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TasselLFANet: a novel
lightweight multi-branch
feature aggregation neural
network for high-throughput
image-based maize tassels
detection and counting

Zhenghong Yu1*†, Jianxiong Ye1†, Cuina Li2,
Huabing Zhou3 and Xun Li3

1College of Robotics, Guangdong Polytechnic of Science and Technology, Zhuhai,
Guangdong, China, 2Meteorological Observation Centre, China Meteorological Administration,
Beijing, China, 3Department of Computer Science and Engineering, Wuhan Institute of Technology,
Wuhan, China
Accurately and rapidly counting the number of maize tassels is critical for maize

breeding, management, and monitoring the growth stage of maize plants. With

the advent of high-throughput phenotyping platforms and the availability of

large-scale datasets, there is a pressing need to automate this task for genotype

and phenotype analysis. Computer vision technology has been increasingly

applied in plant science, offering a promising solution for automated

monitoring of a large number of plants. However, the current state-of-the-art

image algorithms are hindered by hardware limitations, which compromise the

balance between algorithmic capacity, running speed, and overall performance,

making it difficult to apply them in real-time sensing field environments. Thus, we

propose a novel lightweight neural network, named TasselLFANet, with an

efficient and powerful structure for accurately and efficiently detecting and

counting maize tassels in high spatiotemporal image sequences. Our proposed

approach improves the feature-learning ability of TasselLFANet by adopting a

cross-stage fusion strategy that balances the variability of different layers.

Additionally, TasselLFANet utilizes multiple receptive fields to capture diverse

feature representations, and incorporates an innovative visual channel attention

module to detect and capture features more flexibly and precisely. We

conducted a series of comparative experiments on a new, highly informative

dataset called MrMT, which demonstrate that TasselLFANet outperforms the

latest batch of lightweight networks in terms of performance, flexibility, and

adaptability, achieving an F1 measure value of 94.4%, a mAP.@5 value of 96.8%,

and having only 6.0M parameters. Moreover, compared with the regression-

based TasselNetV3-Seg† model, our proposed model achieves superior

counting performance, with a mean absolute error (MAE) of 1.80, a root mean

square error (RMSE) of 2.68, and a R2 of 0.99. The proposed model meets the
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accuracy and speed requirements of the vision system in maize tassel detection.

Furthermore, our proposed method is reliable and unaffected by geographical

changes, providing essential technical support for computerized counting in

the field.
KEYWORDS
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1 Introduction

Maize has been a crucial agricultural crop for several decades,

serving as a primary source of food, feed, fuel (ethanol), and other

industrial feedstocks (Andorf et al., 2019). However, the yield of

maize kernels is prone to fluctuation due to planting density issues

caused by poor germination and planting errors (Gonzalez et al.,

2018). Counting maize tassels is therefore an essential task in crop

management and breeding, as it provides valuable information on

germination rates and population densities for farmers and breeders

(Wang et al., 2021). Additionally, monitoring the development of

maize tassels offers a reliable foundation for observing the growth

cycle of maize (Yu et al., 2013), resulting in improved production

and more effective farming practices. This technique can offer

practical guidance and early warning to farmers (Bai et al., 2018),

making it a powerful tool for crop management.

Traditional manual observation and counting rely on labor-

intensive tasks, which are not only time-consuming but also limited

in sample size. Fortunately, with the rapid development of

computer vision and deep learning, more advanced research

methods have emerged for extracting and processing visual

information from image data, providing us with better options for

efficiently detecting and counting plants (Yu et al., 2017). Building

on breakthroughs from the past few decades (He et al., 2015;

Russakovsky et al., 2015; Vaswani et al., 2017), the field of visual

recognition has entered a new era of large-scale visual

representation learning. The performance of visual representation

learning systems is largely influenced by three main factors: the

chosen neural network architecture, the method used to train the

network, and the data used for training. In the field of visual

recognition, every advancement in each of these areas contributes

to the overall performance improvement. Innovations in neural

network architecture design have played an important role in

representation learning. Convolutional neural networks (CNNs,

See Table 1 for all abbreviations in the paper.) (Chollet, 2017;

Shafiq and Gu, 2022) have demonstrated high capability for

learning discriminative visual representations and convincingly

extended to a range of computer vision tasks such as image

recognition, object detection, and semantic segmentation.

Currently, related applications in object detection have gradually

matured. The field is mainly divided into two-stage algorithms

represented by Faster Region-based Convolutional Neural Network

(Faster RCNN) (Chen and Gupta, 2017) and one-stage algorithms
02
represented by You Only Look Once (YOLOv3) (Redmon and

Farhadi, 2018). Among them, CenterNet (Duan et al., 2019),

EfficientDet (Tan et al., 2020), RetinaNet (Lin et al., 2017),

Yolov7-tiny (Wang et al. , 2022) have achieved SOTA

performance in many different fields.

In the field of plant science, various methods have been

developed for applications such as counting trees (Li et al., 2016),

fruits (Rahnemoonfar and Sheppard, 2017), wheat ears (Madec

et al., 2019), and rice panicles (Wang et al., 2022a), with remarkable

success. However, despite these advances, identifying maize tassels

using visual techniques remains a challenging task due to the

following factors:
TABLE 1 Summary of abbreviations.

Abb. Full name

BN Batch Normalization

MP Max Pooling

REP Re-Parameterization

GMP Global Max Pooling

GAP Global Average Pooling

MP-C Max Pooling-Conv

ECA Efficient Channel Attention

Mlt-ECA Multi-Efficient Channel Attention

ELAN Efficient Layer Aggregation Networks

ELAN-H Efficient Layer Aggregation Networks-Higher

SPPCSPC Spatial Pyramid Pooling Cross Stage Partial Connect

PANet Path Aggregation Network

YOLO You Only Look Once

CNN Convolutional Neural Network

R-CNN Region-based Convolutional Neural Network

UAV Unmanned Aerial Vehicle

MAE Mean Absolute Error

RMSE Root-Mean Square Error

MAPE Mean Absolute Percentage Error

FPS Frames Per Second
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1) The size, color, and texture of tassels vary depending on the

maize cultivar and growth stage. The tassel margins are

irregularly shaped, and their color may resemble that of

leaves at a particular stage.

2) The illumination changes considerably under different

weather conditions, leading to image degradation, wind-

induced motion, camera shooting angle variations, and

perspective distortion, causing differences in tassel poses.

3) Occlusion is commonly present, making it difficult to count

even for human experts. The presence of a cluttered

background diversifies and misleads the visual pattern of

the maize tassel.
Therefore, there is an urgent need for machine learning models

that can detect maize tassels in a wide variety of situations with

reliable generalizability. Currently, vision-based research on grain

ear numbers is mainly categorized into three groups as follows:

Segmentation-based methods: Segmentation-based methods

are commonly used to segment plant or organs in image

sequences using phenotypic features such as color and texture.

The counting methods are then applied to calculate the number of

ears. Several studies have been conducted to improve the accuracy

and efficiency of this method for different plant species. For

instance, Yu et al. (2016) utilized the spatio-temporal saliency

properties of maize tassels and employed a low-rank matrix

decomposition method to identify the pixel domain of the tassel.

This was followed by image segmentation to extract the tassels.

However, this method is only applicable to scenes where the tassels

are relatively prominent against the background. Hayat et al. (2020)

proposed a rice ear segmentation algorithm based on unsupervised

Bayesian learning, which employs a multivariate mixture Gaussian

model to represent the probability distribution of pixels. The

algorithm achieved an average F1 measurement of 82.10%.

Nonetheless, it may not be suitable for maize tassels due to their

rich textural characteristics and different colors of different

cultivars. Ma et al. (2020) developed an EarSegNet model based

on semantic segmentation that integrates an encoder-decoder

structure and dilated convolution. The model aims to improve

the accuracy and efficiency of winter wheat ear segmentation and

achieves an F1 measurement of 87.25%. Yu et al. (2022) proposed

an Unmanned Aerial Vehicle (UAV) tassel image recognition

algorithm based on the U-Net model. The algorithm combines

lightweight and heavy extraction networks, striking a balance

between accuracy and speed with a relative mean squared error

RMSE of 4.4. Nevertheless, low-level noise can severely disrupt

counting after phenotypic segmentation. This may result in errors

accumulating and a decrease in accuracy.

Regression-based method: The direct counting by regression

network is an alternative method for object counting. Lu et al.

(2017) proposed TasselNet, a regression network that directly

computes maize tassels. By modeling the local visual

characteristics of field images and regressing the local counts of

maize tassels, TasselNet can achieve good adaptability to in-field

variations. However, this approach may not be as robust as object

detectors in later growth stages. To improve counting accuracy and
tiers in Plant Science 03
efficiency, the same research group proposed TasselNetV2 and

TasselNetV2+ (Xiong et al., 2019; Lu and Cao, 2020). Similarly,

Khaki et al. (2022) proposed WheatNet for counting wheat ears,

achieving an overall prediction error of 8.7%. Liu et al. (2022)

introduced IntegrateNet, a new network for maize stand counting

that supervises the learning of density map and local count

simultaneously. This approach balances the tradeoff between their

errors, resulting in improved model performance. One disadvantage

of direct counting by regression networks is that this method only

provides ear counts that are as reliable as possible, making it difficult

to analyze the ears phenotype accurately after counting.

Object detection-based method: Object detection is a popular

approach for counting that involves detecting and drawing

bounding boxes. This method not only provides the number of

objects but also their size and location. For instance, Liu et al. (2020)

used the Faster R-CNN to detect maize tassels in UAV images and

achieved a detection accuracy of 89.96%. Ji et al. (2021) proposed an

in-field maize tassels detection method that combines light

saturation correction and Itti saliency-based systems to detect

candidate regions, and false positives are removed using the LS-

SVM classifier, resulting in an F1 score of 88.36%. However, object

detection methods without deep learning models have relatively

poor learning capabilities, which may limit their direct use in other

applications. Yang S, et al. (2021) proposed an improved CenterNet

that embeds location information in the feature extraction module

and increases the detection accuracy to 92.4%. While the above

detection methods are designed for specific cultivars in particular

environments, they may not accurately distinguish tassels at early

tasseling stages, making it difficult to continuously monitor maize

breeding requirements. Miao et al. (2021) found that the

convolutional neural network-based regression counting method

had poor accuracy and high bias for plants with extreme leaf counts,

while the count-by-detection method based on the Faster R-CNN

object detection model achieved near-human performance for

plants where all leaf tips are visible. However, the two-stage

detection network used in the count-by-detection method ignores

the real-time requirements of field applications. Notably, the YOLO

series, another commonly used object detection method, is faster

and more efficient than other methods and can meet the practical

needs of plant detection and counting problems (Yang B, et al.,

2021; Lyu et al., 2022; Zang et al., 2023). However, the accuracy of

tassel detection still needs to be improved (Zou et al., 2020).

In recent years, embedded systems have gained significant

attention as a promising approach for efficient target detection in

crop growth monitoring systems, such as the identification of

specific crop features. The real-time processing capabilities of

embedded systems can significantly reduce the time delay

between image acquisition and detection. To this end, several

studies (Gajjar et al., 2021; Saddik et al., 2022) have presented

intelligent plant disease diagnosis systems that integrate computer

vision and machine learning techniques. However, the accuracy of

such systems may be affected by image quality and lighting

conditions, and they may require substantial computational

resources and training time. In a similar vein, a fruit detection

and counting system that leverages embedded systems and

convolutional neural networks (CNNs) has been proposed
frontiersin.org
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(Mazzia et al., 2020; Zhang et al., 2022). Although the system can

detect and count fruits in real-time, its accuracy may be influenced

by factors such as fruit color, size, and shape, and it requires

significant computational resources. Therefore, there is a need for

vision technologies that can ensure high accuracy while being easy

to implement. Specifically, there is a need to address the impact of

external environmental conditions and internal growth features on

object detection while reducing the computational requirements of

embedded systems.

To address these challenges, this paper proposes a new

lightweight neural network called TasselLFANet, which is based

on the deep learning framework. The network has a faster and

stronger structure and a more efficient feature integration method.

We enhance the feature-learning ability of the network by using a

cross-stage fusion strategy that balances the variability of different

layers. Moreover, our method makes use of diverse feature

representations with multiple receptive fields and introduces an

innovative visual channel attention module to detect and capture

features more flexibly and accurately.

Overall, the main contributions of this paper are four-fold:
Fron
1) Through a series of comparative experiments, we

demonstrate that detection-based methods hold great

promise for plant counting applications. Compared to

regression-based methods, detection-based methods

provide more comprehensive object information, such as

position and size, which can inform pre- and post-

processing steps.

2) We propose a novel global regression framework for object

detection, named TasselLFANet, which leverages an

improved attention module to address scale changes of

tassels and environmental variations in complex wild-field

situations. Our framework achieves high efficiency while

maintaining strong performance. In addition, our model
tiers in Plant Science 04
has a small number of parameters, making it suitable for

real-time detection in embedded systems.

3) We introduce MrMT (Multi-regional Maize Tassels), a

highly informative, spatially and temporally continuous

dataset containing 1968 images and 96434 corresponding

bounding box annotations. This large-scale, high-cost

dataset is designed to provide researchers with a more

convenient and detailed resource for agricultural research,

including crop growth stage detection.

4) Based on the evaluation of the MrMT dataset, we

demonstrate that our proposed method outperforms the

latest batch of high-performance lightweight networks for

object detection. Furthermore, our method surpasses the

state-of-the-art TasselNetV3-Seg† model in plant counting

performance when compared to regression network-based

counting methods.
2 Materials and methods

2.1 Image collection and annotation

We developed an automated ground-based observation system

that captures farmland images continuously every day. The digital

camera captures eight images per day, one every hour from 9:00 to

16:00. The system was installed in experimental fields located in

Tai’an of Shandong province, Zhengzhou of Henan province, and

Gucheng of Hebei province, China, as described in Yu et al. (2013).

The experimental fields grew various cultivars of maize. The MrMT

(Multi-regional Maize Tassels) dataset was collected, containing 12

independent image sequences from the tasseling stage to the

flowering stage, totaling 1968 field images, as listed in Table 2. To

capture subtle changes, the dataset covers various scales and
TABLE 2 Multi-regional Maize Tassels (MrMT dataset).

Image Sequence Total Size Train Size Valid Size Test Size

Shandong2010_1 116 71 30 15

Shandong2010_2 117 69 30 18

Shandong2011_1 140 79 30 31

Shandong2011_2 126 61 30 35

Shandong2012_2013 55 – – 55

Henan2010 221 140 60 21

Henan2011 237 140 60 37

Henan2012 227 140 60 27

Henan2014 240 140 60 40

Hebei2010 225 140 60 25

Hebei2012 220 140 60 20

Hebei2014 44 – – 44
fr
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environments through continuous sampling, which helps to learn

network representations based on quantitative data. The MrMT

dataset enriches the existing dataset of maize tassels images with

more timepoints, as shown in Figure 1. The dataset includes images

of maize tassels in different scenarios, such as tasseling stage to

flowering stage in multiple time sequences (Figures 1A–F), and

example images from different locations (Figures 1G–J), including

Hebei2012, Shandong2011_1, Shandong2010_2, and Henan2012.

These images highlight the complexity of the maize growth

environment, making it challenging for automatic operations.

In accordance with standard annotation paradigms, box-level

labeling was manually performed for each maize tassel using the

open-source tool Labelimg (Tzutalin, 2022). An example of such

labeling is shown in Figure 2. While this work was both expensive

and time-consuming, it proved to be meaningful and valuable,

resulting in the annotation of a total of 96,434 maize tassels. It is

important to note that these labels may contain some level of noise,
Frontiers in Plant Science 05
which can increase with the amount of data and make training the

model more challenging. However, our proposed method has

demonstrated excellent noise suppression capabilities, as we will

show in later sections, and is also able to adapt to the domain of the

MrMT dataset.
2.2 Lightweight feature aggregation
network (TasslLFANet)

Our proposed method is a one-step global regression

framework that directly maps image pixels to bounding boxes,

coordinates, and classification scores. The network architecture is

designed to be simpler and more efficient, allowing for real-time

performance. Our method employs binary cross-entropy loss as the

supervisory signal and includes a box regression branch that

predicts four coordinates for each box, along with an objectness
D

A B

E F

G

I

H

J

C

FIGURE 1

Example of field imaging of maize tassels in the MrMT dataset. (A–F) present images of tassels from tasseling stage to flowering stage in multiple
time sequences; (G–J) are example images in different scenarios, respectively from Hebei2012, Shandong2011_1, Shandong2010_2, Henan2012, it
can be observed that the growth environment of maize is complex and is challenging for automatic operations.
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score. The objectness score is equal to 1 if the anchor box overlaps

with the ground-truth box more than any other anchor box. The

overall architecture is depicted in Figure 3 and consists of Encoder,

Decoder, and Dense Inference components, which we will explain

in detail in the following sections.

2.2.1 Efficiency aggregation encoder
We use the convolution, batch normalization, and SiLU

activation functions as basic components of the model. Efficient

Layer Aggregation Network (ELAN) (Wang et al., 2022b) and Max

Pooling-Conv (MP-C) modules constitute an Encoder for feature

extraction. As shown in Figure 4, an image of size of H �W �3 is

taken as input, the feature maps are performed by multi-

dimensional aggregation, and the feature maps are output in two-

fold down sampling manner. The encoder can then be divided into

four stages, each stage outputting 32, 64, 128, and 256 channels

respectively, and the mapping information is used as the encoding

set for the input image. ELAN is our important means of feature

encoding. Through cross-channel information interaction, it

aggregates different feature layers into the output feature map.

Such a jump-level structure integrates multi-layer outputs, which

enhances the expressiveness and adaptability of the network. By the
Frontiers in Plant Science 06
way, the MP-C down sampling method that combines pooling and

convolution is adopted to reduce the image information lost after

pooling. Combined with convolution, superficial information from

shallow layers and semantic information from deep layers are

aggregated to reduce feature dimensionality while retaining useful

information, avoiding overfitting to some extent. Finally, we also

add an attention module Multi-Efficient Channel Attention (Mlt-

ECA), which improves the model’s performance. Mlt-ECA is our

innovation based on ECA (Wang Q, et al., 2020), which will be

described next.

2.2.2 Multi-branch decoder
Multi-Branch Decoder, as a concise and effective decoder,

utilizes the correlation between feature maps to enhance feature

reuse through multi-dimensional interaction and aggregate rich

information flows to enhance feature hierarchy. In order to better

separate context information and obtain multi-level receptive fields,

we embed the Spatial Pyramid Pooling Cross Stage Partial Connect

(SPPCSPC) module at the connection between Encoder and

Decoder. The SPPCSPC module uses group convolution, which is

efficient for the model, where cross-stage feature fusion strategy and

truncated gradient flow have been adopted to improve the
FIGURE 2

Box-level labeling for MrMT dataset.
FIGURE 3

TasselLFANet global regression framework (⊗indicates Concat operation).
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variability of learned features within different layers (Wang et al.,

2020), thereby obtaining aggregated information at different scales

and enriching the expressive power of feature maps. To cope with

the scale change and perspective transformation in the image, we

merge the output feature map of the third stage in the Encoder, and

increase the spatial dimension between the cascades by using the

nearest neighbor upsampling on the Decoder output layer, so as to

obtain feature maps that have the same size to the Encoder output.

The 1 �1 convolution is used to map the feature map to the same

channel dimension to achieve concat splicing, and the spliced

feature map is used as the second branch of the Decoder. The

feature information is output after being remapped by the module

Efficient Layer Aggregation Networks-Higher (ELAN-H). ELAN-H

is an extension of the ELAN module that further enhances network

learning capabilities without destroying the original gradient path.

Two branches are used for detection on images with different scale

transformations. They augment each other and adjust dynamically

to improve the detection accuracy for object with multi-scales.

Figure 5 shows the components of the Multi-Branch Decoder.

2.2.3 Dense inference
The Dense Inference module aims to merge the sub-images

detection results from the information obtained at different stages,

and further overlay the encoded information onto the original

feature image. In real-world scenarios, training resources are
Frontiers in Plant Science 07
generally relatively abundant, and people are more concerned

about the inference overhead and performance, which is why we

choose to use the Re-Parameterization (REP) module (Ding et al.,

2021). The structure of REP is shown in Figure 5, which is based on

a structural reparameterization implementation. Recently, the new

concept of reparameterization has become an important topic in

network training and object detection (Ding et al., 2022; Hu et al.,

2022). During training, the network retains different receptive fields

through multi-gradient flow path mapping features to enrich

encoding information for better performance gain. During

inference, all network layers are transformed into 3�3

convolutions using an Op-fusion strategy to achieve the goal of

not increasing computational load, which is useful for network

deployment and acceleration.

2.2.4 Mlt-ECA attention module
In recent years, attention mechanisms have been proven to have

broad prospects for improving the performance of CNNs (Niu et al.,

2021; Guo et al., 2022). They tend to be less computationally

expensive than CNNs due to their lower structural complexity

and number of parameters. Convolution operations are now an

important means of extracting features of objects, and attention

mechanism can modify the extracted features while preserving

valuable information. This allows the model to ignore the

background and pay more attention to the information it needs.
FIGURE 4

Encoder composition module: (CBS/Conv: K �K, S; MP: S �S. K �K represents the convolution kernel size, S represents the step size).
FIGURE 5

Decoder components and REP module (⊗means add operation).
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The ECA method (Wang CY, et al., 2020) proposes a local cross-

channel interaction strategy without dimensionality reduction. This

strategy uses an adaptive one-dimensional convolutional kernel size

method to determine the coverage of local cross-channel

interactions. Based on the ECA step, we add another branch that

considers building the dependencies between channel information

in the module’s internal feature map. As shown in Figure 4, this

branch works similarly to the original ECA branch map, replacing

average pooling with max pooling. Channel weights for both the

average pooling branch and the global pooling branch are generated

by performing a 1D convolution with a kernel size of k, where k is

adaptively determined by mapping the channel dimension C and

can be expressed as Eq.1. The features of the two channels are then

aggregated, and finally output after the Sigmoid function feature

recalibration.

k = Y(C) +
log2 C
g

+
b
g

����
����
odd

(1)

Among them, k represents the size of the convolution kernel, C

is the number of channels, odd indicates that k is odd, and g and b
are set to 2 and 1 respectively in the experiment to change the ratio

between C and the convolution kernel. To easily distinguish the

improved attention mechanism from the original ECA attention

module, our proposed module is called Mlt-ECA.

Its working principle can be described by the following formula:

Ce(E) = s (CLk(E
C
AP) + CLk(E

C
MP)) (2)

ME = Ce(E)⊛ E (3)

where EC
AP and EC

MP represent the features of average pooling

and maximum pooling respectively, CLk refers to the one-

dimensional convolution of each pixel with its nearest neighbor k

pixels, srepresents the Sigmoid function, and ⊛  represents

element-wise multiplication. ME denotes the output feature map

obtained by Mlt-ECA attention.

2.2.5 Loss function
In deep learning, the loss function plays a crucial role in

ad jus t ing the we ight o f the neura l network dur ing

backpropagation. In our work, we propose two loss functions to

guide the bounding box regression. These functions are designed to

calculate the error between the predicted values and the ground-

truth values during the forward propagation stage, and are used to

optimize the network parameters in the training process.

2.2.5.1 Localization loss

We use Loc to compute the localization difference between the

prediction box and the ground-truth box for each image. Now let

bpd , bgt be the center of the prediction bounding box and the

ground-truth bounding box, respectively, then

Loc = IoU −
r2(bpd , bgt)

c2
− an (4)

where r is the Euclidean distance between the two centers, c is

the diagonal length of the minimum enclosing rectangle of the
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prediction box and the ground-truth box, and IoU represents the

intersection ratio between the ground-truth box and the prediction

box. Among them, n is used to measure aspect ratio similarity, and

a is the influencing factor of n , which are defined as:

n =
4
p2 arctan

wpd

hpd
− arctan

wgt

hgt

 !2

(5)

a =
n

1 − IoU + n
(6)

where wpd and wgt are the widths of prediction boxes and

ground-truth box, respectively; hpd and hgt are the heights of

prediction boxes and ground-truth box, respectively.

2.2.5.2 Confidence loss and classification loss

Confidence Loss Lobjxj and Classification Loss Lclsxj use the binary

cross-entropy function BCEWithLogitsLoss as supervision to

measure the cross-entropy between the target and the output. As

for a two-category task, for a sample, it is assumed that the

predicted probability of one class is p, and the other class is 1 − p.

Pi =
p,   if   y = 1

1 − p,   otherwise

(
(7)

Pi represents the probability that sample i is predicted to be a

positive sample, then the loss can be defined as:

Lxj = −
1
No

i

½yi ln Pi + (1 − yi) ln (1 − Pi)� (8)

yi represents the label of sample i, the yi is set to 1 when i

belongs to the positive class, the negative class is 0, and N represents

the total number of samples.

Then, we combine the three losses to get the final loss of

TasselLFANet, namely

Lfan = Loc + Lxj (9)

where Lxj = Lobjxj + Lclsxj
3 Experiments and discussions

3.1 Implementation details

In this study, we used a deep learning approach to detect and

count maize tassels. Our training dataset consisted of 1120 images

randomly selected from the publicly available MrMT dataset. We

reserved 480 and 368 images as validation and test sets, respectively.

All experiments were conducted on a deep learning framework

implemented with PyTorch 1.8 and CUDA 9.0, and executed on an

Nvidia Quadro P5000 GPU with 16G of memory. We did not rely

on pre-trained model weights during transfer learning to ensure

that our model’s performance reflected its true potential (Mesnil

et al., 2012; He et al., 2019). Given the high resolution of the images

in our dataset, we resized them to 640 x 640 pixels. We used the

cosine function to schedule the learning rate, which started at 0.01.
frontiersin.org
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The training was performed with stochastic gradient descent (SGD)

optimizer with a momentum of 0.937, and lasted for 100 epochs. To

prevent overfitting and enhance the robustness of our model, we

applied various data augmentation techniques, including color

distortion, random translation, random flipping, random scaling,

and random stitching.
3.2 Comparison with object detection
models

3.2.1 Evaluation metrics
The evaluation metrics of the TasselLFANet model compared to

other models are mainly based on precision (P), recall (R), mean

precision (mAP) and F1 −measure, where TP, FP and FN are the

number of true positives, false positives and false negatives,

respectively. n is 1 because there is only one category (maize

tassel) in the data. mAP@0:5 represents the average mAP at an

IOU threshold of 0.5. mAP@0:5 : 0:95 represents the average of m

AP at different IOU thresholds (from 0.5 to 0.95 in step of 0.05).

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

mAP =
on

1

Z 1

0
P(R)d(R)

n
(12)

IOU =
Area   of  Overlap
Area   of  Union

(13)

F1 −measure = 2
PR

P + R
∈ ½0, 1� (14)
3.2.2 Ablation study
Since attention is a plug-and-play module, we examine the

impact of adding attention at various locations within the model

architecture, conducting three different ablation implementations of

ECA and Mlt-ECA. These implementations allow us to assess the
Frontiers in Plant Science 09
benefits of integrating attention modules within the Encoder and

after the Decoder has decoded the output layer. Our experimental

results, as summarized in Table 3, demonstrate that Mlt-ECA

consistently outperforms ECA when added in different positions.

Moreover, we observe that the effect of adding after Decoder

decoding the output layer is better than adding at two positions,

and the highest performance is achieved when adding Mlt-ECA

after the Encoder. Notably, our modified TasselLFANet with Mlt-

ECA achieves an F1 score that is 0.4% higher than the original

TasselLFANet, with P increasing by 0.6% to 0.946 and R increasing

by 0.4% to 0.942. These findings indicate that Mlt-ECA is more

robust and effective in suppressing background information,

enabling the model to focus on foreground features and enhance

high-level semantic understanding.
3.2.3 Comparing experimental results
Based on the MrMT dataset, we compare TasselLFANet with

six state-of-the-art lightweight object detection methods according

to the actual application needs, including SSD (Liu et al., 2016),

RetinaNet (Lin et al., 2017), CenterNet (Duan et al., 2019),

EfficientDet (Tan et al., 2020), Yolox-nano (Ge et al., 2021b) and

Yolov7-tiny (Wang et al., 2022a). We train and test these networks

using the same training and test sets. A comparison of each method

is shown in the Table 4.

Obviously, our proposed model outperforms the other methods

in different dimensions, and the model has fewer parameters. In

general, as R increases, P decreases accordingly, and our model has

a more robust trade-off. SSD, as a traditional one-stage object

detection model without bounding boxes generation, uses smaller

convolutional filters for dense sampling, which enables simple end-

to-end training even on low-resolution input images. However, low

feature layers and low number of convolutions will lead to

insufficient extraction of shallow feature map information,

making it difficult to meet the detection of small-scale tassels.

RetinaNet and EfficientDet are good anchor-based object

detection models that require extraction of candidate anchor

points before making predictions. But they are also likely to miss

small and dense objects due to background interference, large

overlap of maize tassels and complex growth environment. The

YOLO series of object detection algorithms are famous and well-

balanced in speed and accuracy. Yolox-nano and Yolov7-tiny are
TABLE 3 Ablation experiments of ECA attention and Mlt-ECA attention.

Model Encoder Decoder P R F1 mAP@.5 mAP@.5:.95 Param

TasselLFANet-original – – 0.940 0.938 0.938 0.968 0.543 6.0M

ECA
✔ ✔

0.942 0.934 0.938 0.963 0.524 6.0M

MltECA 0.945 0.940 0.942 0.968 0.54 6.0M

ECA
– ✔

0.941 0.936 0.938 0.964 0.526 6.0M

MltECA 0.948 0.940 0.944 0.968 0.541 6.0M

ECA
✔ –

0.948 0.938 0.943 0.968 0.545 6.0M

MltECA 0.946 0.942 0.944 0.968 0.546 6.0M
front
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state-of-the-art detection models that use multi-scale information

in combination with the path aggregation network PANet (Liu S,

et al., 2018) to enhance the feature hierarchy, which significantly

improves the detection accuracy, while at the same time it is clear

that the parameter size is small. CenterNet employs keypoint

estimation to find center points and regress other target

attributes. This detection method is novel and specific, and has a

higher recall rate. It should be noted that when the IOU increases

above 0.5, TasselLFANet has a higher mAP compared to the other

methods, 9.4% higher than CenterNet, the second-ranked model,

indicating that the model has more accurate positioning

performance. Therefore, our model can achieve the best results.

3.2.4 Maize tassels detection at different
resolutions

Next, we explore the relationship between image resolution, F1-

measure and frames per second (FPS) in image scaling. Speeds are

measured on a desktop computer with a single Nvidia Quadro

P5000 GPU (16G) at different resolutions and FPS averaged over

100 forward passes. Taking the image resolution of 640 �640 as the

benchmark, the results are shown in Figure 6. It can be seen that the

F1-measure value shows a certain attenuation tendency as the
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image resolution increases or decreases. In general, increasing the

image resolution of the input layer may potentially result in a higher

fine-grained feature representation. The higher the resolution, the

better the accuracy below a certain threshold. Beyond this

threshold, the improvement in accuracy begins to decline. We

believe that the reason for the attenuation is that the scale

distribution of samples in our dataset tends towards medium-

resolution and the gain from increasing resolution tends towards

saturation. At the same time, high-resolution images increase the

amount of computation, and image resolution is negatively

correlated with FPS.

Please note that different devices and methods have been used

to capture field images, so there may be differences in resolution.

Therefore, it is important that the proposed method is robust to

images with different resolutions. As shown in Figure 6, when the

image resolution is reduced to 480 and 320, the F1-measure obtains

high-efficiency fps of 125 and 213 respectively, showing high

performance of 0.936 and 0.908. Based on this performance, we

introduce a high-efficiency model TasselLFANet-HE with a

resolution of 480 �480 pixels. Its overall performance is shown

in Table 5.

3.2.5 Overall performance evaluation
To further evaluate the effectiveness of the model’s overall

performance, we compared TasselLFANet and TasselLFANet-HE

with other detection methods. Figure 7 shows a comparison of each

model with respect to F1-measure and running speed. In brief, the

TasselLFANet series model outperforms all other methods. Yolov7-

tiny is faster than TasselLFANet. Although TasselLFANet has a

lower parameter volume than Yolov7-tiny, TasselLFANet is less

efficient than Yolov7-tiny due to feature aggregation reusability,

which is to some extent expected. In addition, TasselLFANet-HE far

surpasses other methods in speed, and achieves high performance

that only TasselLFANet surpasses. In the future, even more speeds

can be achieved with more advanced hardware devices.

3.2.6 Domain adaptation comparison
From the MrMT dataset, we selected a number of representative

plant sample images such as sparse tassel(a), blurred image (b),

strong illumination (c), severe occlusion (d), dense object (e), to test

the domain adaptation of each model. As shown in Figure 8, the
TABLE 4 Comparison of evaluation indicators of different models.

Model Test Size Backbone P R F1 mAP@.5 mAP@.5:.95 Param

SSD 300 VGG-16 0.785 0.517 0.623 0.711 0.241 90.6M

RetinaNet 600 ResNet-50 0.914 0.719 0.805 0.828 0.376 138.0M

CenterNet 640 ResNet-50 0.874 0.928 0.900 0.902 0.452 124.0M

EfficientDet 512 EfficientNet-B0 0.914 0.712 0.800 0.825 0.444 15.1M

Yolox-nano 640 CSPDarknet-53 0.852 0.872 0.862 0.894 0.437 3.7M

Yolov7-tiny 640 E-ELAN 0.921 0.878 0.899 0.938 0.434 11.7M

TasselLFANet 640 ELAN 0.946 0.942 0.944 0.968 0.546 6.0M
front
The best performance is in boldface.
FIGURE 6

Relationship between image resolution, F1-measure and frames per
second (FPS) in image scaling.
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visualization results further confirm the strong adversariality of our

method in the face of scale transformation and environmental

disturbance. The green box in the figure is the detection result,

and the white numbers in the upper left corner of each image are the

counting results. The first row in the Figure is the ground-truth

result, and the rest rows are the prediction results of the

eight models.

Figure 8A shows that all models can produce reasonable

approximations to ground-truth counts when individual tassels

are clearly visible. However, under the complex environment

shown in Figures 8B, C, especially in Figure 8C, the image noise

increases with the increasing external illumination, and the

prediction errors of other models increases. In Figure 8D, the

tassels are occluded by the background, and although our

algorithm still performs relatively well, it is difficult to provide a

targeted solution for detection. In this regard, we propose to

improve the data sampling method, guide the model to learn the

internal characteristics contained in the dataset with a tendency,

and use a more effective strategy for positive and negative sample

distribution (Zhu et al., 2020; Ge et al., 2021a; Li et al., 2022). As

shown in Figure 8E, the SSD, RetinaNet and EfficientDet algorithms

are weak in representation for shallow feature maps, and these

algorithms are not robust when tassels are dense and small in size.
Frontiers in Plant Science 11
Significantly, our model performs well in this scene, with

improvements that allow for more subtle image capture of tassels.
3.3 Comparing against the state-of-the-art
counting method

3.3.1 Evaluation metrics
Four metrics including mean absolute error (MAE), root-mean

square error (RMSE), mean absolute percentage error (MAPE), and

the coefficient of determination (R2) were used to evaluate the

agreement between the predicted and ground-truth values. To be

more specific, these metrics are computed by Eq. (15-18).

MAE =
1
no

n

i=1

ŷ i − yij j (15)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1

(yi − ŷ i)
2

vuut (16)

MAPE =
1
no

n

i=1

ŷ i − yi
yi

����
����     (17)

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �yi)

2 (18)

To further demonstrate the superiority of our model, we

compared all above-mentioned object detection methods with the

state-of-the-art counting method, local density regression-based

TasselNetV3-Seg† (Lu et al., 2021). The test images are 181

pictures randomly selected from the MrMT test set. We also

report results on the number of model parameters and frames per

second (FPS), as indicators of computational complexity. Table 6

shows the counting performance of all models related to the

evaluation metrics.

3.3.2 Performance comparison
Numerical comparisons in Table 6 show that our proposed

TasselLFANet series method has the best overall counting

performance and leads TasselNetV3-Seg† in an all-round way. As

the most advanced object detection algorithm, Yolov7-tiny is second
TABLE 5 Performance comparison between TasselLFANet-HE and TasselLFANet.

Method Test Size P R F1 mAP@.5 mAP@.5:.95 FPS

TasselLFANet 640 0.946 0.942 0.944 0.968 0.546 77

TasselLFANet-HE 480 0.947 0.926 0.936 0.962 0.518 125
frontiers
The best performance is in boldface.
FIGURE 7

Performance and speed comparison of different models.
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DA B EC

FIGURE 8

MrMT data set visualization results. The representative plant sample images for testing the domain adaptation of each model. GT means ground-
truth count. (A) sparse tassel; (B) blurred image; (C) strong illumination; (D) severe occlusion; (E) dense object..
TABLE 6 Counting performance comparison of different models.

Model Param FPS MAE RMSE MAPE R2

SSD 90.6M 66 9.04 11.99 34.3% 0.7477

EfficientDet 15.1M 24 4.22 6.65 19.8% 0.9225

RetinaNet 138.0M 25 4.04 6.42 19.7% 0.9278

TasselNetV3-Seg† 7.5M 36 3.75 4.68 27.5% 0.9632

Yolox-nano 3.7M 57 4.02 5.15 23.2% 0.9534

CenterNet 124.0M 56 2.87 3.85 17.8% 0.9740

Yolov7-tiny 11.7M 91 3.10 4.14 17.3% 0.9699

TasselLFANet-HE 6.0M 125 2.70 3.76 14.3% 0.9751

TasselLFANet 6.0M 77 1.80 2.68 9.2% 0.9903
F
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only to TasselLFANet in terms of comprehensive performance.

TasselNetV3-Seg† is less efficient than Yolox-nano, and Yolox-

nano has smaller parameters, because deep convolutions make

poorer use of computational units than standard convolutions.

3.3.3 Coefficients of determination between
different models and manual counting

We plot the linear regression relationship between manual

counts and experimental algorithms on the MrMT dataset as

shown in Figure 9. Presented by scatter diagram distribution, it

shows that our model is able to capture changes with better

robustness and generalization. The key lies in the dynamic

interaction and adaptive adjustment of multiple branches of

aggregate information flow, improving the performance of the

model in sparse and dense scenes. Yet, the issue of occlusion has

been a hot area of research in detection methods. If there are a lot of

maize tassels in the image, many predicted bounding boxes will be

filtered and underestimated by the non-maximum suppression of

the detector. In contrast, TasselNetV3-Seg† can capture additional

global information. Even though, our model achieves superior

performance compared to TasselNetV3-Seg† which has large

errors around the counting baseline.
4 Discussion

Computer vision technology has promoted the development of

agricultural systems. However, plant counting is not a completely
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solved problem. We list the advantages and disadvantages of each

comparative algorithm as well as their inference time and other

parameters in Table 7. Detecting objects in natural canopy images

with a large number of maize tassels is complex and challenging, as

the size, shape, and color of maize tassel at different growth stages

vary, and the degree of interference from external information is

different. As shown in Figure 8D, when the object to be measured is

occluded by background information, many underestimations can

be observed, which is a popular problem in detection methods that

has been continuously improved. Similarly, the scatter plot

presented in Figure 9 illustrates more intuitively that the

seemingly good image level mean absolute error (MAE) is usually

dominated by underestimations in the detection performance. This

is also related to the fact that too little contextual information was

considered when constructing the model. The design of lightweight

convolutional neural networks aims to achieve faster inference for

mobile device applications. However, convolution operations can

only capture local information in the window area, which hinders

performance improvement in certain scenarios. Introducing self-

attention or guided attention into convolution can capture global

information well. Guided learning methods can be considered. The

principle is to preprocess the incoming image in a way such as

training stage to guide the neural network to learn important

information more effectively. For example, in maize tassel

detection, most of the time, green leaves in the field are the main

background information. When weeds inevitably interfere with

tassel detection, because the neural network has learned a lot

about how to counter information dominated by green leaves and
FIGURE 9

Scatter plots of the detected count by different models versus their ground-truth count.
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ignored learning about weeds and other interfering information,

this will lead to a significant increase in the competitiveness of

weeds and filaments in interfering with tassel detection during

inference, as shown in Figure 10. In the early visual applications in

agriculture, Yu et al. (2013) found that the color distribution of

monochrome objects changes with brightness on the chromaticity

saturation plane, and proposed a crop segmentation method AP-

HI, which is insensitive to outdoor brightness and complex

environmental elements and can adaptively extract crops. If this

adaptive method is applied to suppress some green leaf information

in the training images, the learning level of the neural network on

green leaves can be reduced, thereby guiding the neural network to

learn more about how to counter weeds and other interfering

information, enhance the feature competition of the original

model, and capture more discriminative feature information. To

some extent, this is similar to the visual attention mechanism, which

guides the neural network to focus more on certain features by

learning the importance of information between features (Hu et al.,

2018). Masking is direct method as another option. Pei et al. (2022)

used an improved Yolov4 to detect and mask maize rows, and then
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detected weeds in the masked image. This preprocessing method

reduces the imbalance between positive and negative samples and

effectively improves detection accuracy.

In addition, while previous works mainly relied on larger backbone

networks or higher-resolution input images to achieve higher accuracy,

balancing all dimensions of network width/depth/resolution is crucial

when considering both accuracy and efficiency (Tan and Le, 2019;

Dollár et al., 2021; Tan and Le, 2021; Wang et al., 2022). Recent studies

have shown that carefully designed lightweight networks can achieve

comparable performance to their heavy counterparts with much less

computational cost (Howard et al., 2017; Tan et al., 2020). Moreover,

efficient network design can be further improved by leveraging

knowledge distillation, which involves transferring the knowledge

learned by a complex model to a simpler one (Hinton et al., 2015;

Zagoruyko and Komodakis, 2017; Liu H, et al., 2018; Chen et al., 2020).

In agriculture applications, this approach can enable the deployment of

more lightweight models on edge devices with limited computational

resources, while still maintaining satisfactory accuracy.

Overall, computer vision techniques have greatly facilitated the

development of agricultural systems, but challenges remain in
FIGURE 10

Interference from weeds and maize silks in the accurate detection of maize tassels (red circles indicate false detection).
TABLE 7 Characteristics of different models.

Model Param
(M)

Inference
Time (s) Advantage Disadvantage

SSD 90.6 0.0152 High real-time performance, easy to train Many parameters, poor generalization ability

EfficientDet 15.1 0.0417 Fewer parameters, easier to train
Lower real-time performance, lower detection accuracy

for dense and small targets

RetinaNet 138.0 0.0401 Has multi-scale detection capability
Lower real-time performance, lower detection accuracy

for dense and small targets

TasselNetV3-
Seg†

7.5 0.0278 Has global modeling capability Lower real-time performance

Yolox-nano 3.7 0.0172 High real-time performance, easy to train Lower multi-scale detection accuracy

CenterNet 124.0 0.0179 Has global modeling capability Weak domain adaptation ability

Yolov7-tiny 11.7 0.0111 High real-time performance Weak domain adaptation ability

LFANet-HE 6.0 0.0081 High real-time performance Domain adaptability is relatively weak

LFANet 6.0 0.0129
Balanced real-time performance and accuracy, strong

domain adaptation ability
Parameters need to be improved
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accurately counting and detecting objects in complex and cluttered

natural scenes. Various strategies such as introducing self-attention

or guided attention into convolution operations, incorporating

adaptive preprocessing methods, and leveraging efficient network

design and knowledge distillation can be explored to improve

detection performance and enhance the robustness of agricultural

computer vision systems.
5 Conclusion

At this stage, designing a lightweight, effective, and easily

implementable deep neural network for agricultural application

scenarios is both challenging and important. In this study, we

propose a novel neural network, TasselLFANet, for accurate and

efficient detection and counting of maize tassels in high

spatiotemporal image sequences. Our experiments confirm the

promising performance of our proposed method compared to

existing lightweight models, demonstrating superior performance,

flexibility, and adaptability. In practical applications, we offer the

following recommendations:
Fron
1) For optimal performance, speed, and robustness, we

recommend using TasselLFANet.

2) For resource-constrained hardware devices, TasselLFANet-

HE is recommended due to its optimal efficiency and

reasonable accuracy in most cases.

3) For scenes with strong features during the early stages of

plant growth, we recommend using TasselLFANet, which

has higher sensitivity to the tasseling stage.

4) In training, enriching the size and environmental diversity

of plant imaging can result in a more robust model that

adapts to scale and environment transformations.
For future research, we plan to further deploy TasselLFANet in

combination with machinery and equipment in agricultural and

natural environments, and make targeted improvements based on

feedback to meet higher standards and more demanding scenarios.

The integration of computer vision technology with agriculture has

promoted the advancement of smart agriculture and improved

agricultural ecology. We expect that the dataset we release will

attract the attention of researchers and facilitate further research on

automated monitoring of plant growth. We believe that by

collaborating across different fields, we can take the combination

of computer vision technology and agriculture to the next level.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
tiers in Plant Science 15
Author contributions

ZY and JY contributed to conception and design of the study. CL

and XL provided the fields and collected the images. ZY and JY

performed the data processing andmodelling. JY wrote the first draft of

the manuscript. ZY wrote sections of the manuscript. HZ edited the

manuscript extensively. ZY and HZ participated in project

management and obtained the funding for this study. All authors

contributed to the article and approved the submitted version.

Funding

This work was supported in part by 2022 key scientific research

project of ordinary universities in Guangdong Province under

Grant 2022ZDZX4075, in part by 2022 Guangdong province

ordinary universities characteristic innovation project under

Grant 2022KTSCX251, in part by the Collaborative Intelligent

Robot Production & Education Integrates Innovative Application

Platform Based on the Industrial Internet under Grant

2020CJPT004, in part by 2020 Guangdong Rural Science and

Technology Mission Project under Grant KTP20200153, in part

by the Engineering Research Centre for Intelligent equipment

manufacturing under Grant 2021GCZX018 and in part by the

Guangke & Sany Marine Industry Collaborative Innovation

Center in part by the National Natural Science Foundation of

China under Grant 62171327.

Acknowledgments

The authors would like to thank the Wuxi Institute of Radio

Science and Technology for developing and providing facilities and

equipment, Rujun Wu, Yueming Wu, Kangqing Pan for assistance

in annotating the MrMT dataset, and Yangxu Wang for assistance

in editing and updating the code.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1158940/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1158940/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1158940/full#supplementary-material
https://doi.org/10.3389/fpls.2023.1158940
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yu et al. 10.3389/fpls.2023.1158940
References
Andorf, C., Beavis, W. D., Hufford, M., Smith, S., Suza, W. P., Wang, K., et al. (2019).
Technological advances in maize breeding: past, present and future. Theor. Appl. Genet.
132, 817–849. doi: 10.1007/s00122-019-03306-3

Bai, X., Cao, Z., Zhao, L., Zhang, J., Lv, C., Li, C., et al. (2018). Rice heading stage
automatic observation by multi-classifier cascade-based rice spike detection method.
Agric. For. Meteorology 259, 260–270. doi: 10.1016/j.agrformet.2018.05.001

Chen, X., and Gupta, A. (2017). An implementation of faster rcnn with study for
region sampling. arXiv preprint arXiv 1702, 2138. doi: 10.48550/arXiv.1702.02138

Chen, T., Liu, L., Yang, M., Zhang, M., and Yang, J. (2020). DetNAS: Neural
architecture search on object detection. arXiv preprint arXiv 2003, 09950.
doi: 10.48550/arXiv.1903.10979

Chollet, F. (2017). “Xception: Deep learning with depthwise separable convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern recognition. 1251–
1258. doi: 10.48550/arXiv.1610.02357

Ding, X., Zhang, X., Han, J., and Ding, G. (2022). “Scaling up your kernels to 31x31:
Revisiting large kernel design in cnns,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 11963–11975. doi: 10.48550/
arXiv.2203.06717

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun, J. (2021). “Repvgg: Making
vgg-style convnets great again,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 13733–13742. doi: 10.48550/arXiv.2101.03697

Dollár, P., Singh, M., and Girshick, R. (2021). “Fast and accurate model scaling,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
924–932. doi: 10.48550/arXiv.2103.06877

Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., and Tian, Q. (2019). “Centernet:
Keypoint triplets for object detection,” in Proceedings of the IEEE/CVF international
conference on computer vision. 6569–6578. doi: 10.48550/arXiv.1904.08189

Gajjar, R., Gajjar, N., Thakor, V. J., Patel, N. P., and Ruparelia, S. (2021). Real-time
detection and identification of plant leaf diseases using convolutional neural networks
on an embedded platform. Visual Comput., 1–16. doi: 10.1007/s00371-021-02164-9

Ge, Z., Liu, S., Li, Z., Yoshie, O., and Sun, J. (2021a). “Ota: Optimal transport
assignment for object detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vis ion and Pattern Recogni t ion . 303–312. doi : 10 .48550/
arXiv.2103.14259

Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021b). Yolox: Exceeding yolo series in
2021. arXiv preprint arXiv 2107, 8430. doi: 10.48550/arXiv.2107.08430

Gonzalez, V. H., Tollenaar, M., Bowman, A., Good, B., and Lee, E. A. (2018). Maize
yield potential and density tolerance. Crop Sci. 58 (2), 472–485. doi: 10.2135/
cropsci2016.06.0547

Guo, M. H., Xu, T. X., Liu, J. J., Liu, Z. N., Jiang, P. T., Mu, T. J., et al. (2022).
Attention mechanisms in computer vision: A survey. Comput. Visual Media 8 (3), 331–
368. doi: 10.1007/s41095-022-0271-y

Hayat, M. A., Wu, J., and Cao, Y. (2020). Unsupervised Bayesian learning for rice
panicle segmentation with UAV images. Plant Methods 16 (1), 1–13. doi: 10.1186/
s13007-020-00567-8

He, K., Girshick, R., and Dollár, P. (2019). “Rethinking imagenet pre-training,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision. 4918–4927.
doi: 10.48550/arXiv.1811.08883

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in Proceedings of
the IEEE international conference on computer vision. 1026–1034. doi: 10.48550/
arXiv.1502.01852

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv 1503, 2531. doi: 10.48550/arXiv.1503.02531

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.
(2017). MobileNets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv 1704, 4861. doi: 10.48550/arXiv.1704.04861

Hu, M., Feng, J., Hua, J., Lai, B., Huang, J., Gong, X., et al. (2022). “Online
convolutional re-parameterization,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition . 568–577. doi: 10.48550/
arXiv.2204.00826

Hu, J., Shen, L., and Sun, G. (2018). “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern recognition. 7132–
7141. doi: 10.48550/arXiv.1709.01507

Ji, M., Yang, Y., Zheng, Y., Zhu, Q., Huang, M., and Guo, Y. (2021). In-field
automatic detection of maize tassels using computer vision. Inf. Process. Agric. 8 (1),
87–95. doi: 10.1016/j.inpa.2020.03.002

Khaki, S., Safaei, N., Pham, H., and Wang, L. (2022). Wheatnet: A lightweight
convolutional neural network for high-throughput image-based wheat head detection
and counting. Neurocomputing 489, 78–89. doi: 10.48550/arXiv.2103.09408

Li, W., Fu, H., Yu, L., and Cracknell, A. (2016). Deep learning-based oil palm tree
detection and counting for high-resolution remote sensing images. Remote Sens. 9 (1),
22. doi: 10.3390/rs9010022
Frontiers in Plant Science 16
Li, S., He, C., Li, R., and Zhang, L. (2022). “A dual weighting label assignment scheme
for object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 9387–9396. doi: 10.48550/arXiv.2203.09730

Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). “Focal loss for dense
object detection,” in Proceedings of the IEEE international conference on computer
vision. 2980–2988. doi: 10.48550/arXiv.1708.02002

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., et al. (2016). “Ssd:
Single shot multibox detector,” in Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016. 21–37 (Springer
International Publishing). doi: 10.48550/arXiv.1512.02325

Liu, Y., Cen, C., Che, Y., Ke, R., Ma, Y., and Ma, Y. (2020). Detection of maize tassels
from UAV RGB imagery with faster r-CNN. Remote Sens. 12 (2), 338. doi: 10.3390/
rs12020338

Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). “Path aggregation network for
instance segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition. 8759–8768. doi: 10.48550/arXiv.1803.01534

Liu, H., Simonyan, K., and Yang, Y. (2018). DARTS: Differentiable architecture
search. arXiv preprint arXiv 1806, 9055. doi: 10.48550/arXiv.1806.09055

Liu, W., Zhou, J., Wang, B., Costa, M., Kaeppler, S. M., and Zhang, Z. (2022).
“IntegrateNet: A deep learning network for maize stand counting from UAV imagery
by integrating density and local count maps,” in IEEE Geoscience and Remote Sensing
Letters, Vol. 19. 1–5. doi: 10.1109/LGRS.2022.3186544

Lu, H., and Cao, Z. (2020). TasselNetV2+: A fast implementation for high-
throughput plant counting from high-resolution RGB imagery. Front. Plant Sci. 11.
doi: 10.3389/fpls.2020.541960

Lu, H., Cao, Z., Xiao, Y., Zhuang, B., and Shen, C. (2017). TasselNet: counting maize
tassels in the wild via local counts regression network. Plant Methods 13 (1), 1–17.
doi: 10.48550/arXiv.1707.02290

Lu, H., Liu, L., Li, Y. N., Zhao, X. M., Wang, X. Q., and Cao, Z. G. (2021).
“TasselNetV3: Explainable plant counting with guided upsampling and background
suppression,” in IEEE Transactions on Geoscience and Remote Sensing, Vol. 60. 1–15.
doi: 10.1109/TGRS.2021.3058962

Lyu, S., Li, R., Zhao, Y., Li, Z., Fan, R., and Liu, S. (2022). Green citrus detection and
counting in orchards based on YOLOv5-CS and AI edge system. Sensors 22 (2), 576.
doi: 10.3390/s22020576

Ma, J., Li, Y., Liu, H., Du, K., Zheng, F., Wu, Y., et al. (2020). Improving
segmentation accuracy for ears of winter wheat at flowering stage by semantic
segmentat ion. Comput . E lec tron. Agr ic . 176, 105662. doi : 10.1016/
j.compag.2020.105662

Madec, S., Jin, X., Lu, H., De Solan, B., Liu, S., Duyme, F., et al. (2019). Ear density
estimation from high resolution RGB imagery using deep learning technique. Agric.
For. meteorology 264, 225–234. doi: 10.1016/j.agrformet.2018.10.013

Mazzia, V., Khaliq, A., Salvetti, F., and Chiaberge, M. (2020). “Real-time apple
detection system using embedded systems with hardware accelerators: An edge AI
application,” in IEEE Access, Vol. 8. 9102–9114. doi: 10.1109/ACCESS.2020.2964608

Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., Goodfellow, I., et al. (2012).
“Unsupervised and transfer learning challenge: a deep learning approach,” in
Proceedings of ICML Workshop on Unsupervised and Transfer Learning. 97–110
(JMLR Workshop and Conference Proceedings).

Miao, C., Guo, A., Thompson, A. M., Yang, J., Ge, Y., and Schnable, J. C. (2021).
Automation of leaf counting in maize and sorghum using deep learning. Plant
Phenome J. 4 (1), e20022. doi: 10.1002/ppj2.20022

Niu, Z., Zhong, G., and Yu, H. (2021). A review on the attention mechanism of deep
learning. Neurocomputing 452, 48–62. doi: 10.1016/j.neucom.2021.03.091

Pei, H., Sun, Y., Huang, H., Zhang, W., Sheng, J., and Zhang, Z. (2022). Weed
detection in maize fields by UAV images based on crop row preprocessing and
improved YOLOv4. Agriculture 12 (7), 975. doi: 10.3390/agriculture12070975

Rahnemoonfar, M., and Sheppard, C. (2017). Deep count: fruit counting based on
deep simulated learning. Sensors 17 (4), 905. doi: 10.3390/s17040905

Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
preprint arXiv 1804, 2767. doi: 10.48550/arXiv.1804.02767

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252.
doi: 10.48550/arXiv.1409.0575

Saddik, A., Latif, R., El Ouardi, A., Elhoseny, M., and Khelifi, A. (2022). Computer
development based embedded systems in precision agriculture: Tools and application.
Acta Agriculturae Scandinavica Section B—Soil Plant Sci. 72 (1), 589–611. doi: 10.1080/
09064710.2021.2024874

Shafiq, M., and Gu, Z. (2022). Deep residual learning for image recognition: a survey.
Appl. Sci. 12 (18), 8972. doi: 10.3390/app12188972

Tan, M., Chen, B., Pang, R., Vasudevan, V., and Sandler, M. (2020a). “MnasNet:
Platform-aware neural architecture search for mobile,” in IEEE Transactions on Neural
Networks and Learning Systems, Vol. 31. 3408–3422. doi: 10.48550/arXiv.1807.11626
frontiersin.org

https://doi.org/10.1007/s00122-019-03306-3
https://doi.org/10.1016/j.agrformet.2018.05.001
https://doi.org/10.48550/arXiv.1702.02138
https://doi.org/10.48550/arXiv.1903.10979
https://doi.org/10.48550/arXiv.1610.02357
https://doi.org/10.48550/arXiv.2203.06717
https://doi.org/10.48550/arXiv.2203.06717
https://doi.org/10.48550/arXiv.2101.03697
https://doi.org/10.48550/arXiv.2103.06877
https://doi.org/10.48550/arXiv.1904.08189
https://doi.org/10.1007/s00371-021-02164-9
https://doi.org/10.48550/arXiv.2103.14259
https://doi.org/10.48550/arXiv.2103.14259
https://doi.org/10.48550/arXiv.2107.08430
https://doi.org/10.2135/cropsci2016.06.0547
https://doi.org/10.2135/cropsci2016.06.0547
https://doi.org/10.1007/s41095-022-0271-y
https://doi.org/10.1186/s13007-020-00567-8
https://doi.org/10.1186/s13007-020-00567-8
https://doi.org/10.48550/arXiv.1811.08883
https://doi.org/10.48550/arXiv.1502.01852
https://doi.org/10.48550/arXiv.1502.01852
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.48550/arXiv.2204.00826
https://doi.org/10.48550/arXiv.2204.00826
https://doi.org/10.48550/arXiv.1709.01507
https://doi.org/10.1016/j.inpa.2020.03.002
https://doi.org/10.48550/arXiv.2103.09408
https://doi.org/10.3390/rs9010022
https://doi.org/10.48550/arXiv.2203.09730
https://doi.org/10.48550/arXiv.1708.02002
https://doi.org/10.48550/arXiv.1512.02325
https://doi.org/10.3390/rs12020338
https://doi.org/10.3390/rs12020338
https://doi.org/10.48550/arXiv.1803.01534
https://doi.org/10.48550/arXiv.1806.09055
https://doi.org/10.1109/LGRS.2022.3186544
https://doi.org/10.3389/fpls.2020.541960
https://doi.org/10.48550/arXiv.1707.02290
https://doi.org/10.1109/TGRS.2021.3058962
https://doi.org/10.3390/s22020576
https://doi.org/10.1016/j.compag.2020.105662
https://doi.org/10.1016/j.compag.2020.105662
https://doi.org/10.1016/j.agrformet.2018.10.013
https://doi.org/10.1109/ACCESS.2020.2964608
https://doi.org/10.1002/ppj2.20022
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.3390/agriculture12070975
https://doi.org/10.3390/s17040905
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1409.0575
https://doi.org/10.1080/09064710.2021.2024874
https://doi.org/10.1080/09064710.2021.2024874
https://doi.org/10.3390/app12188972
https://doi.org/10.48550/arXiv.1807.11626
https://doi.org/10.3389/fpls.2023.1158940
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yu et al. 10.3389/fpls.2023.1158940
Tan, M., and Le, Q. (2019). “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International conference on machine learning. 6105–6114.
doi: 10.48550/arXiv.1905.11946

Tan, M., and Le, Q. (2021). “Efficientnetv2: Smaller models and faster training,” in
International conference on machine learning. 10096–10106. doi: 10.48550/
arXiv.2104.00298

Tan, M., Pang, R., and Le, Q. V. (2020). “Efficientdet: Scalable and efficient object
detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 10781–10790. doi: 10.48550/arXiv.1911.09070

Tzutalin, D. (2022). LabelImg is a graphical image annotation tool and label object
bounding boxes in images. Available at: https://github.com/tzutalin/labelImg.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008
doi: 10.48550/arXiv.1706.03762

Wang, C. Y., Bochkovskiy, A., and Liao, H. Y. M. (2022a). YOLOv7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv
2207, 2696. doi: 10.48550/arXiv.2207.02696

Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., and Yeh, I. H.
(2020). “CSPNet: A new backbone that can enhance learning capability of CNN,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops. 390–391. doi: 10.48550/arXiv.1911.11929

Wang, C. Y., Liao, H. Y. M., and Yeh, I. H. (2022b). Designing network design
strategies through gradient path analysis. arXiv preprint arXiv 2211, 4800.
doi: 10.48550/arXiv.2211.04800

Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., and Hu, Q. (2020). “ECA-net: Efficient
channel attention for deep convolutional neural networks,” in Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition. 11534–11542.
doi: 10.48550/arXiv.1910.03151

Wang, L., Xiang, L., Tang, L., and Jiang, H. (2021). A convolutional neural network-based
method for corn stand counting in the field. Sensors 21 (2), 507. doi: 10.3390/s21020507

Wang, X., Yang, W., Lv, Q., Huang, C., Liang, X., Chen, G., et al. (2022). Field rice
panicle detection and counting based on deep learning. Front. Plant Sci. 2921.
doi: 10.3389/fpls.2022.966495

Xiong, H., Cao, Z., Lu, H., Madec, S., Liu, L., and Shen, C. (2019). TasselNetv2: in-
field counting of wheat spikes with context-augmented local regression networks. Plant
Methods 15 (1), 1–14. doi: 10.1186/s13007-019-0537-2
Frontiers in Plant Science 17
Yang, B., Gao, Z., Gao, Y., and Zhu, Y. (2021). Rapid detection and counting of
wheat ears in the field using YOLOv4 with attention module. Agronomy 11 (6), 1202.
doi: 10.3390/agronomy11061202

Yang, S., Liu, J., Xu, K., Sang, X., Ning, J., and Zhang, Z. (2021). Improved CenterNet
based maize tassel recognition for UAV remote sensing image. Trans. Chin. Soc. Agric.
Machinery 52, 206–212. doi: 10.6041/j.issn.100-1298.2021.09.024

Yu, Z., Cao, Z., Wu, X., Bai, X., Qin, Y., Zhuo, W., et al. (2013). Automatic image-
based detection technology for two critical growth stages of maize: Emergence and
three- leaf s tage . Agric . For . meteorology 174, 65–84. doi : 10.1016/
j.agrformet.2013.02.011

Yu, Z., Yin, H., Feng, H., Chen, M., Zhou, H., Lu, T., et al. (2016). “An image-based
approach to automatic crop organ extraction via low-rank matrix recovery,” in 2016
15th International Symposium on Parallel and Distributed Computing (ISPDC). 376–
381. doi: 10.1109/ISPDC.2016.63

Yu, X., Yin, D., Nie, C., Ming, B., Xu, H., Liu, Y., et al. (2022). Maize tassel area
dynamic monitoring based on near-ground and UAV RGB images by U-net model.
Comput. Electron. Agric. 203, 107477. doi: 10.1016/j.compag.2022.107477

Yu, Z., Zhou, H., and Li, C. (2017). Fast non-rigid image feature matching for
agricultural UAV via probabilistic inference with regularization techniques. Comput.
Electron. Agric. 143, 79–89. doi: 10.1016/j.compag.2017.10.002

Zagoruyko, S., and Komodakis, N. (2017). Paying more attention to attention:
Improving the performance of convolutional neural networks via attention transfer.
arXiv preprint arXiv 1612, 3928. doi: 10.48550/arXiv.1612.03928

Zang, H., Wang, Y., Ru, L., Zhou, M., Chen, D., Zhao, Q., et al. (2023). Detection
method of wheat spike improved YOLOv5s based on the attention mechanism. Front.
Plant Sci. 13. doi: 10.3389/fpls.2022.993244

Zhang, Y., Yu, J., Chen, Y., Yang, W., Zhang, W., and He, Y. (2022). Real-time
strawberry detection using deep neural networks on embedded system (rtsd-net): An
edge AI application. Comput. Electron. Agric. 192, 106586. doi: 10.1016/
j.compag.2021.106586

Zhu, B., Wang, J., Jiang, Z., Zong, F., Liu, S., Li, Z., et al. (2020). Autoassign:
Differentiable label assignment for dense object detection. arXiv preprint arXiv 2007,
3496. doi: 10.48550/arXiv.2007.03496

Zou, H., Lu, H., Li, Y., Liu, L., and Cao, Z. (2020). Maize tassels detection: a
benchmark of the state of the art. Plant Methods 16 (1), 108. doi: 10.1186/s13007-020-
00651-z
frontiersin.org

https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.2104.00298
https://doi.org/10.48550/arXiv.2104.00298
https://doi.org/10.48550/arXiv.1911.09070
https://github.com/tzutalin/labelImg
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2207.02696
https://doi.org/10.48550/arXiv.1911.11929
https://doi.org/10.48550/arXiv.2211.04800
https://doi.org/10.48550/arXiv.1910.03151
https://doi.org/10.3390/s21020507
https://doi.org/10.3389/fpls.2022.966495
https://doi.org/10.1186/s13007-019-0537-2
https://doi.org/10.3390/agronomy11061202
https://doi.org/10.6041/j.issn.100-1298.2021.09.024
https://doi.org/10.1016/j.agrformet.2013.02.011
https://doi.org/10.1016/j.agrformet.2013.02.011
https://doi.org/10.1109/ISPDC.2016.63
https://doi.org/10.1016/j.compag.2022.107477
https://doi.org/10.1016/j.compag.2017.10.002
https://doi.org/10.48550/arXiv.1612.03928
https://doi.org/10.3389/fpls.2022.993244
https://doi.org/10.1016/j.compag.2021.106586
https://doi.org/10.1016/j.compag.2021.106586
https://doi.org/10.48550/arXiv.2007.03496
https://doi.org/10.1186/s13007-020-00651-z
https://doi.org/10.1186/s13007-020-00651-z
https://doi.org/10.3389/fpls.2023.1158940
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	TasselLFANet: a novel lightweight multi-branch feature aggregation neural network for high-throughput image-based maize tassels detection and counting
	1 Introduction
	2 Materials and methods
	2.1 Image collection and annotation
	2.2 Lightweight feature aggregation network (TasslLFANet)
	2.2.1 Efficiency aggregation encoder
	2.2.2 Multi-branch decoder
	2.2.3 Dense inference
	2.2.4 Mlt-ECA attention module
	2.2.5 Loss function
	2.2.5.1 Localization loss
	2.2.5.2 Confidence loss and classification loss



	3 Experiments and discussions
	3.1 Implementation details
	3.2 Comparison with object detection models
	3.2.1 Evaluation metrics
	3.2.2 Ablation study
	3.2.3 Comparing experimental results
	3.2.4 Maize tassels detection at different resolutions
	3.2.5 Overall performance evaluation
	3.2.6 Domain adaptation comparison

	3.3 Comparing against the state-of-the-art counting method
	3.3.1 Evaluation metrics
	3.3.2 Performance comparison
	3.3.3 Coefficients of determination between different models and manual counting


	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


