kernel function parameter g. After continuous testing, we

determined the optimal values of c=1.00 and g=3.03.

(2) Random forest is a nonlinear regression modeling method

based on multiple decision trees. It consists of two methods,

Bootstrap sampling and Random subspace(Breiman, 2001),

and is effective in handling high-dimensional data and

covariance problem among variables, with strong noise
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resistance. The number of decision trees (ntrees) and the

number of predictors randomly selected for each split

(mtry) are the main parameters that need to be tuned to

optimize the performance of a random forest model. After

repeated testing, this study set the random forest

parameters to ntrees=200 and tuned mtry according to

different input variable types.

(3) Back Propagation (BP) based neural network consists of

three parts: input layer (input), hidden layer (hidden), and

output layer (output). To ensure the model monitoring

accuracy, the BPNN model was trained several times and

the model parameters were iteratively tuned. Finally, the

learning rate of 0.01, 10 hidden layers and 1 output layer

were used as the best parameters.

(4) PLSR originates from the nonlinear iterative partial least

squares (NUPALS) algorithm proposed by Herman Wold

et al. (2001). The number of latent variables (LV) is one of

the important influencing factors to determine the

prediction accuracy of the PLSR model, and in this study

the model automatically adjusted the number of latent

variables according to the input variable types.
In this study, coefficient of determination (R2), root mean

square error (RMSE) and relative percent error (RPD) were used

as evaluation indexes to evaluate the model performance. When the

estimated model has higher R2, RPD and smaller RMSE in

modeling and validation datasets, it indicates that the model has

higher goodness of fit, accuracy and stability.
3 Results

3.1 Correlation analysis between spectral
parameters and LAI

The correlation analysis of the 18 spectral parameters with LAI

is shown in Figure 3. The correlation between LAI and canopy

reflectance was significantly negative (p < 0.01) in the range of 444-

717 nm and positive (p < 0.01) in the range of 740-842 nm. All eight

selected vegetation indices were highly significantly positively
TABLE 2 Formula for calculating vegetation indices.

Vegetation Index Description Formula Reference

Normalized Difference Vegetation Index (NDVI) (NIR842-R650)/(NIR842+R650) (Rouse et al., 1974)

Red Edge Normalized Difference Vegetation Index (NDRE) (NIR842-RE705)/(NIR842+RE705) (Gitelson et al., 1996)

Modified Triangular Vegetation Index (MTCI) (NIR842-RE705)/(RE705+R650) (Dash and Curran, 2004)

Difference Vegetation Index (DVI) NIR842-R650 (Naito et al., 2017)

Ratio Vegetation Index (RVI) NIR842/R650 (Liang et al., 2013)

Red edge chlorophyll index (CIred edge) NIR842/RE705-1 (Gitelson et al., 1996)

Enhanced Vegetation Index (EVI) 2.5((NIR842-R650)/(NIR842+6R650-7.5B475+1)) (Prabhakara et al., 2015)

Soil-adjusted Vegetation Index (OSAVI) (1+0.16)(NIR842-R650)/(NIR842+R650+0.16) (Rondeaux et al., 1996)
B475, R650, RE705 and NIR842 in the table represent the reflectance at blue, red, red edge and near-infrared bands, respectively.
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correlated with LAI (P < 0.01), with RVI being the most strongly

correlated with LAI (r = 0.784) and NDVI, OSAVI, NDRE and CIred

edge being more strongly correlated with LAI, with correlation

coefficients above 0.700. All five vegetation indices included the

three bands, red, red edge and NIR, indicating that the band

combinations could be better for maize LAI monitoring.
3.2 Correlation analysis between LAI and
texture features

The correlation analysis of the three bands of texture features

with LAI (Table 3) showed that the mean texture values in the Red

and NIR band were significantly correlated with LAI, with a strong

correlation (r = -0.687 and -0.703).

Due to the weak correlation between most texture features and

LAI, this study constructed three texture indices composed of

different texture feature values in order to improve the potential
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application of texture features in monitoring maize LAI. The results

shown in Figure 4 indicated that the correlation between the

linearly transformed texture features and LAI was significantly

enhanced. Among them, the RTI (mean705, ent705) had the

strongest correlation with LAI, with a correlation coefficient of

-0.804, which was a 14.370% increase in the absolute value of the

correlation coefficient compared to the red edge mean.
3.3 Comparison of LAI estimation
models based on vegetation indices
and texture indices

In order to fully investigate the potential of combining UAV

spectral and texture features with machine learning algorithms for

LAI estimation. Based on the strength of the correlation between

different image features and LAI, we selected five vegetation indices

(RVI, NDVI, OSAVI, NDRE and CIred edge) and three texture

indices (RTI (mean705, ent705), DTI (mean705, con705) and NDTI

(mean650, ent705)) as independent variables, and constructed LAI

estimation models by using four machine learning algorithms:

SVM, RF, BPNN and PLSR respectively. Table 4 shows the

training results of machine learning models with different input

variables. In the single variable model, from the perspective of

modelling methods, RF performed best in the dataset of vegetation

indices and SVM performed best in the dataset of texture indices;

From the perspective of the different input variables, the estimation

model based on the texture indices performs better overall than the

vegetation indices when using the same modelling approach. On the

whole, the estimation of the SVM model based on TIs was optimal

(R2 = 0.790, RMSE = 0.312, RPD = 2.010).

Using vegetation and texture indices as multivariate input

variables to construct the LAI estimation model. From the

perspective of modelling method, the RF model in the calibration

set performed the best from the perspective of the modelling

approach (R2 = 0.906, RMSE = 0.208, RPD = 3.149), with the

SVM model performing second best (R2 = 0.806, RMSE = 0.315,

RPD = 1.856). However, in the validation set, the SVM model

performed best (R2 = 0.813, RMSE = 0.297, RPD = 2.084). In
TABLE 3 Correlation coefficients between texture features of the three bands and LAI.

Texture Features
Correlation Coefficients

Red650 Red edge705 NIR842

Mean(mean) -0.687** -0.703** -0.095*

Variance (var) -0.311** -0.121** 0.055

Homogeneity (hom) 0.285** 0.073 -0.206**

Contrast (con) -0.285** -0.076* 0.084*

Dissimilarity (dis) -0.291** -0.071 0.131**

Entropy (ent) -0.369** -0.144** 0.188**

Second moment (sm) 0.357** 0.165** -0.196**

Correlation (cor) -0.088 0.036 0.237*
front
*and ** are significant at the 0.05 and 0.01 levels.
FIGURE 3

Correlation coefficient between specific parameters and maize LAI.
* and * * are significant at 0.05 and 0.01 levels, respectively. The red
area indicates positive correlation, the blue area indicates negative
correlation. Darker colors and larger circles mean a stronger
correlation between LAI and spectral parameters.
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contrast, the R2 of the RF model plummeted from 0.906 to 0.786,

the RMSE increased by 66.827% and the RPD decreased by

40.044%. Although the monitoring effect of BPNN and PLSR is

slightly weaker than that of SVM and RF, the estimation accuracy

and model stability are also better (R2 > 0.75, RPD > 1.75). The

above results show that the SVM model has the best estimation

accuracy and stability, and the other three models also have great

prediction results.

When analyzed from the perspective of the input variables, the

machine learning models constructed by fusing the two types of

indices explained significantly more variance in the LAI compared

to the single-factor input variables of the vegetation or texture

indices. Combining the VIs with the TIs resulted in R2 means of

0.817 and 0.788, RMSE means of 0.292 and 0.330, and RPD means

of 2.165 and 1.921 for the calibration and validation sets,

respectively. Compared with the single vegetation indices data

source model, R2 increased by 14.810% and 19.757%, RMSE

decreased by 19.337% and 19.118%, and RPD increased by

33.807% and 29.622%. Compared with the single texture indices
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model, R2 increases by 11.507% and 11.142%, RMSE decreases by

16.092% and 14.063%, and RPD increases by 31.212% and 15.237%.

The above results show that the estimation effect of the model is

obviously improved and more stable after fusing different

image features.

The scatter plot in Figure 5 showed good consistency between

the predicted LAI values from the machine learning estimation

model and the measured LAI values in the validation dataset, with

an RMSE ranging from 0.297 to 0.433 and an RPD ranging from

1.328 to 2.084. Combining vegetation indices and texture indices

resulted in the best estimation results among the four types of

machine learning models.
4 Discussion

UAV remote sensing has great potential in the process of crop

phenotype information mining and analysis due to its high spatial

and temporal resolution and simple operation (Xie and Yang,
TABLE 4 Summary of the results of estimating LAI by machine learning models based on different inputs.

Technique Data set
VIs TIs VIs+TIs

R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD

SVM
Cal 0.698 0.371 1.487 0.735 0.348 1.656 0.806 0.315 1.856

Val 0.621 0.433 1.338 0.790 0.312 2.010 0.813 0.297 2.084

BPNN
Cal 0.648 0.403 1.335 0.689 0.380 1.445 0.791 0.311 1.899

Val 0.664 0.392 1.716 0.688 0.389 1.787 0.795 0.330 1.936

RF
Cal 0.840 0.271 2.257 0.844 0.269 2.095 0.906 0.208 3.149

Val 0.733 0.396 1.545 0.699 0.411 1.399 0.786 0.347 1.888

PLSR
Cal 0.649 0.402 1.392 0.652 0.397 1.405 0.753 0.335 1.755

Val 0.616 0.413 1.328 0.660 0.425 1.474 0.759 0.347 1.775
frontier
The value in bold type indicates that the model is the best LAI estimation model. The Cal and Val in the table represent the calibration set data set and validation set data set respectively.
A B C

FIGURE 4

Correlation coefficient matrix between LAI and three types of texture index indices (A) the ratio texture index, (B) the normalized difference texture
index, (C) the difference texture index. Each cell in the figure represents the correlation coefficient between the texture index, which is obtained by
linearly transforming the original texture parameters corresponding to the x and y coordinates of each cell, and the LAI.
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2020). In this study, multispectral images of the study area were

acquired by using a UAV with a multispectral camera. The non-

destructive and rapid estimation of maize LAI at the plot scale was

achieved by extracting different types of image features and

combining them with machine learning algorithms.
4.1 Analysis of monitoring LAI by
vegetation indices

Vegetation indices are widely used in crop chlorophyll content

(Jiang et al., 2022), LAI (Li et al., 2019), biomass (Gnyp et al., 2014)

and yield prediction (Fu et al., 2020; Garcıá-Martıńez et al., 2020).

Crop canopy reflectance is easily influenced by leaf pigmentation in
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the visible bands, which can lead to “oversaturation” of the

vegetation indices (Hatfield et al., 2008). In contrast, red-edge and

near-infrared reflectance are mainly influenced by canopy structure

and have a stronger penetration effect. Hence, researchers usually

choose red-edge and near-infrared bands to construct vegetation

indices. Shi et al. (2022) demonstrated that vegetation indices based

on red light bands and near-infrared bands correlate well with LAI

and AGB of red and green beans, allowing for growth monitoring of

intercropped crops in plot tea plantations. Zheng et al. (2019) found

that the vegetation indices based on red-edge bands were important

parameters for rice biomass estimation before tasseling. However,

the estimation was significantly reduced after tasseling, mainly

because canopy leaf biomass was sensitive to red-edge bands but

not stems. Qi et al. (2020) used fixed-wing UAV to monitor peanut
A B

D E F

G IH

J K L

C

FIGURE 5

Accuracy evaluation results of LAI estimation models based on vegetation indices (VIs), texture indices (TIs) and combined vegetation indices and texture
indices (VIs+TIs) in the validation set. The models evaluated are SVM, RF, BPNN, and PLSR, shown respectively in (A–C), (D–F), (G–I), and (J–L).
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growth, and found that red light and near-infrared bands were

sensitive bands of peanut LAI, which can effectively predict the

changes of peanut LAI. In this study,we found strong correlations (r

> 0.700) between maize LAI and five vegetation indices: RVI, NDVI,

OSAVI, NDRE, and CIred edge. These indices were identified as

effective for monitoring LAI in various maize varieties. The results

are in general agreement with the results of previous studies,

indicating that spectral indices based on red light, red edge and

near-infrared bands are of good application in crop monitoring and

can achieve rapid and non-destructive monitoring of crop

growth parameters.

In this study, DVI and MTCI performed poorly in estimating

LAI, and the correlation coefficients were only 0.550 and 0.475.

There may be two possible reasons for this result: (1) the influence

of other disturbing factors such as soil background and vegetation

shading on the multispectral reflectance; (2) the high LAI level in

the middle and late stages of maize growth, resulting in an

underestimation of some vegetation indices. In the process of

monitoring crop growth using UAV multispectral imagery, the

use of spectral features alone may not achieve satisfactory results

(Zheng et al., 2019; Yang et al., 2021; Fei et al., 2022). The use of

vegetation indices alone can only quantitatively analyze the

structural characteristics, biochemical components and

productivity trends of crop canopies from a spectral perspective.

It cannot deeply explore the effective information of other data

dimensions in UAV multispectral imagery.
4.2 Estimation potential analysis of
texture features

Texture features can reveal changes in crop canopy information

from the data dimension of image spatial features. Previous work

has used texture parameters from satellite remote sensing data

combined with spectral and topographic features to estimation

above-ground biomass in forests, demonstrating the feasibility of

applying texture parameters in agricultural remote sensing (Lu and

Batistella, 2005; Li et al., 2008). In this study, most of the texture

parameters had poor correlation with LAI. However, the correlation

between the constructed texture indices and LAI were significantly

improved after linear processing. The texture indices RTI (mean705,

ent705), DTI (mean705, con705) and NDTI (mean650, ent705)

effectively improved the estimation of LAI. Similar conclusions

were obtained by Hang et al. (2021) and Fei et al. (2022) when using

texture parameters for rice growth monitoring and yield estimation

of wheat. This is mainly because the texture is linearly combined

and transformed to reduce the influence of soil background,

vegetation shading and topographic factors, which can better

highlight the changing patterns of feature characteristics.
4.3 Influence of UAV image features fusion
on LAI estimation potential

The multi-input model based on vegetation and texture indices in

this study was superior to the model with a single input variable, with
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significant improvements in fit, estimation accuracy and stability. In

particular, the model combining UAV texture and spectral features

outperformed the model using only the vegetation indices, with a

19.757% increase in R2, a 19.118% decrease in RMSE and a 29.622%

increase in RPD in the validation set. The results of this study are

similar to those of previous studies. Ma et al. (2022) used color indices

and texture features from UAV RGB images to accurately estimate

cotton yield, with the RF_ELM model based on color indices and

texture features having the highest accuracy (R2 = 0.911). Yang et al.

(2021) used vegetation indices and texture features to achieve an

estimation of LAI for rice at full fertility. The combination of spectral

features and texture features had superior predictive power than

vegetation indices. In summary, combining the UAV spectral features

with texture features is an effectivemethod to improve the accuracy of

LAI estimation.
4.4 Comparison of different machine
learning models

Machine learning algorithms combined with remote sensing data

have been widely used in areas such as crop growth monitoring(Li

et al., 2019; Zheng et al., 2019; Zhang et al., 2021), yield estimation

(Fu et al., 2020; Garcıá-Martıńez et al., 2020; Ma et al., 2022) and

disease identification (Guo et al., 2021; Zhu et al., 2022). This study

used four machine learning algorithms, SVM, RF, BPNN and PLSR,

to construct LAI monitoring models for different maize varieties. The

results show that the SVM model performs best as a whole, and the

model’s training results and verification results have a high degree of

explanation for the variation of LAI. In the machine learning models

constructed based on vegetation and texture indices, the validation

sets R2 and RPD of SVM were improved and RMSE decreased

compared to RF, PLSR and BPNN models, indicating the high

performance of SVM modelling. Zhu et al. (2022) realized high-

precision monitoring of wheat scab by using machine learning

method combined with spectral and texture features of drones, and

the model built by SVM in collaboration with VIs + TFs can provide

the most accurate monitoring results; Omer et al. (2016) used

WorldView-2 multispectral imagery combined with SVM and

ANN algorithms to achieve monitoring of LAI of forest endangered

tree species, where the SVM model showed excellent prediction

accuracy and model stability. The excellent performance of SVM

model in LAI estimation may be related to the model structure. SVM

uses the principle of structure minimization (Camps-Valls et al.,

2006) to solve the nonlinear mapping problem between input

variables and response variables. However, to address the issue of

unstable RF model performance, a similar situation has been found in

other studies, Han et al. (2019) used the cooperative machine learning

algorithm of canopy structure information and spectral information

to construct maize AGB, the performance of RFmodel in the training

set and test set was quite different. There are two main reasons for the

instability of the RF model: (1) the amount of data in the validation

set is far less than that in the calibration set, and RF will perform

better in extensive sample data; (2) the existence of outliers in the

validation set due to human measurement problems reduces the

stability of the model.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1158837
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2023.1158837
In this paper, when using different machine learning algorithms

to estimate LAI with multivariate input variables, all four machine

learning models achieved good performance, indicating that there is

a non-linear relationship between the response variables and the

various predictors. However, the input variables were selected

without deeper mining of the input variable feature selection, and

the contribution of different predictors to the LAI estimation model

was not considered. To improve the monitoring accuracy of LAI, it

is necessary to study the above shortcomings in future research.
5 Conclusions

Rapid and non-destructive plot-scale maize LAI estimation is

important for UAV remote sensing monitoring of crop growth as

well as precise agricultural management. In this study, we used

image analysis techniques to extract spectral and texture features

from UAV multispectral images and used machine learning

methods (SVM, RF, BPNN, PLSR) to achieve fast and accurate

estimation of maize LAI. Most Vegetation indices based on red, red-

edge, and NIR bands exhibited strong correlation with LAI, whereas

most texture features demonstrated limited association with LAI.

Nevertheless, after applying linear transformation, texture indices

displayed a substantially enhanced correlation with LAI. Among the

different types of estimation models, the model constructed by SVM

method combined with vegetation indices and texture indices was

the best for LAI estimation (R2 = 0.813, RMSE=0.297, RPD=2.084),

and this result revealed that there was a non-linear relationship

between LAI and spectral parameters and texture parameters. The

results of this study show that the use of UAV near-ground remote

sensing combined with image analysis techniques can achieve

accurate monitoring of the growth of different maize varieties and

provide guidance for maize variety selection.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Frontiers in Plant Science 10
Author contributions

Conceptualization, XinS,WY andMF. data curation, XinS, ZY, PS

and ZW. formal analysis, XinS and CY. funding acquisition, WY and

MF. investigation, XinS, ZY, PS, KW and ZW. project administration,

WY and MF. resources, WY and MF. writing—original draft, XinS.

writing—review and editing, WY and MF. All authors contributed to

the article and approved the submitted version.
Funding

This work was funded by the Key Research and Development

Program of Shanxi Province, China (201903D211002-01,

201903D211002-05).
Acknowledgments

We are grateful to the Shanxi Academy of Agricultural Sciences

for providing the trial site. We are also grateful to the editor

and reviewers.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Adjed, F., Safdar Gardezi, S. J., Ababsa, F., Faye, I., and Chandra Dass, S. (2018).
Fusion of structural and textural features for melanoma recognition. IET Comput. Vis.
12, 185–195. doi: 10.1049/iet-cvi.2017.0193

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/
a:1010933404324
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