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Plants play a crucial role in supplying food globally. Various environmental factors

lead to plant diseases which results in significant production losses. However,

manual detection of plant diseases is a time-consuming and error-prone

process. It can be an unreliable method of identifying and preventing the

spread of plant diseases. Adopting advanced technologies such as Machine

Learning (ML) and Deep Learning (DL) can help to overcome these challenges

by enabling early identification of plant diseases. In this paper, the recent

advancements in the use of ML and DL techniques for the identification of

plant diseases are explored. The research focuses on publications between 2015

and 2022, and the experiments discussed in this study demonstrate the

effectiveness of using these techniques in improving the accuracy and

efficiency of plant disease detection. This study also addresses the challenges

and limitations associated with using ML and DL for plant disease identification,

such as issues with data availability, imaging quality, and the differentiation

between healthy and diseased plants. The research provides valuable insights

for plant disease detection researchers, practitioners, and industry professionals

by offering solutions to these challenges and limitations, providing a

comprehensive understanding of the current state of research in this field,

highlighting the benefits and limitations of these methods, and proposing

potential solutions to overcome the challenges of their implementation.

KEYWORDS

machine learning, deep learning, plant disease detection, image processing,
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1 Introduction

The use of ML and DL in plant disease detection has gained

popularity and shown promising results in accurately identifying

plant diseases from digital images. Traditional ML techniques, such

as feature extraction and classification, have been widely used in the

field of plant disease detection. These methods extract features from

images, such as color, texture, and shape, to train a classifier that can

differentiate between healthy and diseased plants. These methods

have been widely used for the detection of diseases such as leaf

blotch, powdery mildew, and rust, as well as disease symptoms from

abiotic stresses such as drought and nutrient deficiency (Mohanty

et al., 2016; Anjna et al., 2020; Genaev et al., 2021) but have

limitations in accurately identifying subtle symptoms of diseases

and early-stage disease detection. In addition, they also struggle to

process complex and high-resolution images.

Recently, DL techniques such as convolutional neural

networks (CNNs) and deep belief networks (DBNs) have been

proposed for plant disease detection (Liu et al., 2017; Karthik et

al.,2020). These methods involve training a network to learn the

underlying features of the images, enabling the identification of

subtle symptoms of diseases that traditional image processing

methods may not be able to detect (Singh and Misra, 2017; Khan

et al., 2021; Liu and Wang, 2021b). DL models can handle complex

and large images, making them suitable for high-resolution images

(Ullah et al., 2019). However, these methods require a large amount

of labeled training data and may not be suitable for unseen diseases.

Furthermore, DL models are computationally expensive, which

may be a limitation for some applications.

In recent years, several research studies have proposed different

ML and DL approaches for plant disease detection. However, most

studies have focused on a specific type of disease or a specific plant

species. Therefore, more research is needed to develop a

generalizable and robust model that can work for different plant

species and diseases. Additionally, there is a need for more publicly

available datasets for training and evaluating models. One of the

recent trends in the field is transfer learning, a technique that allows

for reusing pre-trained models on new datasets. Recently, transfer

learning and ensemble methods have emerged as popular trends in

plant disease detection using ML and DL. Transfer learning involves

fine-tuning pre-trained models on a specific dataset to enhance the

performance of DL models. Ensemble methods, on the other hand,

involve combining multiple models to improve overall performance

and reduce dependence on a single model. These approaches have

been applied to increase the robustness and accuracy of plant

disease detection models. Additionally, it can also prevent

overfitting, a common problem in DL models where the model

performs well on the training data but poorly on unseen data.

Another essential aspect to consider is the use of data augmentation

techniques, which is the process of artificially enlarging the size of a

dataset by applying random transformations to the images. This

approach has been used to increase the diversity of the data and

reduce the dependence on a large amount of labeled data.

In conclusion, the application of ML and DL techniques in plant

disease detection is a rapidly evolving field with promising results.
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While these techniques have demonstrated their potential to

accurately identify and classify plant diseases. There are still

limitations and challenges that need to be addressed. Further

research is required to develop generalizable models and make

more publicly available datasets for training and evaluation. This

review highlights the current state of research in this field and

provides a comprehensive understanding of the benefits and

limitations of ML and DL techniques for plant disease detection.

Its novelty lies in the breadth of coverage of research published from

2015 to 2022, which explores various ML and DL techniques while

discussing their advantages, limitations, and potential solutions to

overcome implementation challenges. By offering valuable insights

into the current state of research in this area, the article is a valuable

resource for plant disease detection researchers, practitioners, and

industry professionals seeking a thorough understanding of the

subject matter.

The following section comprises the contributions of this

research article.
• This paper provides an overview of the current

developments in the field of plant disease detection using

ML and DL techniques. By covering research published

between 2015 and 2022, it provides a comprehensive

understanding of the state-of-the-art techniques and

methodologies used in this field.

• This review examines various ML and DL methods for

detecting plant diseases, including image processing, feature

extraction, CNNs, and DBNs, and sheds light on the

benefits and drawbacks, such as data availability, imaging

quality, and differentiation between healthy and diseased

plants. The article shows that the use of ML and DL

techniques significantly increases the precision and speed

of plant disease detection.

• Various datasets related to plant disease detection have been

studied in the literature, including PlantVillage, the rice leaf

disease dataset, and datasets for insects affecting rice, corn,

and soybeans.

• The paper discussed various performance evaluation

criteria used to assess the accuracy of plant disease

detection models, including the intersection of unions

(IoU), dice similarity coefficient (DSC), and accurate

recall curves.
The article has seven main sections. A brief overview of plant

disease and pest detection and its significance is provided in Section

1. The challenges and issues in the plant disease and pest detection

are discussed in Section 2. The deep learning approaches for

recognizing images and their applications in plant disease and

pest detection are presented in Section 3. The comparison of

commonly used datasets and the performance metrics of deep

learning methods on different datasets are presented in Section 4.

The challenges in existing systems are identified in Section 5. The

discussion about the identification of plant diseases and pests is

presented in Section 6. Finally, the conclusion of the research work

and future research directions are discussed in Section 7.
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2 Plant disease and pest detection:
Challenges and issues

2.1 Identifying plant abnormalities
and infestations

Artificial Intelligence (AI) technologies have recently been

applied to the field of plant pathology for identifying plant

abnormalities and infestations. These technologies can have the

capability to transform the method in which plant maladies are

identified, diagnosed, and managed. In this passage, we will explore

the various AI technologies that have been proposed for identifying

plant abnormalities and infestations, their advantages and

limitations, and the impact of these technologies on the field of

plant pathology. One of the most widely used AI technologies in

plant pathology is ML. ML algorithms, such as c4.5 classifier, tree

bagger, and linear support vector machines, have been applied to

the classification of plant diseases from digital images. These

algorithms can be trained to recognize specific patterns and

symptoms of diseases, making them suitable for the classification

of diseases in their primary phases. However, ML algorithms

mandate a substantial quantity of data that has been annotated

for training and may not be suitable for diseases that have not been

seen before.

DL technologies, such as CNNs and DBNs, have also been

proposed for identifying plant abnormalities and infestations. These

technologies have been showing promising outcomes in the

detection and identification of lesions from digital images (Kaur

and Sharma, 2021; Siddiqua et al., 2022; Wang, 2022). DL models

can automatically learn features from the images and can identify

subtle symptoms of diseases that traditional image processing

methods may not be able to detect. Though, Deep Learning

models necessitate a significant volume of labeled training data

and involve intensive computational resources, which may be a

limitation for some applications. Another AI technology that has

been applied to plant pathology is computer vision (CV). CV

algorithms, such as object detection and semantic segmentation,

can be used to identify and localize specific regions of interest in

images, such as plant leaves and symptoms of diseases (Kurmi and

Gangwar, 2022; Peng and Wang, 2022). These algorithms can be

used to automatically transforming the images into recognizable

patterns or characteristics can be integrated with ML or DL

algorithms for disease detection and classification. However, CV
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algorithms need a huge number of labeled image data for model

training and may not be suitable for diseases that have not been seen

before. Figure 1 comprises four images, each depicting a different

stage of plant disease detection. The first image is the input image,

while the next image displays the disease identification results. The

third image features lesion detection, and the final image presents

the segmentation results of the plant lesion.

AI technologies have shown promising results in identifying

plant abnormalities and infestations. ML, DL, and CV based system

are utilized for to the classification and lesion segmentation of plant

diseases from digital images and could change the method of

discovering plant illnesses significantly, diagnosed, and managed

(Akbar et al., 2022). However, these technologies need a

considerable amount of annotated training data and may not be

suitable for diseases that have not been seen before. Further research

is needed to develop generalizable models that can be applied to

different plant species and diseases, and to make more datasets

publicly available for training and evaluating the models. Table 1

provides comprehensive information about the tools and

technologies utilized for plant disease detection. It includes details

about the various feature extraction methods, including those based

on handcrafted and learning features, as well as the appropriate

methods for processing small and large plant image datasets.
2.2 Evaluation of conventional techniques
for identifying plant diseases and pests

In recent years, ML and DL-based approaches have been

increasingly applied to agriculture and botanical studies. These

approaches have shown great potential in improving crop yield,

identifying plant lesions, and optimizing plant growth. In

comparison to traditional approaches, ML and DL-based methods

offer several advantages and have the potential to revolutionize the

field of agriculture and botanical studies. Traditional approaches in

agriculture and botanical studies mainly rely on manual inspection

and expert knowledge. These methods are often time-consuming,

physically demanding, and susceptible to human mistakes. In

contrast, ML and DL-based approaches can automate these tasks,

reducing the need for human interference and enhancing precision

and efficiency of the process.

ML and DL-based approaches have been used to analyze large

amounts of data, including images, sensor data, and weather data, to
A B DC

FIGURE 1

(A) Input raw image, (B) leaf classification, (C) lesion detection, and (D) lesion segmentation.
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identify patterns and make predictions. For example, ML

algorithms such as c4.5 classifier and tree bagger are being used

to predict crop yields, identify plant lesions and pests, and optimize

plant growth (Yoosefzadeh-Najafabadi et al., 2021; Cedric et al.,

2022; Domingues et al., 2022). DL models, such as CNNs and

DBNs, have been applied plant lesion identification based on image

analysis and classification, providing better accuracy and robustness

compared to traditional image processing methods (Sladojevic et al.,

2016; Alzubaidi et al., 2021; Dhaka et al., 2021). The ML and DL-

based approaches offer several advantages over traditional methods

in agriculture and botanical studies. These methods can automate

tasks, increase accuracy and efficiency, and analyze huge quantity of

data. Since, these methods require a large size of labeled features

and may not be suitable for lesions that have not been seen before.

Further research is needed to develop generalizable models that can

be applied to different crop species and conditions, and to make

more datasets publicly available for predictive model training and

model validation for performance analysis.
3 Deep learning approaches for
recognizing images

DL approaches have become a promising method for detecting

plant lesions. These techniques, which are based on RNN have

demonstrated success by achieving high accuracy in identifying

various plant lesions from images (Xu et al., 2021). By automatically

learning features from the images, DL models can accurately

identify and classify different disease symptoms, reducing the

need for manual feature engineering (Drenkow et al., 2021).

Additionally, these models can handle large amounts of data,

making them well-suited for large-scale plant lesions detection

(Arcaini et al., 2020). Therefore, in review paper, we evaluate the

current state-of-the-art in using DL for plant lesions recognition,

examining various architectures, techniques, and datasets used in

this field. Our aim is to provide a thorough understanding of the

current research in this area and identify potential future directions

for improving the detection precision and make the identification

system more efficient using the DL approaches.
3.1 Deep learning theory

Iqbal (Sarker, 2021) popularized the term “Deep Learning” in a

2006 Science article (DL). The article describes a procedure for

transforming high-dimensional data into low-dimensional codes

using a technique called “autoencoder” networks. These networks
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are made up of a layers with few parameters that is trained to create

vectors of input with high dimensions. The process of fine-tuning

the weights of the network can be done using gradient descent, but

this method is only effective if the baseline weights are near to a

satisfactory solution. The article presents an effective initialization

of weights that enables deep autoencoder models to learn the low-

dimensional sequences that are more effective than principal

component analysis for reducing the dimensionality of data.

DL is a variant of ML that employs multiple-layered AI

networks to learn and represent complex patterns in data. It is

extensively employed in object recognition, object detection, speech

analysis and speech-to-text transcription. In natural language

processing, DL-based models are used for tasks such as language

translation, text summarization, and sentiment analysis.

Additionally, DL is also used in recommendation systems to

predict user preferences based on previous actions or interactions.

AI vision is a subfield of artificial intelligence concerned with the

construction of computers to process and understand the visual

contents from the world (Liu et al., 2017).

In traditional manual image classification and recognition

methods, the underlying characteristics of an image are extracted

through the use of hand-crafted features. These methods, however,

are limited in their ability to extract information about the deep and

complex characteristics of an image. This is because the manual

extraction procedure is extremely reliant on the expertise of an

individual conducting the analysis, and can be prone to errors and

inconsistencies. Additionally, traditional manual methods are not

able to extract information about subtle or hidden features that may

be present in an image. In contrast, DL-based image classification

and recognition methods use artificial neural networks to

automatically extract image features. These methods have been

shown to be highly effective in extracting complex and deep features

from images, and have been utilized in numerous applications such

as object recognition, facial features recognition, and image

segmentation. Among the primary benefits of DL-based methods

is its capacity to learn features autonomously from input data,

rather than relying on manual feature engineering. This allows the

model to learn more abstract and subtle features that may be

present in the image, leading to improved performance and

greater accuracy. Additionally, DL-based methods are also able to

handle high-dimensional and complex data, making them

particularly well-suited to handling large-scale image datasets. In

summary, traditional manual image classification and recognition

methods have limitations in extracting deep and complex

characteristics of an image, while DL-based methods have been

demonstrated greater efficiency and effectiveness in this task by

automatically extracting image features, handling high-dimensional
TABLE 1 Comparison of different technologies for image processing.

Technology Core Technique Necessary Prerequisites Suitable Contexts

Traditional Image
Processing

Manual design of features +
classifiers or rules

Significant differentiation between affected and healthy regions,
minimal interference, or disturbance.

Plant disease and pest detection in
controlled environments

DL Automatic feature learning
using CNNs

Large amounts of appropriate data, high-performance computing
units

Adaptation to changes in complex
natural environments
frontiersin.org

https://doi.org/10.3389/fpls.2023.1158933
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shoaib et al. 10.3389/fpls.2023.1158933
and complex data, and learning more abstract and subtle features

that may be present in the image (Tran et al., 2015).

DBN (Hasan et al., 2020) is a type of unsupervised DL model

that is composed of multiple layers of Restricted Boltzmann

Machines (RBMs). Using the plant lesion and pest infestation

detection, DBNs have been used to test plant images affected

regions to detect various diseases and types of pests, and extract

features from images of plant leaves. Studies have shown that DBNs

can achieve high accuracy rates in the range of 96-97.5% in

classifying images of plant leaves affected by diseases and pests.

Boltzmann’s Deep Machine (DBM) (Salakhutdinov &

Larochelle, 2010) is generative stochastic AI model that can be

utilized for unsupervised classification to detect the plant lesion.

Within the context of conventional plant lesion and pest detection,

DBMs have been used to predict labels for images of various plant

affected regions by viruses and plant bugs, and extract features from

images of plant leaves. Studies have shown that DBMs can achieve

high accuracy rates in the range of 96-96.8% in classifying images of

plant leaves affected by diseases and pests.

Deep Denoising Autoencoder (Lee et al., 2021) is a variant of

autoencoder, which is a neural network architecture that is

composed of an encoder module along with a decoder. In the

context of traditional plant disease and pest infestation detection,

DDA has been used to for two different purposed i.e., noise removal

from the plant leaf data and a prediction system to identify plant

disease. Studies have shown that DDA can achieve high accuracy

rates in the range of 98.3% in classifying images of plant leaves

affected by diseases and pests.

Deep CNN (Shoaib et al., 2022a; Shoaib et al., 2022b)is a type of

feedforward AI model that is consisting of several hidden layers of

convolutional and pooling layers, the CNNmodel are the best of the

DL model for achieving higher detection accuracy using imaging

data The CNN model consist of two blocks, the features learning

and classification blocks. The features learning block extract various

kind of features using the convolutional layer where the features

learning is performed at the fully connected layers. The higher

accuracy of the CNN model for plant disease classification has

proofed to be the best then all other kinds of ML and DL methods.

Studies have shown that CNNs can achieve high accuracy rates in

the range of 99-99.2% in classifying images of plant leaves affected

by diseases and pests.
3.2 Convolutional neural network

CNNs are a sort of DL model that are ideally suited for image

classification tasks such as leaf disease detection (Zhang et al., 2019;

Lin et al., 2020; Stančić et al., 2022). Multiple layers comprise the

CNN’s architecture, such as fully connected layers, maxpooling, and

normalization layers. The first layer in the CNN is the input layer

while the second layer in most of the CNNs is convolutional layers

which extract features by applying various kind of 2D filters on the

image, the amount of images increase which can then dimensionally

reduced pooling also known as down sampling layers, resulting in a

more compact representation of the image. Fully connected (FC)

layers in a CNN are also known as learnable features, the extracted
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optimization. These layers are also responsible for making

classification which can be used to recognize various plant

diseases. The learning process of CNN model begins with

training, the input to the CNN are images along with their labels,

after the successful training of the model, the model is able to

identify disease types.

The decision-making process in a CNN for leaf disease

detection starts with the input of an image of a leaf. The image is

then passed through the convolutional layers, where features are

extracted. The feature vectors are then processed by pooling layers,

where the spatial dimensions are reduced. The feature vectors are

then transmitted via the FC layers, where a decision is made about

the presence of a disease or pest. The models output are the

probabilities that the leaf is diseased or healthy. CNNs are well-

suited for leaf disease detection, thanks to their architecture

consisting of up-sampling, down-sampling and learnable layers

(Agarwal et al., 2020). The learning process of CNN involves

training the network using labeled images of healthy and disease

effected plants. Figure 2 presents a framework for classifying the

plants into normal and abnormal plant using leaf data. The

framework employs several different Inception architectures, and

the final decision is made through a bagging-based approach.
3.3 Deep learning using open-
source platforms

TensorFlow is a powerful library for dataflow and differentiable

programming (Abadi, 2016; Dillon et al., 2017), which allows for

efficient computation on a set of devices with powerful hardware’s,

that include memory, GPUs and TPUs. Its ability to create dataflow

graphs, which describe how data moves through a computation,

makes it a popular choice for ML and DL applications. In contrast,

Keras is a high-end DL library that operates atop TensorFlow (also

some other libraries). It simplifies the creation of DL models by

providing a user-friendly API, and it provides a number of pre-built

layers and functions, such as convolutional layers and pooling

layers, which can be easily added to a model. In recent versions

of Tensorflow (2.4 and above). TensorFlow is used to provide low-

level operations for building and training models, while Keras is

used to provide a higher-level API for building and training models

more easily. The use of TensorFlow and Keras together in this

research has allowed us to effectively and efficiently solve the

problem at hand.

PyTorch is also from the open-source community which has

lot of capabilities for developing ML and DL applications (Zhao

et al., 2021; Masilamani and Valli, 2021). PyTorch is a powerful

library for building and training DL models. It is known for its

flexibility and ease of use, making it a popular choice among

researchers and practitioners. One of the key features of PyTorch

is its dynamic computational graph. Unlike other libraries, such as

TensorFlow, which uses a static computational graph, PyTorch

allows for the modification of the graph on-the-fly, making it more

suitable for research and experimentation. Additionally, PyTorch

provides support for distributed training, allowing for efficient
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training of large models on multiple GPUs. PyTorch also provides a

number of pre-built modules, such as convolutional layers and

recurrent layers, which can be easily added to a model. This makes it

easy to quickly prototype and experiment with different model

architectures. Additionally, PyTorch also has a large community

that shares pre-trained models, datasets, and tutorials, which helps

to make the development process even more efficient.

Caffe (Convolutional Architecture for Fast Feature Embedding)

is a Berkeley Vision and Learning Center-developed open-source

DL framework (BVLC) and community contributors (Jia et al.,

2014). It is a popular choice for image and video classification tasks

such as object detection and video summarization, and also

consider a good choice for its speed and efficiency in training

large models. Caffe is implemented in C++ and has a Python

interface, which allows for easy integration with other Python

libraries such as NumPy and SciPy. This allows for a high level of

flexibility in the design and experimentation of DL models. One of

the key features of Caffe is its ability to perform efficient

convolutional operations, which are essential for computer vision

tasks. Additionally, Caffe supports a wide range of DL models, such

as CNN, RNN, Transformers networks. It also provides a number of

pre-built layers and functions, such as convolutional layers and

pooling layers, which can be easily added to a model (Komar

et al., 2018).

The Montreal Institute for Learning Algorithms (MILA) at the

University of Montreal created Theano which also covers the open

source license and have several packages in the python language for

ML and DL (Bahrampour et al., 2015). It is widely used for DL and

other numerical computations, and it is known for its ability to

optimize and speed up computations on CPUs and GPUs. One of
Frontiers in Plant Science 06
the key features of Theano is its ability to perform symbolic

differentiation, which allows for the efficient computation of

gradients during the training of DL models (Chung et al., 2017).

Additionally, Theano can automatically optimize computations and

perform automatic differentiation, which allows for the efficient

training of large models. Theano also provides a number of pre-

built functions, such as convolutional and recurrent layers, which

can be easily added to a model. Theano is implemented in Python,

which allows for easy integration with other Python libraries such as

NumPy and SciPy. This allows for a high level of flexibility in the

design and experimentation of DL models.

Table 2 in the research article provides a comparison of several

popular Artificial Intelligence (AI) frameworks. The table compares

the technology, developer, auxiliary devices required, functionality,

programming language, and popular applications of each

framework. This information is valuable for researchers and

practitioners in the field of AI, as it provides an overview of the

various options available and the strengths and limitations of each

framework. The data presented in Table 2 can be used to guide the

selection of an appropriate AI framework for a specific task

or application.
3.4 Deep learning based plant lesion and
pests detection system

This section of the research focuses on the application of DL

methods for segmentation plant lesions and pest infestation in

botany and agriculture. With the increasing demand for food and

the need for sustainable agricultural practices, the prompt
FIGURE 2

A CNN framework for classifying plants into healthy and unhealthy (Shoaib et al., 2022a).
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identification and handling of illnesses affecting plants and pests is

crucial for ensuring crop yields and maintaining the health of crops.

DL, with its ability to process large amounts of data and its ability to

learn from the data, has proven to be a robust tool for detecting

plant diseases and pest infestation. In this section, we present a

comprehensive overview of the state-of-the-art DL methods that

have been developed for this purpose, including methods for image-

based disease and pest detection, as well as methods for data-driven

disease and pest detection using sensor data and other types of data.

We also discuss the challenges and limitations of these methods and

provide insights into future research directions. In particular, we

will cover the recent advancements in DL for disease and pest

detection, including the use of CNN, recurrent neural networks, and

transfer learning techniques. These DL methods have shown to be

effective in detecting plant diseases and pest infestation at a high

level of accuracy, which can support farmers and agricultural

professionals in taking appropriate action to prevent crop losses.

3.4.1 Classification network
Various Convolutional Neural Network (CNN) models which

have been utilized to identify plant diseases and pest infestation are

discussed. The first model that we will discuss is AlexNet

(Antonellis et al., 2015), which is the CNN model developed in

2012. The AlexNet CNN win the classification challenge by

achieving the highest accuracy using the 1000 classes Imagenet

dataset. AlexNet is known for its high accuracy and speed, and it has

been used for a variety of tasks, including plant disease detection.

Another popular CNN model is VGG (Soliman et al., 2019), which

was established in 2014 by the University of Oxford’s at Visual

Geometry Lab. VGG is known for its high accuracy and is often

used for image classification tasks. It has been employed to detect

plant lesions by extracting hidden patterns from plant leaf data.

ResNet (Szymak et al., 2020), which was developed by Microsoft

Research Asia in 2015, is known for its ability to handle very deep

networks. It has been used for plant disease detection by using pre-

trained ResNet models on the images of the plants. GoogLeNet

(Wang et al., 2015), which was developed by Google in 2014, is

known for its high accuracy and efficient use of computation

resources. It has been used for plant disease detection by fine-

tuning pre-trained GoogLeNet models on the images of the plants.
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InceptionV3, which was developed by Google in 2015, is known for

its high accuracy and efficient use of computation resources. It has

been used for plant disease detection by fine-tuning pre-trained

InceptionV3 models on the images of the plants. DenseNet (Tahir

et al., 2022), which was developed in the (Huang et al., 2017), is

known for its ability to handle very deep networks and efficient use

of computation resources. It has been used for plant disease

detection by fine-tuning pre-trained DenseNet models on the

images of the plants. These CNN models differ in their

architectures, sizes, shapes, and the number of parameters. While

AlexNet, VGG, GoogLeNet, InceptionV3, and DenseNet have been

widely used for plant disease detection, ResNet is known for its

ability to handle very deep networks. All these models have been

shown to be effective in detecting plant diseases and pests based on

different characteristics such as size, shape, and color, and they can

be employed for harvesting characteristics from pictures of the

plants which can be used to train a classifier to detect different

diseases and pests.

3.4.2 CNN as features descriptor
The article (Sabrol, 2015) “Recent Research on Image

Processing and Soft Computing Approaches for Identifying and

Categorizing Plant Diseases using CNNs” discusses the use of

CNNs for recognizing and classifying plant diseases. The authors

review various studies that have used CNNs, which are a type of DL

algorithm, to detect and diagnose plant diseases. They also discuss

the challenges and limitations of using CNNs, such as the need for

large amounts of data, the high computational requirements, and

the potential for overfitting. The article concludes by highlighting

the potential for further research in this area and the importance of

developing accurate and reliable plant disease recognition and

classification systems using CNNs.

This research article presents an architecture of Convolutional

Neural Networks for determining the variety of crops from image

sequences obtained from advanced agro-observation stations

(Yalcin and Razavi, 2016). The authors address challenges related

to lighting and image quality by implementing preprocessing steps.

They then employ the CNN architecture to extract features from the

images, highlighting the importance of the construction and depth

of the CNN architecture in determining the recognition capability
TABLE 2 Comparison of popular artificial intelligence frameworks.

Technology Developer Auxiliary
Devices Functionality Language Popular Applications

TensorFlow Google
CPU, GPU,
TPU, Mobile

High usability with a large community and
extensive documentation

Python
Computer Vision, NLP, Speech Recognition,
Robotics, Reinforcement Learning

PyTorch Facebook CPU, GPU
High usability for research and development
with dynamic computation graphs

Python
Computer Vision, NLP, Speech Recognition,
Robotics, Reinforcement Learning

ONNX
Runtime

Microsoft
CPU, GPU,
TPU, Edge

High usability for deploying models across
multiple platforms

Python
Computer Vision, NLP, Speech Recognition,
Robotics, Reinforcement Learning

MXNet Amazon
CPU, GPU,
TPU, Mobile

High usability with a variety of language
support and performance optimization

Python, C+
+, R, Scala

Computer Vision, NLP, Speech Recognition,
Robotics, Reinforcement Learning

CNTK Microsoft CPU, GPU
High usability for large-scale distributed
training and models

Python
Computer Vision, NLP, Speech Recognition,
Robotics, Reinforcement Learning
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of the network. The accuracy of the model presented is evaluated to

perform a comparison between the CNNmodel with those obtained

using a support vector machine (SVM) classifier with the utilization

of feature extractors such as Local Binary Patterns (LBP) and Gray-

Level Co-Occurrence Matrix. The results of the approach are tested

on a dataset collected through a government-supported project in

Turkey, which includes over 1,200 agro-stations. The experimental

outcomes affirm the efficiency of the suggested technique.

A novel meta-architecture is proposed, which utilizing a CNN

designed for distinguishing between healthy and diseased plants

(Fuentes et al., 2017b). The authors employed multiple

characteristic extractors within the CNN to analyze input images

that are divided into their corresponding categories. On the other

hand, a CNN-based approach for the identification of various eight

classes of rice viruses is presented in (Hasan et al., 2019). The

authors performed features extraction using the features learning

model and introduced them along with the corresponding labels

into a support vector machine (SVM) linear multiclass model for

training. The trained model achieved a validation accuracy

of 97.5%.

3.4.3 CNN-based predictive systems
In the area of plant illness and pest identification, CNNs have

been extensively utilized. One of the first applications of CNNs in

this field was the identification of lesions in plant images, utilizing

classification networks. The method employed involves training

CNNs to recognize specific patterns or features in the input image

that are associated with various diseases or pests. After training, the

network can be utilized to classify new images as diseased or

healthy. The classification of raw images is a straightforward

process that utilizes the entire image as input to the CNN.

However, this approach may be limited by the presence of

irrelevant information or noise in the image, which can negatively

impact the performance of the network. In order to address this

problem, investigators have proposed utilizing a region of interest

(ROI) based approach, in which is the model is taught to categorize

specific regions of the image that contain the lesion, rather than the

entire image. Multi-category classification is another area of

research in this field, which involves training CNNs to recognize

multiple types of diseases or pests in the same image. This approach

can be more challenging than binary classification, as it requires

CNNs to learn more complex and diverse patterns in the

input images.

The first broad application of CNNs for plant pest and disease

detection was the identification of lesions using categorization

networks. Current study issues include the categorization of raw

pictures, classification following recognition of regions of interest

(ROI), and classification of several categories. Utilizing neural

structural models, such as CNN, for direct classification in plant

pest identification can be a highly effective strategy. CNN is a DL

model that is ideally suited for image classification problems since it

can automatically learn picture attributes.

To train the network when the team constructed it

independently, a tagged collection of photos of ill and healthy

plants was required. There must be a variety of pests and illnesses,
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plant growth phases, and environmental circumstances within the

databases. The team can then construct the network architecture

and choose relevant parameters based on the specific features of the

intended recipient plant pest and disease. Alternately, during

transfer learning, you can employ a CNN model that has already

been trained and modify it using data from specific plant pest

detection tasks. This method is less computationally intensive and

requires less labeled data due to the fact that the pre-trained

network has already acquired generic characteristics from huge

datasets. Notably, transfer learning enables teams to harness the

performance of a model trained in some data that were developed

using extensive, varied datasets demonstrated to perform well on

similar tasks.

Establishing the weight parameters for multi-objective disease

and pest classification networks, obtained through binary learning

between healthy and infected samples as well as pests, are uniform.

A CNN model is designed that integrates basic metadata and allows

training on a single multi-crop model to identify 17 diseases across

five cultures by utilizing a unified newly suggested model which has

ability to handle multiple crops multi-crop model (Picon et al.,

2019). The following goals can be accomplished through the use of

the proposed model:
1. Achieve more prosperous and stable shared visual

characteristics than a single culture.

2. Is unaffected by diseases that cause similar symptoms across

cultures.

3. Seamlessly integrates the context for classifying conditional

crop diseases.
Experiments show that the proposed model eliminates 71

percent of classification errors and reduces data imbalance, with a

balanced data the proposed model boasts an average accuracy rate

of 98%, surpassing the performance of other models.
3.5 Identifying lesion locations through
neural network analysis

Images are typically processed and labeled using a classification

network. However, it is also possible to use a combination of various

strategies and methods to determine the location of affected areas

and perform pixel-level classification. Some commonly used

methods for this purpose include the sliding window approach,

the thermal map technique, and the multitasking learning network.

These methods involve analyzing the input image and identifying

specific regions or areas that correspond to lesions through a

systematic and formal analysis process.

The sliding window method is a widely utilized technique for

identifying and arranging elements within an image. This method

involves moving a small window across the image and analyzing

each window using a classification network. This technique is

particularly useful for detecting localized features, such as lesions

in plant photos, making it a valuable tool. In a study, a CNN

classification network incorporating the sliding window method
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was utilized to develop a system for the identification of plant

diseases and pests (Tianjiao et al., 2019). This system incorporates

ML, feature fusion, identification, and location regression

estimation through the use of sliding window technology. The

software demonstrated an ability to identify 70-82% of 29 typical

symptoms when used in the field.

The graphic illustrates a temperature chart that illustrates the

importance of various regions within an image. The darker the hue,

the greater the importance of that region. Specifically, darker tones

on the heat map indicate a higher likelihood of lesion detection in

plants affected by diseases and pests. In a study conducted by

(Dechant et al., 2017), a convolutional neural network (CNN) was

trained to generate thermal maps of corn disease images, which

were then used to classify the entire image as infected or non-

infected. The process of creating a thermal map for a single image

takes approximately 2 minutes and requires 2 GB of memory.

Identifying a group of three thermal cards for execution, on the

other hand, takes less than a second and requires 600 bytes of

memory. The results of the study showed that the test data set had

an accuracy rate of 98.7%. In a separate study, (Wiesner-hanks et al.,

2019) used the thermal map system to accurately identify contour

zones for maize diseases with a 96.22% accuracy rate in 2019. This

method of detection is highly precise and can identify lesions as

small as a few millimeters, making it the most advanced method of

aerial plant disease detection to date.

A multitasking learning network is a network that is capable of

both categorizing and segmenting plant afflictions and pests. Unlike

a pure predictive model, which is only able to categorize images at

the image level, multitasking networks add a branch that can

accurately locate the affected region of plant diseases. This is

achieved by sharing the results of characteristic extraction

between the two branches. As a result, the multitasking learning

network uses a detection hierarchy to generate precise lesion

detection results, which reduces the sampling requirements for

the classification network. In a study by (Shougang et al., 2020), a

VGCNN model followed by deconvolution (DGVGCNN) was

developed to detect afflictions of plant leaves resulting from

shadows, obstructions, and luminosity levels. The implementation

of deconvolution redirects the CNN classifier’s attention to the
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precise locations of the afflictions, resulting in a highly robust model

with a disease class identification accuracy of 97.81%, a lesion

segmentation pixel accuracy of 96.44%, and a disease class

recognition accuracy of 98.15%.

Figure 3 presents architecture of the CANet neural network.

utilized for plant lesion detection and segmentation. The figure

provides a visual representation of the various components and

structure of the network, such as the input layer, intermediate

hidden layers, and the final output layer. This information is

valuable for researchers and practitioners who are interested in

understanding the underlying mechanics of the CANet network

and how it performs lesion detection and segmentation.

Table 3 provides a comparison of the pros and cons of various

object detection and classification methods for identifying diseases

in the leaves of plants. The table compares five methods including

Convolutional Neural Networks (CNNs), Transfer learning with

CNNs, Multitasking learning networks, Deconvolution-guided

VGNet (DGVGNet), and traditional methods such as manual

inspection and microscopy. This information is valuable for

researchers and practitioners in the area of identifying plant

lesions, as it provides a comprehensive comparison of the

strengths and limitations of each method, enabling them to make

informed decisions about which method is most suitable for their

needs. The data presented in Table 3 can act as a guide for future

studies and development in the field of plant disease detection.

The research community as a whole has come to acknowledge

the utility of taxonomic network systems for the detection of plant

pests, and a significant amount of study and investigation is

currently being carried out in this field. Table 3 offers a full

comparison of the several sub-methods that make up the

categorized network system, showing the benefits and drawbacks

of each option (Mohanty et al., 2016; Brahimi et al., 2018; Garcia

and Barbedo, 2019). It is essential to keep in mind that the method

that will prove to be the most effective will change depending on the

particular use case as well as the resources. It should also be

mentioned that while this table does illustrate the performance of

each approach, it should not be considered to be an exhaustive

comparison because the results may differ depending on the

particular data sets and environmental conditions that are used.
FIGURE 3

CANet neural network-based disease detection and ROI segmentation (Shoaib et al., 2022b).
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3.5.1 Object detection networks for plant
lesion detection

Object localization is a fundamental task in computer vision

and is closely associated with the traditional detection of plant pests.

The objective of this task is to acquire knowledge about the location

of objects and their corresponding categories. In recent years,

various algorithms for object detection based on DL have been

developed. These include single-stage networks such as SSD (W. Liu

et al., 2016) and YOLO (Dumitrescu et al., 2022; Peng and Wang,

2022; Shoaib and Sayed, 2022), as well as a networks with multi-

stages, like YOLOv1 (Nasirahmadi et al., 2021). These techniques

are commonly employed in the identification of plant lesions and

pests. The single-stage network makes use of network features to

directly forecast the site and classification of blemishes, whereas the

two-stage network first generates a candidate box (proposal) with

lesions before proceeding to the object detection process.

3.5.2 Pest and plant lesion localization using
multi-stage network

Faster R-CNN is a two-part object detection system that uses a

common feature extractor to obtain a map of features from an input

image. The network then utilizes a Region Proposal Network (RPN)

to calculate anchor box confidences and generate proposals. The

features maps of the proposed regions are then connected to the

ROI pooling layer to enhance the initial detection results and finally

determine the location and type of the lesion. This method

improves upon traditional structures by incorporating

modifications to the feature extractor, anchor ratios, ROI pooling,

and loss functions that are tailored to the specific characteristics of

plant disease and pest infestation detection. In a study conducted by

(Fuentes et al., 2017a), the Faster R-CNN was used for the first time

to accurately locate tomato diseases and pests infestation in a

dataset containing 4800 images of 11 different categories. When

using deep feature extractors like VGG-Net and ResNet, the mean

average precision (mAP) value was calculated 88.66%.

The YOLOv5 architecture is visually represented in Figure 4,

which depicts its structure and organization. The network

comprises three primary components: the input layer, the hidden

layers, and the output layer. The input layer is where data is initially

fed into the network for processing. The hidden layers are

responsible for executing complex computations and

transformations on the input data, and their performance plays a
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critical role in determining the network’s accuracy. The output layer

generates final predictions by outputting the bounding boxes and

class probabilities for objects detected in the input image. The figure

provides detailed labels and annotations to explain how the

network’s components interact. This visual representation helps

researchers and developers gain a better understanding of the

network’s mechanics and identify areas for performance

enhancement. Overall, Figure 4 is an essential tool for anyone

seeking to deepen their understanding of the YOLOv5 architecture.

In 2019, (Liu and Wang, 2021b) a modification was suggested for

the Faster R-CNN framework to automatically detect beet spot

lesion by altering the parameters of the CNN model. A total of 142

images were used for testing and validation, resulting in an overall

correct ranking rate of 96.84%. (Zhou et al., 2019) a rapid detection

system for rice diseases was proposed by integrating the FCM-

Kmeans and YOLOv2 algorithms. The system showed a detection

accuracy of 97.33% with a processing time of 0.18s for rice blast,

93.24% accuracy and 0.22s processing time for bacterial blight, and

97.75% accuracy and 0.32s processing time for sheath burn, based

on the evaluation of 3010 images. (Xie et al., 2020) proposed the

DR-IACNN model based on the faster mechanism to ensure

efficiency, a custom dataset is developed that contains the vine

leaf lesions (GLDD), and the Faster R-CNN detector employe of a

Inception-v2 architecture, the Inception-ResNetv2 architecture.

The proposed model showed a mean average precision (mAP)

accuracy of 83.7% and a detection rate of 12.09 frames per second.

The two-stage detection network was designed to improve the real-

time performance and practicality of the detection system.

However, it still lacks in terms of speed compared to the speed of

one-stage detection model.

3.5.3 One-stage network based plant
lesion detection

In recent years, object detection has become an essential tool for

diagnosing plant afflictions and pests. YOLO (You Only Look

Once) is one of the most widely used object detection techniques.

It is a real-time, single-pass object detector that utilizes a single

CNN to predict the category and position of objects in an image.

Variations of the YOLO algorithm, such as YOLOv2 and YOLOv3,

and other various methods have been developed to enhance the

accuracy of object recognition while maintaining real-time

performance. Another popular object detection technique is SSD
TABLE 3 Comparison of pros and cons of various object detection and classification methods for plant leaf disease detection.

Method Advantages Disadvantages

(CNNs) High accuracy, able to detect small lesions Need large amounts of labeled data for training

Transfer learning with CNNs Improved performance using pre-trained models
Limited to the specific task and dataset the pre-trained
model was trained on

Multitasking learning networks
Can classify and segment simultaneously, reducing sampling
requirements for classification

Complex architecture requires more computational
resources

Deconvolution-guided VGNet
(DGVGNet)

Robust in occlusion, low light, and other conditions, with high
accuracy

Requires specific architecture and computationally
intensive

Traditional methods (e.g. manual
inspection, microscopy)

Low-cost and widely available
Time-consuming, prone to human error and
subjectivity
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(Single Shot MultiBox Detector), which similarly to YOLO, uses a

single CNN to predict the type and position of objects in an image.

However, SSD makes predictions about the size of objects based on

multiple feature maps that are scaled differently, making it better

suited for identifying small objects with greater precision

than YOLO.

Faster R-CNN is a two-stage object detection system that

generates a set of potential object regions using a Region Proposal

Network (RPN), and then uses a separate CNN to classify and locate

objects within these proposals. Despite being slower than YOLO

and SSD, Faster R-CNN has been shown to achieve a higher level of

accuracy. When it comes to detecting plant diseases and pests,

YOLO, SSD, and Faster R-CNN are all commonly used methods.

The choice of algorithm will depend on the specific requirements of

the application, such as accuracy, speed, and memory consumption.

For real-time applications that prioritize speed, YOLO may be the

best option, but for applications that require a higher level of

accuracy, SSD and Faster R-CNN may be more suitable.

In this study (Singh et al., 2020), the authors explore the

potential of utilizing computer vision techniques for the early and

widespread detection of plant diseases. To aid in this effort, a

custom dataset, named PlantDoc, was developed for visual plant

disease identification. The dataset includes 3,451 data points across

12 plant species and 14 disease categories and was created through a

combination of web scraping and human annotation, requiring 352

hours of effort. To demonstrate the effectiveness of the dataset, three

plant disease classification models were trained and results showed

an improvement in accuracy of up to 29%. The authors believe that

this dataset can serve as a valuable resource in the implementation

of computer vision methods for plant disease detection.

(Zhang et al., 2019) proposed a novel approach to the detection

of small agricultural pests by combining an improved version of the
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YOLOv3 algorithm with a spatial pyramid pooling technique. This

method addresses the issue of low recognition accuracy caused by

the variable posture and scale of crop pests by applying

deconvolution, combining oversampling and convolution

operations. This approach allows for the detection of small

samples of pests in an image, thus enhancing the accuracy of the

detection. The method was evaluated using 20 different groups of

pests collected in real-world conditions, resulting in an average

identification accuracy of 88.07%. In recent years, many studies

have employed detection networks to classify pathogens and pests

(Fuentes et al., 2017a). It is expected that in the future, more

advanced detection models will be utilized for the identification of

plant maladies and infestations, as object segmentation networks in

computer vision continue to evolve.

In recent times, the detection of plant maladies and infestations

has increasingly relied upon the use of two-stage models, which

prioritize accuracy. However, there is a growing trend towards the

use of single-stage models, which prioritize speed. There has been

debate over whether detection networks can replace classification

networks in this field. The primary goal of a segmentation network

is first to identify the presence of plant maladies and infestations,

whereas the goal of a predictive model based on a classification

scheme is to categorize these diseases and pests. It is important to

note that the visual recognition network provides information on

the specific category of diseases and pests that need to be identified.

To accurately locate areas of plant disease and pest infestation,

detailed annotation is necessary. From this perspective, it may seem

that the detection network includes the steps of the classification

network. However, it is important to remember that the

predetermined categories of plant diseases and pests do not

always align with actual results. While the detection network may

provide accurate results in different patterns, these patterns may not
FIGURE 4

YOLOv5 architecture (Li et al., 2022).
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accurately represent the individuality of specific plant maladies and

infestations, and may only indicate the presence of certain kinds of

illness and bugs in a specific area. In such cases, the use of a

classification network may be necessary. In conclusion, both

classification networks and detection networks are important for

efficient plant disease and pest detection, but classification networks

have more capabilities than detection networks.
3.6 Deep learning-based
segmentation network

The segmentation network transforms the task of detecting

plant and pest diseases into semantic segmentation, which includes

separating lesions from healthy areas. By dividing the lesion’s area

in half, it calculates the position, rank, and associated geometric

properties (including length, width, surface, contour, center, etc.).

Fully convolutional networks include the R-CNN mask (Lin et al.,

2020) and completely convolutional networks (FCNs) (Shelhamer

et al., 2017).

3.6.1 Fully connected neural network
A complete convolution neural network is used to segment the

image’s semantics (FCN). FCN uses convolution to extract and

encode the input image features, then deconvolution or

oversampling to gradually restore the characteristic image to its

original size. FCN is used in almost all semantic segmentation

models today. Traditional plant and pest disease segmentation

methods are categorized as conventional FCN, U-net (Navab

et al., 2015), and SegNet (Badrinarayanan et al., 2017) according

to variations in the architecture of the FCN network.

A proposed technique for the segmentation of maize leaf disease

employs a fully convolutional neural network (FCN)(Wang and

Zhang, 2018). The process begins with preprocessing and

enhancing the captured image data, followed by the creation of

training and test sets for DL. The centralized image is then input

into the FCN, where feature maps are generated through multiple

layers of convolution, pooling, and activation. The feature map is

then up sampled to match the dimensions of the input image. The

final step is the restoration of the segmented image’s resolution

through the process of deconvolution, resulting in the output of the

segmentation process. This method was applied to segment

common maize leaf disease images and it was found that the

segmentation effect was satisfactory with an accuracy rate

exceeding 98%.

The proposed approach employs an improved fully

convolutional network (FCN) to precisely segment point regions

from crop leaf images with complicated backgrounds (Wang et al.,

2019). The strategy addresses the difficulty of reliably identifying

sick spots in complicated field situations. The training method of

the proposed system employs a collection of crop leaf pictures with

healthy and sick sections. The algorithm’s performance is tested

using measures such as accuracy and intersectional union ratio

(IoU) to determine its ability to effectively partition lesion regions

from pictures. The experimental findings demonstrate that the
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algorithm segments the spot area in complicated backdrop crop

leaf images with great precision.

U-Net is a popular CNN architecture for image segmentation

tasks. The architecture is named U-Net because it is U-shaped, with

encoder and decoder sections connected by a bottleneck (Shoaib

et al., 2022a). The encoder section of the network consists of a series

of convolutional and clustering layers that extract entities from the

input image. These features then pass through the bottleneck, where

they are up sampled and connected to the feature map from the

encoder. This allows the network to use both superficial and

fundamental image attributes when making predictions. The

decoder part of the network then uses these connected feature

maps to generate the final segmentation map. The U-Net

architecture is particularly useful for image segmentation tasks

because it is able to handle class imbalance problems, where some

areas of the image contain more target objects than others.

This paper proposes a semantic segmentation model that uses

CNNs to recognize and segment powdery mildew in individual

pixel-level images of cucumber lea (Lin et al., 2019). The suggested

model obtains an average pixel accuracy of 97.12%, a joint

intersection ratio score of 79.54%, and a dice accuracy of 81.54%

based on 20 test samples. These results demonstrate that the

proposed model outperforms established segmentation techniques

such as the gaussian mixture model, random forests, and fuzzy c

means. Overall, the proposed model can accurately detect powdery

mildew on cucumber leaves at the pixel level, making it a valuable

tool for cucumber breeders to assess the severity of

powdery mildew.

A novel approach to detect vineyard mildew is proposed,

which utilizes DL segmentation on Unmanned Aerial Vehicle

(UAV) images (Kerkech et al., 2022). The method involves

combining visible and infrared images from two different

sensors and using a newly developed image registration

technique to align and fuse the information from the two

sensors. A fully convolutional neural network is then applied to

classify each pixel into different categories, such as shadow,

ground, healthy, or symptom. The proposed method achieved

an impressive detection rate of 89% at the vine level and 84% at the

leaf level, indicating its potential for computer-aided disease

detection in vineyards.

3.6.2 Mask regional-CNN
Mask R-CNN is an effective DL model that is perfect for plant

pest detection. It is an extension of the Faster R-CNN model and

can recognize objects and segment instances (Permanasari et al.,

2022). The primary advantage of Mask R-CNN over other models

such as YOLO and SSD is its capacity to produce object masks that

allow more precise image object location. This is especially

beneficial for detecting plant pests, as it enables for more precise

identification of afflicted areas. In addition, Mask R-CNN is able to

handle overlapping object instances, which is a common issue in

plant pest detection due to the presence of several instances of the

same pest and disease in a single image. This makes the Mask R-

CNN a highly adaptable model that is appropriate for a variety of

plant pest identification applications.
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In this study (Stewart et al., 2019), an R-CNN based on a

masking scheme was utilized to segregate foci of northern plant leaf

spots in UAV-captured pictures. The model is trained with a

specific data set that recognizes and segments individual lesions

in the test set with precision. The average intersectional union ratio

(IOU) between the ground reality and the projected lesions was

79.31%, and the average accuracy was 97.24% at a threshold of 60%

IOU. In addition, the average accuracy when the IOU threshold

ranged from 55% to 90% was 65%. This study illustrates the

potential of combining drone technology with advanced instance

segmentation techniques based on DL to offer precise, high-

throughput quantitative measures of plant diseases.

Using deep CNNs and object detection models, the authors

of this paper offer two strategies for tomato disease detection

(Wang et al., 2019). These techniques employ two distinct

techniques, YOLO and SSD. The YOLO detector is used to

categorize tomato disease kinds, while the SSD model is used to

classify and separate the ROI-contaminated areas on tomato

leaves. Four distinct deep CNNs are merged with two object

detection models in order to obtain the optimal model for

tomato disease detection. A dataset is generated from the

Internet and then split for experimental purposes into

training sets, validation sets, and test sets. The experimental

findings demonstrate that the proposed approach can

accurately and effectively identify eleven tomato diseases and

segment contaminated leaf areas.
4 Comparing datasets and
evaluating performance

This section starts by providing an overview of the evaluation

metrics for DL models, specifically focusing on those that pertain to

plant disease and pest detection. It then delves into the various

datasets that are relevant to this field, and subsequently, conducts a

thorough analysis of the recent DL models that have been proposed

for the detection of plant diseases and pests.
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4.1 Evaluating plant disease detection
using benchmark datasets

The PlantVillage dataset is a compilation of crop photos with

labels indicating the presence of various illnesses (Hughes and

Salathé, 2015). It features 38,000 photos of 14 distinct crops,

including, among others, tomatoes, potatoes, and peppers. The

photographs were gathered from many sources, including public

databases, research institutions, and individual contributors. The

dataset is divided into a training set, a validation set, and a test set,

with the training set including the majority of the photos. The

scientific community uses this dataset extensively to develop and

evaluate DLmodels for plant disease detection. Figure 5 showcases a

selection of images obtained from the PlantVillage dataset, which is

a comprehensive dataset containing thousands of images of various

plant species. These images depict a wide range of plant conditions,

such as healthy plants, plants affected by pests, and plants afflicted

by various diseases, which enables researchers and practitioners to

gain a comprehensive understanding of the variability in plant

growth and development. Moreover, the diverse range of plant

species represented in this figure provides an in-depth and realistic

representation of the variability in plant types. The images included

in this figure capture the nuanced differences in plant morphology,

such as leaf shape, color, and texture, which can be useful for

developing and validating deep learning models for plant disease

detection. The AgriVision collection (Chiu et al., 2020), which

contains photos of numerous crops and their diseases, and the

Plant Disease Identification dataset, which contains photographs of

damaged and healthy plant leaves, are two other significant datasets.

Figure 6 showcases a selection of random images obtained from

the Agri-Vision dataset. These images depict various crops and their

growth conditions, including both healthy and diseased plants. This

figure serves as a visual representation of the types of data available

in the Agri-Vision dataset, providing insight into the range and

diversity of data contained within the dataset. The Crop Disease

dataset comprises photos of 14 crops affected by 27 diseases,

whereas the Plant-Pathology-2020 dataset provides images of
FIGURE 5

Some random images from plantvillage dataset (Hughes and Salathé, 2015).
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plant leaves damaged by 38 diseases. All of these datasets are widely

utilized by the research community and contribute to the creation

and evaluation of DL models for plant disease detection.

Table 4 provides a summary of benchmark datasets commonly

used for plant disease and pest detection. The table includes

information on the name of the dataset, a brief description, the

type of data contained within the dataset, and the types of diseases

and pests covered. This information is valuable for researchers and

practitioners who are looking to evaluate or compare their

algorithms or models against existing datasets.
4.2 Evaluation indices

There are several performance metrics commonly used for

evaluating the performance of plant disease classification,
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detection, and segmentation models. Figure 7 displays an example

of a confusion matrix, a widely used evaluation metric in machine

learning. The matrix represents the results of a classification

algorithm, where each row represents the predicted class of a

given sample and each column represents the actual class of that

sample. The entries in the matrix show the number of samples that

have been correctly or incorrectly classified. By examining the

entries in the confusion matrix, it is possible to gain insight into

the performance of the classification algorithm and identify areas

for improvement.

Accuracy: This is the proportion of correctly classified instances out

of the total number of instances. Mathematically, it is represented as:

Accurracy =  
True   Positive  Ratio + True  Negative  Ratio

Total   number   of   Samples

Precision: This is the proportion of correctly classified positive

instances out of the total number of predicted positive instances.

Mathematically, it is represented as:

Precision =  
True   Positive  Ratio

True   Positive  Ratio + False   Positive  Ratio

Recall (Sensitivity): This is the proportion of correctly classified

positive instances out of the total number of actual positive

instances. Mathematically, it is represented as:

Recall =  
True   Positive  Ratio

True   Positive  Ratio + False  Negative  Ratio

F1 Score: This is the harmonic mean of precision and recall.

Mathematically, it is represented as:

F1 − Score =
2*(Precision*Recall)
Precision + Recall
FIGURE 6

Some random images from agri-vision dataset (Chiu et al., 2020).
TABLE 4 Plant disease and pest detection from benchmark datasets.

Dataset Name Description
Type of
Data

Disease/Pest Types
Covered

PlantVillage
A publicly available dataset of over 54,000 images of diseased and healthy plant

leaves, compiled from experts and citizen scientists
RGB Images

38 crop species and 38 disease
types

PlantClef
A dataset of over 9,000 images of plant leaves, used for the annual PlantCLEF

benchmarking campaign
RGB Images

Multiple crop species and disease
types

Open Plant Disease
Dataset

A dataset of over 8,000 images of plant leaves, compiled from various sources
including university research and citizen scientists

RGB and
infrared images

Multiple crop species and disease
types

Plant Disease Detection in
Cotton Images

A dataset of over 5,000 images of cotton leaves, compiled by the National Cotton
Council of America for disease detection research

RGB Images Cotton leaf diseases

AGRONOMI-Net
A dataset of over 3,000 images of various crops, compiled by the AGRONOMI-

Net project for disease detection research
RGB and

thermal images
Multiple crop species and disease

types

Northern Leaf Blight
(NLB) Lesions

A dataset of images of corn plants affected by NLB collected from a field
environment

RGB Northern Leaf Blight Disease

Insects from rice, maize,
soybean

A dataset of images of insects on rice, maize, and soybean plants collected from a
field environment

RGB
Rice Planthoppers, Brown

Planthoppers, and Whiteflies

Pest and Disease Image
Database (PDID)

A dataset of over 7,000 images of diseased and healthy plants collected from a
field environment

RGB Various crop species and diseases

Plant Disease and Pest
Recognition (PDPR)

A dataset of over 30,000 images of diseased and healthy plants collected from a
field environment

RGB Various crop species and diseases
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Intersection over Union (IoU): This is used to evaluate the

performance of segmentation models. It is the ratio of the area of

intersection of the predicted segmentation and the ground truth

segmentation to the area of the union of the two. Mathematically, it

is represented as:

IoU =  
True   Positive  Ration

True   Positive  Ration + False   Positive  Ration + False  Negative  Ratio

Dice coefficient: This is another metric used for evaluating

segmentation performance. It is a measure of the similarity between

the predicted segmentation and the ground truth segmentation, and

it ranges from 0 to 1. Mathematically, it is represented as:

Dice  Coefficient =  
2*TP

2*TP + FP + FN

Jaccard index: This is another metric used for evaluating

segmentation performance. It is the ratio of the area of

intersection of the predicted segmentation and the ground truth

segmentation to the area of the union of the two. Mathematically, it

is represented as:

Jaccard   Index =
TP

TP + FP + FN
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Receiver Operating Characteristic: This curve is a graphical

representation of the performance of a binary classifier system.

Figure 8 presents an example of a performance comparison between

three models using a receiver operating characteristic (ROC) curve.

The ROC curve is a widely used evaluation metric in machine

learning that graphically summarizes the performance of a binary

classifier by plotting the true positive rate against the false positive

rate for different classification thresholds. The ROC curve provides

a visual representation of the trade-off between the false positive

rate and true positive rate, allowing practitioners to compare the

performance of different models at different operating points. It

plots the true positive rate (TPR) against the false positive rate

(FPR) at various threshold settings. The TPR, also known as the

sensitivity, recall or hit rate, is the number of true positive

predictions divided by the number of actual positive cases. The

FPR, also known as the fall-out or probability of false alarm, is the

number of false positive predictions divided by the number of actual

negative cases. The ROC curve can be mathematically represented

as TPR = (TP)/(TP + FN) and FPR = (FP)/(FP + TN), where TP, FP,

TN, and FN are true positives, false positives, true negatives, and

false negatives, respectively. The area under the ROC curve (AUC)

is a measure of the classifier’s performance, with a value of 1

indicating perfect performance and a value of 0.5 indicating no

better than random.

Area Under the Curve: This AUC is also a performance

measure used to evaluate the performance of the binary classifier.

It is derived by integrating the true positive rate (TPR) relative to

the false positive rate (FPR) overall thresholds. TPR is determined

by dividing the number of true positives by the total number of true

positive instances (TP + FN), whereas FPR is determined by

dividing the number of false positives by the total number of true

negative cases (FP + TN). AUC goes from 0 to 1, where 1

corresponds to a perfect classifier and 0.5 corresponds to a

random classifier. A greater AUC value suggests superior

classification ability.
4.3 Performance comparison of
existing algorithms

This article examines in depth the most recent developments in

DL-based plant pest identification. The papers examined in this

article, published between 2015 and 2022, focus on the detection,

classification, and segmentation of plant pests and lesions using ML

and DL approaches. This research employs several methodologies,

including image processing, feature extraction, and classifier

creation. In addition, DL models, namely CNNs, have been

widely applied to accurately detect and categorize plant illnesses.

This article addresses the problems and limits of utilizing ML and

DL algorithms for plant lesions identification, including data

availability, image quality, and subtle differences between healthy

and diseased plants. This paper also examines the current state of

practical applications of ML and DL techniques in plant abnormal

region detection and provides viable solutions to address the

obstacles and limits of these technologies.
FIGURE 7

An example of a confusion matrix where the rows show the
predicted results while columns represent actual classes.
FIGURE 8

An example of performance comparison between three models
using the ROC curve (Shoaib et al., 2022a).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1158933
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shoaib et al. 10.3389/fpls.2023.1158933
The research covered in this article indicates that the

employment of ML and DL approaches enhances the accuracy

and efficiency of plant lesion detection greatly. The most prevalent

evaluation criteria are mean accuracy (mAP), F1 score, and frames

per second (FPS). However, a gap still exists between the intricacy of

the images of infectious maladies and infestations utilized in this

study and the usage of mobile devices to identify pest and lesions

infestations in the field in real-time. This paper is a valuable

resource for plant lesions detection researchers, practitioners, and

industry experts. It provides a comprehensive understanding of the

current state of research utilizing ML and DL techniques for plant

lesions detection, highlights the benefits and limitations of these

methods, and proposes potential solutions to overcome the

challenges of their implementation. In addition, the need for

larger and more intricate experimental data sets was identified as

a subject for further investigation.
5 Challenges in existing systems

5.1 Overcoming small dataset challenge

Using data augmentation techniques to fictitiously expand the

dataset is one method. Another strategy is to use knowledge from

models that have already been trained on bigger data sets to smaller

data sets. The third approach successfully addresses the small

sample problem by combining the first two approaches. Despite

these achievements, a significant obstacle in the field of DL-based

plant pest identification is still the limited dataset problem. Future

research should therefore concentrate on creating new tools and

techniques to successfully address this issue and enhance the

functionality of DL models in this domain.
5.2 Plant image amplification for
lesions segmentation

In recent years, data amplification technology has been utilized

extensively in the field of plant pest detection in order to circumvent

the issue of small data set size. These techniques involve the use of

image manipulation operations including mirroring, translation,

shearing, scaling, and contrast alteration in order to create

additional training examples for a DL model. In order to enrich

tiny datasets, generative adversarial networks (GANs) (Goodfellow

et al., 2020) and automated encoders (Pu et al., 2016) were also

utilized to generate fresh, diverse samples. It has been demonstrated

that these strategies considerably enhance the performance of DL

models for plant pest detection. It is essential to emphasize,

however, that the efficacy of these strategies is contingent on the

quality and diversity of the original dataset. Additionally, the

produced samples must be thoroughly analyzed to confirm their

suitability for DL model training. Data amplification, synthesis, and

generative approaches are crucial components of plant pest

detection model training using DL.
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5.3 Transfer learning for plant disease and
pest detection

Transfer learning is a technique that applies models that have

been trained on large, generic datasets to more specific tasks with

fewer data. This method is especially beneficial in the field of plant

pest detection, where annotated data is frequently sparse. Pretrained

models can be customized for specific localized plant pest and

abnormality detection tasks by refining parameters or fine-tuning

certain components. Transfer learning can increase model

performance and minimize model development expenses,

according to studies. For example, (Oppenheim et al., 2019) used

the VGG network to recognize natural light images of contaminated

potatoes of various sizes, colors, and forms. (Too et al., 2019)

discovered that as the number of iterations grew, the accuracy of

dense nets improved when employing fine and contrast parameters.

In addition, (Chen et al., 2020) demonstrate that transfer learning

can accurately diagnose rice lesions photos in complicated

situations with an average accuracy of 94 percent, exceeding

standard training.
5.4 Optimizing network structure for plant
lesion segmentation

A properly designed array structure can greatly minimize the

number of samples required for plant pest and lesions

segmentation. Utilizing several color channels, merging depth-

separate convolution, and adding starting structures are some of

the strategies employed by researchers to increase feature

extraction. Specifically, Identification of plant leaf diseases using

RGB pictures and a convolutional neural network with three

channels (TCCNN) in (Zhang et al., 2019). An enhanced CNN

approach that uses deep separable convolution to detect illnesses in

grapevine leaves is proposed in (Liu et al., 2020), with 94.35%

accuracy and faster convergence than classic ResNet and

GoogLeNet structures. These examples illustrate the significance

of examining network patterns for detecting plant pests and

diseases with limited sample numbers.
5.5 Small-size lesions in early identification

The primary role of the attention mechanism is to pinpoint

the area of interest and swiftly discard unnecessary data. A weighted

sum approach with weighted coefficients can be used to separate the

features and reduce background noise in plant and pest images by

analyzing the images’ features. Specifically, the Attention

Mechanism module can build a new noise reduction fusion

function using the Softmax function by capturing the prominent

image, isolating the item from the context, and utilizing and fusing

the feature image with the original feature image. The attention

mechanism can efficiently choose data and assign enhanced

resources to the ROIs, allowing for additional precise

identification of minor lesions during the early stages of pest
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infestations and diseases. Numerous research, such as (Karthik et

al., 2020) have demonstrated the efficacy of the attention based

prediction system. On the industrial village dataset, the network

residual attention mechanism was evaluated with an overall

accuracy of 98%. In addition, to improve the precision of tiny

lesion detection, research can concentrate on creating more robust

preprocessing algorithms to reduce background noise and enhance

picture resolution. This may involve techniques such as picture

enhancement, image denoising, and image super-resolution.
5.6 Fine-grained identification

The identification of plant diseases and pests is a challenging

task that is often made more complex by variations in the visual

characteristics of affected plants. These variations can be attributed

to external factors such as uneven lighting, extensive occlusion, and

fuzzy details (Wang et al., 2017). Furthermore, variations in the

presence of illness and the growth of a pest can lead to subtle

differences in the characterization of the same diseases and pests in

different regions, resulting in “intra-class distinctions” (Barbedo,

2018). Additionally, there is a problem of “inter-class resemblance,”

which arises from similarities in the biological morphology and

lifestyles of subclasses of diseases and pests, making it difficult for

plant pathologists to differentiate between them.

In actual agricultural settings, the presence of background

disturbances might make it harder to detect plant pests and

diseases (Garcia and Barbedo, 2018). Environment complexity

and interactions with other items can further complicate the

detecting procedure. It is essential to highlight, however, that

images obtained under controlled conditions may not truly depict

the difficulties of spotting pests and illnesses in their natural

habitats. Despite advancements in DL techniques, identifying

pests and diseases in real-world contexts remains a technological

issue with accuracy and robustness constraints. Current research

focuses mostly on the fine-grained identification of individual pest

populations, and it is challenging to apply these methods to mobile,

intelligent agricultural equipment for large-scale identification.

Therefore, additional study is required to address these obstacles

and enhance the effectiveness of agricultural decision management.
5.7 Low and high illumination problem

In the past, researchers captured photos of plant pests and

illnesses using indoor lightboxes (Martinelli et al., 2015). Despite

the fact that this method efficiently eliminates the impacts of

outdoor lighting, hence simplifying picture processing, it is

essential to remember that photographs captured under natural

lighting circumstances might vary significantly. The dynamic

nature of natural light and the limited range of the camera’s

dynamic light source might create color distortion if the camera

settings are not appropriately adjusted. Moreover, the visual

attributes of plant illnesses and infestations may be impacted by

factors such as viewing angle and distance, offering a formidable

challenge to visual recognition algorithms. This emphasizes the
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significance of addressing light conditions and image capture

techniques when researching pests and plant diseases, as these

factors can significantly impact the accuracy and dependability

of results.
5.8 Challenges posed by obstruction

Currently, the majority of scientists tend to concentrate on

detecting plant pests and diseases in particular ecosystems, rather

than addressing the setting as a whole. Frequently, they directly

intercept areas of interest in the gathered photos without completely

resolving the occlusion issue. This results in low recognition

accuracy and restricted applicability. There are numerous types of

occlusions, including differences in leaf location, branches, external

lighting, and hybrid designs. These occlusion issues are ubiquitous

in the natural environment, where a lack of distinguishing

characteristics and overlapping noise makes it difficult to identify

plant pests and illnesses. In addition, varying degrees of occlusion

may have varying effects on the recognition process, leading to

errors or missed detections. Some researchers have found it

challenging to identify plant pests and diseases under extreme

conditions, such as in the shadow, despite recent breakthroughs

in DL algorithms (Liu and Wang, 2020; Liu and Wang, 2021a).

However, in recent years, a solid foundation has been established

for plant utilization and pest identification in actual situations.

To improve the performance of plant pest and disease detection,

it is necessary to increase the originality and efficiency of the

underlying architecture, which must be improved for optimal

results of lightweight network topologies. The difficulty of

constructing a core framework is frequently reliant on the

performance of the hardware system. Consequently, optimizing

the underlying framework is crucial for enhancing efficiency and

performance. Moreover, processing blockage might be

unanticipated and difficult to anticipate. Therefore, it is essential

to lower the complexity of model formation while simultaneously

enhancing GAN exploration and preserving detection precision.

GANs have the capacity to manage postural shifts and turbulent

settings well. However, GAN architecture is still in its infancy and

prone to issues during the learning and training phase. To aid in the

evaluation of the model’s efficacy, it is essential to do additional

research on the network’s outcomes.
5.9 Challenges in detection efficiency

DL algorithms have proven more effective than conventional

approaches, although they are computationally intensive. This

causes slower inspections and challenges in satisfying real-time

requirements, particularly when a high level of detection precision

is required. Frequently, in order to resolve this issue, it is required to

minimize the amount of data used, which might result in poor

planning and erroneous or lost identification. Therefore, it is vital to

create an accurate and effective algorithm for threat identification.

In agricultural applications, the process of detecting pests and

illnesses using DL approaches requires three main steps: data
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labeling, model training, and model inference. The model inference

is particularly applicable to agricultural applications in real-time.

However, it should be highlighted that the majority of current

mechanisms for disease and bug detection in plants rely on accurate

identification, while less emphasis has been paid to the

dependability of model inference. For instance, the author of (Kc

et al., 2019) employs an ensemble convolutional structural

framework to identify plant foliar diseases in order to improve

the efficiency of the model calculation process and satisfy real

agricultural needs. This approach was compared to various

different models, and the decreased MobileNet classification

accuracy was 92.12%, with parameters that were 31 times lower

than VGG and 6 times lower than MobileNet. This demonstrates

that real-time crop disease diagnostics on mobile devices with

limited resources strike a solid balance between speed and accuracy.
6 Discussion

6.1 Datasets for identifying plant diseases
and pests

The advancement of DL technology has greatly contributed to

the improvement of Identifying and managing infestations in crops

and plants. Theoretical developments in image identification

mechanisms have paved the way for identifying complex diseases

and pests. However, it should be noted that the majority of research

in this field is limited to laboratory studies and relies heavily on

photographs of plant diseases and pests that have been collected.

Previous research often focused on identifying specific features such

as disease spots, insect appearance, and leaf identification. However,

it is important to consider that plant growth is cyclical, consistent,

seasonal, and regional in nature. Therefore, it is crucial to gather

sample images from various stages of plant growth, different

seasons, and regions to ensure a more comprehensive

understanding of plant diseases and pests. This will improve the

robustness and generalization of the model.

It is essential to keep in mind that the properties of plant diseases

or insects which may vary in various phases of crop development.

Moreover, photos of different plant species may change by location.

Consequently, the majority of current research findings may not be

universally relevant. Even if the recognition rate of a single test is high,

the reliability of data collected at other times or locations cannot be

confirmed. Much of the present study has concentrated on images in

the visible spectrum, but it is crucial to remember that electromagnetic

waves generate vast amounts of data outside of the visible spectrum. It

is necessary to merge data frommultiple sources, such as visible, near-

infrared, and multispectral, to generate a comprehensive dataset on

plant diseases. Future studies will emphasize the use of multi-

dimensional concatenation (fusion) techniques to gather and

recognize information on plant insects. It should also be highlighted

that a database containing photographs of many wild plant pests and

illnesses is currently in the process of being compiled. Future studies

can use wearable automatic field spore traps, drone aerial photography

systems, agricultural Internet of Things monitoring devices, etc. to

identify wide regions of farmland, compensating for the absence of
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randomness in prior studies’ image samples. Improve the overall

performance of the algorithm by ensuring the dataset is complete

and accurate.
6.2 Pre-emptive detection of plant diseases
and pests

Early Identifying the various forms of plant diseases and pests can

be a difficult task. due to the fact that symptoms are not always

apparent, either through visual inspection or computer analysis. In

terms of research and necessity, however, early identification is

essential since it helps prevent and control the spread and growth

of pests and diseases. Recording photographs under favorable lighting

conditions, such as sunny weather, enhance image quality, but

capturing images on overcast days complicates preprocessing and

decreases identification accuracy. In addition, it might be difficult to

understand even high-resolution photos during the first phases of

plant pests and diseases. It is necessary to incorporate meteorological

and plant health data, such as temperature and humidity, to

efficiently identify and predict pests and diseases. Rarely has this

technique been utilized to diagnose early plant pests and diseases.
6.3 Neural network learning and development

Manual pest and disease testing are tough since it is difficult to

sample for all pests and diseases, and oftentimes only accurate data are

available (positive samples). However, the majority of existing systems

for plant pest and disease identification utilizing DL are based on

supervised learning, which involves the time-consuming collection of

huge labeled datasets. Consequently, it is worthwhile to research

methods of unsupervised learning. In addition, DL can be a “black

box” with little explanatory power, necessitating the labeling of many

learning samples for end-to-end learning. In order to assist training and

network learning, it may be advantageous to combine past knowledge

of brain-like computers with human visual cognitive models.

However, depth models demand a great deal of memory and

testing time, making them inappropriate for mobile platforms with

limited resources. Therefore, it is necessary to find solutions to

reduce model complexity and speed without sacrificing precision.

Choosing appropriate hyperparameters, such as learning rate, filter

size, step size, and number, has proven to be a significant challenge

when applying DL models to new tasks. These hyperparameters

have high internal dependencies, so even small changes can have a

substantial effect on the final training results.
6.4 Cross-disciplinary study

Theories such as scientific evidence and agronomic plant

defenses will be merged to produce more effective field diagnostic

models for crop growth and disease identification. Using this

technology, plant and pest diseases can be diagnosed with greater

speed and precision. In the future, it will be important to shift

beyond simple surface image analysis to determine the underlying
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mechanisms by which pests and diseases occur, together with a full

understanding of crop growth patterns, environmental conditions,

and other pertinent elements. DL approaches have been

demonstrated to address complicated problems that regular image

processing and ML methods cannot. Despite the fact that the

practical implementation of this technology is still in its infancy,

it has enormous development and application potential. To reach

this potential, specialists from a variety of fields, such as agriculture

and plant protection, must combine their knowledge and

experience with DL algorithms and models. In addition, the

outcomes of this study will need to be incorporated into

agricultural gear and equipment to accomplish the desired

theoretical effect.
6.5 Deep learning for plant stress
phenotyping: Trends and perspectives

DL andML technologies are successful in detecting and analyzing

lesions from severe abiotic stresses, such as drought. In the past

decade, global crop production losses due to drought have totaled

approximately $30 billion (Agarwal et al., 2020). In 2012, a severe

drought impacted 80% of agricultural land in the US, resulting in over

two-thirds of counties being declared disaster areas. According to

FAO (UN) reports, drought is the primary cause of agricultural

production loss. Drought stress causes 34% of crop and livestock

production loss in LDCs and LMICs, costing 37 billion USD.

Agriculture sustains 82% of all drought impact. Understanding

how plants adapt to stress, especially drought, is essential for

securing crop yields in agriculture. DL and ML approaches are

therefore a major advance in the field of plant stress biology. ML

and DL can be used to categorize plant stress phenotyping problems

into four categories: identification, classification, quantification, and

prediction (Singh et al., 2020). These categories represent a

progression from simple feature extraction to increasingly more

complex information extraction from images. Identification

involves detecting specific stress types, such as sudden death

syndrome in soybeans or rust in wheat. Classification uses ML to

categorize the images based on stress symptoms and signatures,

dividing the visual data into distinct stress classes, such as low,

medium, or high stress categories. The final category, prediction,

involves anticipating plant stress before visible symptoms appear,

providing a timely and cost-effective way to control stress and

advancing precision and prescriptive agriculture.
6.6 Limitations of this study

The study presented in this paper has some limitations that are

attributed to its research methodology. Firstly, the study’s scope is

confined to publications from 2015 to 2022, implying that recent

developments in plant disease detection may not be covered.

Moreover, the review does not encompass an all-inclusive list of

Machine Learning (ML) and Deep Learning (DL) techniques for plant

disease detection. Nevertheless, the study provides an overview of the

most commonly used techniques, their advantages, limitations, and
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probable solutions to overcome implementation challenges. Finally,

the study fails to include an extensive examination of the economic

and environmental impacts of ML and DL techniques on plant disease

detection. Hence, additional research is necessary to scrutinize the

potential benefits and disadvantages of these techniques regarding

production losses and resource utilization.
6.7 Practical implications of study

The practical implications of our research include:
• Improved plant disease detection: Our research highlights

the effectiveness of using ML and DL techniques for plant

disease detection, which can help improve the accuracy and

efficiency of disease detection compared to traditional

manual methods . By adopting these advanced

technologies, farmers and plant disease specialists can

detect diseases at an early stage, preventing further spread

and reducing the risk of crop losses.

• Development of generalizable models: Our research

emphasizes the need for developing generalizable models

that can work for different plant species and diseases. The

development of such models can save time and effort for

researchers and practitioners, making it easier to detect and

classify plant diseases in various settings.

• Accessible datasets for training and evaluation: The

research emphasizes the need for more publicly available

datasets for training and evaluating ML and DL models for

plant disease detection. The availability of such datasets can

help researchers and practitioners develop more accurate

and robust models, enhancing the performance of disease

detection systems.

• Potential for cost reduction: The use of ML and DL

techniques in plant disease detection can reduce the need

for manual labor and the cost of plant disease detection.

This can be especially useful for farmers and small-scale

agricultural operations who may not have access to

expensive equipment or specialized expertise.

• Transferable knowledge to other fields: Our research also

has the potential to inform research and development in

other fields, such as medical imaging and remote sensing.

The techniques and methodologies used in plant disease

detection can be applied to other fields, providing insights

into the potential applications of ML and DL in various

domains.
7 Conclusions

The DL and ML technologies have greatly improved the

detection and management of crop and plant infestations.

Advances in image recognition have made it possible to identify

complicated diseases and pests. However, most research in this area

is limited to lab-based studies and heavily relies on collected plant
frontiersin.org

https://doi.org/10.3389/fpls.2023.1158933
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shoaib et al. 10.3389/fpls.2023.1158933
disease and pest photos. To enhance the robustness and

generalization of the model, it’s important to gather images from

various plant growth stages, seasons, and regions. Early

identification of plant diseases and pests is crucial in preventing

and controlling their spread and growth, thus incorporating

meteorological and plant health data, such as temperature and

humidity, is necessary for efficient identification and prediction.

Unsupervised learning and integrating past knowledge of brain-like

computers with human visual cognition can aid in DL model

training and network learning. Achieving the full potential of this

technology requires collaboration between specialists from

agriculture and plant protection, combining their knowledge and

experience with DL algorithms and models, and integrating the

results into farming equipment. The paper explores the recent

progress in using ML and DL techniques for plant disease

identification, based on publications from 2015 to 2022. It

demonstrates the benefits of these techniques in increasing the

accuracy and efficiency of disease detection, but also acknowledges

the challenges, such as data availability, imaging quality, and

distinguishing healthy from diseased plants. The study finds that

the use of DL and ML has significantly improved the ability to

identify and detect plant diseases. The novelty of this research lies in

its comprehensive analysis of the recent developments in using ML

and DL techniques for plant disease identification, along with

proposed solutions to address the challenges and limitations

associated with their implementation. By exploring the benefits

and drawbacks of various methods, and offering valuable insights

for researchers and industry professionals, this study contributes to

the advancement of plant disease detection and prevention.
Authors contributions

MS, BS, SE-S, AA, AU, FayA, TG, TH, and FarA performed the

data analysis, conceptualized this study, designed the experimental
Frontiers in Plant Science 20
plan, conducted experiments, wrote the original draft, revised the

manuscript. All authors contributed to the article and approved the

submitted version.
Funding

AA acknowledges project CAFTA, funded by the Bulgarian

National Science Fund. TG acknowledges the European Union’s

Horizon 2020 research and innovation programme, project

PlantaSYST (SGA-CSA No. 739582 under FPA No. 664620) and

the BG05M2OP001-1.003-001-C01 project, financed by the

European Regional Development Fund through the Bulgarian’

Operational Programme Science and Education for Smart

Growth. This research work was also supported by the Cluster

grant R20143 of Zayed University, UAE.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Abadi, M. (2016). “TensorFlow: learning functions at scale,” in Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming, Nara Japan,
September 18 - 24, 2016. (Japan: ACM digital library), 1–1. doi: 10.1145/
2951913.2976746

Agarwal, M., Singh, A., Arjaria, S., Sinha, A., and Gupta, S. (2020). ToLeD: Tomato
leaf disease detection using convolution neural network. Proc. Comput. Sci. 167 (2019),
293–301. doi: 10.1016/j.procs.2020.03.225

Akbar, M., Ullah, M., Shah, B., Khan, R. U., Hussain, T., Ali, F., et al. (2022). An
effective deep learning approach for the classification of bacteriosis in peach leave.
Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1064854

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O.,
et al. (2021). Review of deep learning: concepts, CNN architectures, challenges,
applications, future directions. J. Big Data 8, 1–74. doi: 10.1186/s40537-021-00444-8

Anjna,, Sood, M., and Singh, P. K. (2020). Hybrid system for detection and
classification of plant disease using qualitative texture features analysis. Proc.
Comput. Sci. 167 (2019), 1056–1065. doi: 10.1016/j.procs.2020.03.404

Antonellis, G., Gavras, A. G., Panagiotou, M., Kutter, B. L., Guerrini, G., Sander, A.
C., et al. (2015). Shake table test of Large-scale bridge columns supported on rocking
shallow foundations. J. Geotechnical Geoenvironmental Eng. 12, 04015009.
doi: 10.1061/(ASCE)GT.1943-5606.0001284

Arcaini, P., Bombarda, A., Bonfanti, S., and Gargantini, A. (2020). “Dealing with
robustness of convolutional neural networks for image classification,” in Proceedings -
2020 IEEE International Conference on Artificial Intelligence Testing, AITest 2020.
(Oxford, UK: IEEE), 7–14. doi: 10.1109/AITEST49225.2020.00009

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 39 (12), 2481–2495. doi: 10.1109/TPAMI.2016.2644615

Bahrampour, S., Ramakrishnan, N., Schott, L., and Shah, M. (2015). Comparative
study of caffe, neon, theano, and torch for deep learning. arXiv preprint
arXiv:1511.06435 132, 1–9. doi: 10.48550/arXiv.1511.06435

Barbedo, J. G. A. (2018). ScienceDirect factors influencing the use of deep learning
for plant disease recognition. Biosyst. Eng. 172, 84–91. doi: 10.1016/
j.biosystemseng.2018.05.013

Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic, S., Boukhalfa, K., and Moussaoui,
A. (2018). Deep learning for plant diseases: detection and saliency map visualisation.
Hum. Mach. Learning: Visible Explainable Trustworthy Transparent 6, 93–117.
doi: 10.1007/978-3-319-90403-0_6

Cedric, L. S., Adoni, W. Y. H., Aworka, R., Zoueu, J. T., Mutombo, F. K., Krichen, M.,
et al. (2022). Crops yield prediction based on machine learning models: Case of West
African countries. Smart Agric. Technol. 2 (March), 100049. doi: 10.1016/
j.atech.2022.100049

Chen, J., Chen, J., Zhang, D., Sun, Y., and Nanehkaran, Y. A. (2020). Using deep
transfer learning for image-based plant disease identi fi cation. Comput. Electron. Agric.
173 (April), 105393. doi: 10.1016/j.compag.2020.105393
frontiersin.org

https://doi.org/10.1145/2951913.2976746
https://doi.org/10.1145/2951913.2976746
https://doi.org/10.1016/j.procs.2020.03.225
https://doi.org/10.3389/fpls.2022.1064854
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1016/j.procs.2020.03.404
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001284
https://doi.org/10.1109/AITEST49225.2020.00009
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.48550/arXiv.1511.06435
https://doi.org/10.1016/j.biosystemseng.2018.05.013
https://doi.org/10.1016/j.biosystemseng.2018.05.013
https://doi.org/10.1007/978-3-319-90403-0_6
https://doi.org/10.1016/j.atech.2022.100049
https://doi.org/10.1016/j.atech.2022.100049
https://doi.org/10.1016/j.compag.2020.105393
https://doi.org/10.3389/fpls.2023.1158933
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shoaib et al. 10.3389/fpls.2023.1158933
Chiu, M. T., Xu, X., Wei, Y., Huang, Z., Schwing, A., Brunner, R., et al. (2020).
Agriculture-Vision : A Large Aerial Image Database for Agricultural Pattern Analysis.
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recogni t ion (CVPR) . (WA, USA: IEEE) , 2825–2835 . do i : 10 .1109/
CVPR42600.2020.00290

Chung, Y., Ahn, S., Yang, J., and Lee, J. (2017). Comparison of deep learning
frameworks: about theano, tensorflow, and cognitive toolkit. J. Intell. Inf. Syst. 23 (2), 1–
17. doi: 10.13088/jiis.2020.26.4.027

Dechant, C., Wiesner-hanks, T., Chen, S., Stewart, E. L., Yosinski, J., Gore, M. A.,
et al. (2017). Automated identification of northern leaf blight-infected maize plants
from field imagery using deep learning. Phytopathology 107, 1426–1432. doi: 10.1094/
PHYTO-11-16-0417-R

Dhaka, V. S., Meena, S. V., Rani, G., Sinwar, D., Ijaz, M. F., and Woźniak, M. (2021).
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