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Institute of Biology, Chinese Academy of Sciences, Chengdu, China, 2Graduate Institute of Statistics &
Department of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan
Conducting biodiversity surveys using a fully randomised design can be difficult

due to budgetary constraints (e.g., the cost of labour), site accessibility, and other

constraints. To this end, ecologists usually select representative line transects or

quadrats from a studied area to collect individuals of a given species and use this

information to estimate the levels of biodiversity over an entire region. However,

commonly used biodiversity estimators such as Rao’s quadratic diversity index

(and especially the Gini–Simpson index) were developed based on the

assumption of independent sampling of individuals. Therefore, their

performance can be compromised or even misleading when applied to

species abundance datasets that are collected from non-independent

sampling. In this study, we utilise a Markov chain model and derive an

associated parameter estimator to account for non-independence in

sequential sampling. Empirical tests on two forest plots in tropical (Barro

Colorado, Island of Panama) and subtropical (Heishiding Nature Reserve of

Guangdong, China) regions and the continental-scale spatial distribution of

Acacia species in Australia showed that our estimators performed reasonably

well. The estimated parameter measuring the degree of non-independence of

subsequent sampling showed that a non-independent effect is very likely to

occur when using line transects to sample organisms in subtropical regions at

both local and regional spatial scales. In summary, based on a first-order Markov

sampling model and using Rao’s quadratic diversity index as an example, our

study provides an improvement in diversity estimation while simultaneously

accounting for the non-independence of sampling in field biodiversity surveys.

Our study presents one possible solution for addressing the non-independent

sampling of individuals in biodiversity surveys.
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Introduction

For various reasons (e.g., a limited research budget and field-

site inaccessibility), biodiversity surveys are usually conducted

according to the most convenient (haphazard) method. Such a

common practice can have a significant impact on post-survey data

analyses because most of the commonly used ecological methods

and biodiversity indices implicitly assume that the data are collected

independently. For example, in the estimation of species richness

using individual-based data sets, a common assumption is that

individuals of different species are sampled independently and

randomly (thus following a multinomial distribution) (Zahl, 1977;

Chao and Lee, 1992; Shen et al., 2003; Shen et al., 2017).

However, this assumption can be easily violated in practice

(Hurlbert, 1984; Heffner et al., 1996; Chen et al., 2019; Chen and

Shen, 2020; Chen et al., 2021) because individuals collected from

selected sites within a study region are in many cases not

independent. This is particularly true when we sample species near

rivers, roads, and the edges of forests (Chen, 2014; Chen et al., 2015)

to reduce the workload. Moreover, some natural phenomena may

also cause biodiversity sampling to be spatially dependent; for

example, when collecting seeds from sink habitats, some species

from the source may have arrived more easily due to greater dispersal

ability or environmental suitability (Chen et al., 2018a).

Some biodiversity indices and statistical methods, including the

estimation of species richness in which independent sampling is

commonly assumed, run the risk of inaccurately estimating species

diversity; the estimation power of these methods can then be field

context dependent. To this end, it is necessary to develop statistical

methods that can consider non-independent sampling of

individuals (Chen et al., 2019; Song et al., 2020). In this study, we

utilise a Markov model (Solow, 2000; Chen et al., 2019) that can

effectively incorporate positive correlations of individual sampling

in a multi-species setting and derive relevant statistical quantities to

provide parameter estimation for the model.

To develop the Markov model and derive relevant accurate

estimators for addressing the non-independent sampling issue when

using line transects for biodiversity surveys, we employ Rao’s quadratic

diversity index (Rao, 1982; Nayak, 1986; Botta-Dukat, 2005; Ricotta,

2005a; Rao, 2010) as a demonstration. Rao’s quadratic diversity index

was developed based on a totally independent sampling of individuals

and has been widely applied in community ecology, from functional to

phylogenetic studies (Botta-Dukat, 2005; Ricotta, 2005a; Ricotta, 2005b;

Mouchet et al., 2010; Chen et al., 2018b). Rao’s index can be easily

reduced to another well-known biodiversity index: the Gini–Simpson

index (Simpson, 1949; Magurran, 2004; Jost, 2006; Chen, 2015; Chen

et al., 2018b). Moreover, it can be shown to be identical to Nei’s genetic

diversity index (Nei, 1973; Nei and Li, 1979; Nei, 1987; Nei and Kumar,

2000), thus making the index broadly applicable in the estimation of

biodiversity and various other settings.

In summary, the present study aims to demonstrate that non-

independence can emerge, particularly when the sample size is

small and a sequential sampling protocol is applied. Accordingly,

we hypothesise that when non-independence of sampling exists,

common biodiversity indices may be biased when routine
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calculation formulae are applied. In this context, we introduce a

first-order Markov transition model to characterise the sequential

feature of line-transect sampling and adjust the biased biodiversity

indices. We use a widely used index, Rao’s quadratic diversity index,

as a case study, even though its estimation bias is generally low.

Rao’s quadratic diversity index has broad application in ecological

studies, and it can be shown to be identical to Nei’s nucleotide

diversity index. Therefore, our proposed Markov model-based

adjustment of biodiversity indices may have application potential

in molecular ecology studies. Finally, and most importantly, we

introduce our models in terms of distance; however, the application

of the sampling scheme can be broadened, e.g., in terms of time.
Materials and methods

A Markov model for non-independent
sequential sampling of organisms

Suppose that the true relative abundances of S species in a

community are given by pi, i = 1,…, S with oS
i=1pi = 1. Moreover,

suppose that an ecologist will consecutively sample m individuals

one by one from the community, in which the sampling sequence is

given by Zk,   k = 1, 2,…,m (representing the species label of the kth

sampled individual). Specifically, the underlying probability model

of the sampling process is that the first individual is assumed to be

sampled randomly based on each species’ relative abundance

(Solow, 2000; Chen et al., 2019), i.e.,

P(Z1 = i) = pi,     (1)

and the subsequently sampled individuals follow the transition

probabilities of a first-order Markov chain (Solow, 2000; Chen

et al., 2019):

P(Zk = jjZk−1 = i) =
(1 − p)pi + p ,       j = i

(1 − p)pj,     j ≠ i
 :

(
(2)

These probabilities are elements derived from an S� S Markov

transition matrix. The probability for j = i in Eq. 2 represents the

diagonal elements of the matrix. Note that the parameter p in Eq. 2

has a value ranging from 0 to 1, describing the non-independent

sampling of two subsequent individuals from different or the same

species. If p = 0, the sampling procedure is independent. By

contrast, if p = 1, the sampling procedure will only result in

individuals from a single species in the community.

The number of individuals of species i observed in the sample

can be estimated as

Ni =om
k=1I(Zk = i) , (3)

where I(Zk = i) = 1 if the kth selected individual belongs to species i,

and I(Zk = i) = 0, otherwise. Note that for a given species i, I(Zk = i),

k = 1, 2,…,m are not independent. Additionally, for any two distinct

species i and j along with a large m, the covariance of their

abundances can be estimated as

Cov(Ni,Nj) ≈ −dmpipj ,   (4)
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where d = 1+p
1−p . A detailed derivation of Eq. 4 is provided in the

Supplementary Material.
Rao’s quadratic diversity index

As mentioned above, Rao’s quadratic diversity index is one of the

most widely applied indices in studies of phylogenetic and functional

community ecology (Botta-Dukat, 2005; Chen, 2015; Chen et al.,

2018b). Here, the calculation involves summing the species’ pairwise

distances (e.g., phylogenetic distance) weighted by the product of

both species’ relative abundances. The formula is given by (Botta-

Dukat, 2005; Ricotta, 2005b; Gusmao et al., 2016; Chen et al., 2018b)

Q(p) =o
i≠j
dijpipj,   (5)

where dij is the species’ pairwise distance. Here, the pairwise

distance can be the phylogenetic distance from a time-calibrated

tree when estimating phylogenetic diversity or genetic distance

when measuring genetic diversity. Furthermore, Q(p̂ ) is identical
to Nei’s genetic diversity index (see Supplementary Material).

When dij = 1, for i ≠ j; otherwise, dij = 0, Rao’s quadratic diversity

index simply becomes the Gini–Simpson index denoted by D =

1 −oS
i=1p

  2
i (Simpson, 1949; Magurran, 2004; Jost, 2006), another

well-known diversity index (Pielou, 1969; Pielou, 1977; Krebs, 1989;

Magurran, 2004; Chen, 2015). For a local assemblage with m

individuals independently sampled from a community, the observed

relative abundance vector p̂ = (p̂ 1,…, p̂ S) (where p̂ i = Ni=N andNi is

the observed abundance of species i in the local assemblage) is usually

used for estimating the index and is denoted as Q(p̂ ). The unbiased

index is computed as QU (p) =o
i≠j
dij

Ni(Ni − 1)
m(m − 1)

. Accordingly, the two

well-known estimators for the Gini–Simpson index are the maximum

likelihood (ML) estimator D̂ = 1 −oS
i=1(Ni

m= )
2

and the unbiased

estimator D̂U = 1 −oS
i=1

Ni(Ni−1)
m(m−1) (Chen et al., 2018b).

In our study, we calculated Rao’s quadratic diversity index (and

the Gini–Simpson index in particular) to demonstrate how non-

independent sampling may bias the estimate using a line-transect

sampling strategy and how the estimate can be improved using a

Markov model.
Parameter estimation

Solow (2000) provided an effective and rapid estimator for the

non-independence parameter p . Specifically, the parameter

measures the probability of observing two subsequently sampled

individuals of the same species, i.e., the estimator of p can be

mathematically expressed as follows:

v =
1

m − 1o
m

k=2
o
S

i=1
I(Zk = i,Zk−1 = i) : (6)

Note that the denominator m − 1 in Eq. 6 is the total number of

adjacent pairs in a sample ofm individuals. The expectation of Eq. 6
Frontiers in Plant Science 03
can be expressed as:

E(v) = (1 − p)o
S

i=1
p2i + p :   (7)

Therefore, Solow’s (2000) estimator v is expected to overestimate

p , and the magnitude of the bias is the first term of the right-hand

side of Eq. 7. We will derive a nearly unbiased estimator for p , in
which vis still useful and valid for some scenarios.

From Eqs. 4 and 5 with dij = 1, for i ≠ j; otherwise, dij = 0, an

alternative expression of the Gini–Simpson index is

D̂ ≈
m2 −oS

i=1E(N
2
i )

m(m − d)
, (8)

from which, in combination with an estimator for p (or equivalent

to d) introduced later, we propose a nearly unbiased estimator of D̂
by estimating E(N2

i ) as N2
i . For deriving an estimator of p, two

equations (based on the method of moments) can be constructed

from Eqs. 7 and 8 by removing the expectation operators. After

some algebraic manipulation of the two equations, the explicit

unbiased estimator of p is:

p̂ = 1

−
m(m + 1)(1 − v) +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2(m + 1)2(1 − v)2 − 8m3(1 − v)D̂

q
2m2D̂

,  

(9)

provided the term inside the root sign is non-negative, and the

resulting value is not larger than the upper bound v;, otherwise, for

simplicity, we suggest using v instead. Note that D̂ in Eq. 9 is

D̂ = 1 −oS
i=1( Ni

m )
2

. Accordingly, based on Eq. 9, the associated

estimator for d is d̂ = 1+p̂
1−p̂ .

As to the estimation of Rao’s quadratic diversity index, using Eq.

4, after some algebra we derive a nearly unbiased estimator of Q(p),
under the assumption of non-independent sampling as follows:

Q̂M(p) =o
i≠j

dijNiNj

m m − d̂
� �      : (10)

The derivation of Eq. 10 can be found in the Supplementary

Material. Notably, this estimator covers the typical unbiased

estimator D̂U derived from the random sampling context (Pielou,

1975; Nayak, 1986; Chen et al., 2018b). Specifically, when p = 0 (i.e.,

sampling of individuals is totally independent) or equivalently d̂ =

1, Eq. 10 is the same as the unbiased index.
Semi-numerical simulation and evaluation

In this study, we used two empirical datasets to perform semi-

numerical simulation and evaluation of the performance of different

diversity estimators under distinct sampling assumptions. The first

dataset comprised biomass data of plant communities sampled from

ultramafic soils of Tuscany, central Italy (Chiarucci et al., 1998; Ricotta,

2005a; Chen et al., 2018b). In this dataset, because only a taxonomic
frontiersin.org
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classification tree for 26 plant species was available, we assigned an

equal weight (20) to each classification linkage connecting a higher

taxonomic unit (e.g., family) to a subsequent lower taxonomic unit (e.g.,

genus) (Ricotta, 2005a). The pairwise species distance dij simply sums

all of these equal weights from the most common taxonomic unit to

each pair of species (Chen et al., 2018b). To make the calculation of

Rao’s index applicable in the semi-numerical tests, we simply assumed

that a species’ relative abundance was proportional to the total biomass

recorded for that species (Chen et al., 2018b).

The second dataset was derived from the abundance and

distribution of the Phyllostomid (leaf-nosed bats) from Selva

Lacandona habitats in Chiapas, Mexico (Medellin et al., 2000;

Allen et al., 2009). The associated phylogenetic tree for 34 genera

of Phyllostomidae (Baker et al., 2003; Allen et al., 2009) was used to

compute phylogenetic distances between pairs of genera. Again, the

relative abundance of each genus in this dataset was used for the

semi-numerical simulations.

For analyzing the impact of non-independent sampling on the

assessment of biodiversity, the true value of the non-independence

parameter p for the two data sets was set to 0.1, 0.25, 0.4, 0.55, and

0.7. In addition, we used four sample sizes (m = 50, 75, 100, and

125) in the simulation study to reflect their effect on the estimation

of parameters associated with calculating the biodiversity indexes.
Empirical tests

We used the stand mapping data from a Barro Colorado Island

(BCI) tropical forest plot to investigate the potential influence of

non-independent sampling when travelling across line transects to

conduct a biodiversity assessment for the entire forest plot. The BCI

forest plot has an area of 50 ha (1, 000� 500m) and was established

by Stephen Hubbell and Robin Forster in 1980 (Condit et al., 1996;

Condit, 1998; Hubbell et al., 1999; Condit et al., 2002; Condit et al.,

2012). In the present study, we used the 2005 census data. Only

individual trees or shrubs with a diameter at breast height larger

than 10 mm were included (Chen et al., 2018a; Chen et al., 2019;

Chen et al., 2021). In addition to the BCI plot, we also utilised the

Heishiding (HSD; 50 ha with 1,000 �500 m; 2011 census) plot

located within the Heishiding Provincial Reserve in the Guangdong

province of China (Yin and He, 2014), which represented a

subtropical forest community. Finally, for testing the potential

non-independent sampling issue at a very broad-spatial scale, we

also utilised the distribution of 508 Acacia species in Australia, an

ideal region for studying and assessing large-scale biodiversity and

biogeographic patterns due to the nearly complete herbarium

records and collection (Mishler et al., 2014; Bloomfield et al.,

2018). Of the 1000 Acacia species described in Australia, only a

very small fraction occur outside the territory (Mishler et al., 2014).

We implemented the line transectmethodas a cost-effective strategy

to sample species individuals that may present an apparent spatially

dependent sampling structure (Figure 1). In detail, a line transect with a

chosen small width (1 m) was randomly placed on the two forest plots

(HSD and BCI) to sample tree individuals and on the territory of

Australia (the width of a specific line transect was now larger, usually 2

km) to sample the individuals of Acacia species. The length of the line
Frontiers in Plant Science 04
transect was as yet undetermined and was subsequently determined

based on the pre-designed sample size as described below.

To set a reference point, the starting point of the line transect

was randomly located in an arbitrary direction. However, for

convenience, the starting point of the sampling was usually

selected on the edge of the study region (e.g., Figure 1A). All

individuals within the line transect band were surveyed

sequentially according to the distance of each individual from the

reference point (Figure 1). Specifically, among all individuals in the

line transect band, the initial organism was the one having

the shortest distance from the reference point; we then searched

for the second individual (regardless of species identity) that had

the minimal distance from the reference point other than the first,

and so forth. Note that previously measured individuals were not

sampled repeatedly. If there were multiple neighboring individuals

with the same minimal distance, we randomly chose one. This way

of identifying subsequent individuals of species along a line transect

is very economical and labour-inexpensive, as our sampling strategy

is equivalent to finding nearest neighbors in sequence along a line

transect. The sampling is complete when the required sample size is

fulfilled; that is, we only record the firstm individuals along the line

transect. As a comparison, the fully random sampling method—in
A

B

FIGURE 1

Biodiversity sampling using a line-transect method (A) in the present
study. The fully random sampling method (B) is also provided for
comparison. For each subplot, numbers along with arrows stand for
the orders of individuals when conducting the sampling. The shaded
area in subplot (A) represents the line-transect band. In subplot (B),
to conduct totally random sampling of individuals, it would be
necessary to perform a random walk across the entire region. This
sampling strategy would be labour-expensive and time-consuming.
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which all individuals have to be randomly chosen across the entire

target area (irrespective of how far away the two successive

individuals are)—is expensive and labour-intensive and therefore

often prohibitive for ecologists to implement (Figure 1B).

When applying the line-transect sampling to each of the three

empirical datasets, in considering the potential confounding

influence of sample size, we employed seven sample sizes as m =

50, 100, 500, 1,000, 2,000, 5,000, and 8,000. For each sample size,

5,000 replicates (other numbers of replicates >500 would be

sufficient) of line-transect sampling were conducted. For each

replicate, if the number of individuals sampled from a single line

transect (across the boundary of the sampling region, e.g., the

territory of Australia) did not reach the required sample size,

using the endpoint of the previous line transect as the starting

point, we placed a new line transect onto the target area to continue

subsequent sampling of individuals (Figure 1A). This step was

repeated until the required sample size was reached (Figure 1A).

To quantify estimation accuracy (Chen et al., 2018b) and

compare the performance of different estimators for each

estimator considered in this study, we computed the average

(Avg), statistical bias (BIAS), and root mean squared error

(RMSE) using the resulting 5,000 replicate estimates. It should be
Frontiers in Plant Science 05
noted that the variance of the point estimate (also the reciprocal of

precision) can be measured by the difference between the squared

RMSE and the squared bias.
Results

The two semi-numerical studies demonstrated that the

estimation of the non-independence parameter p was very

accurate (Tables 1, S1). Therefore, it would be reasonable and

reliable to apply the estimated parameters of the Markov model

to evaluate the impacts of different spatial sampling methods

in practice.

Regarding the application of Rao’s quadratic diversity index,

there were basically no differences between the estimated and true

values when the non-independent Markov model was used,

particularly when the sample size was large (Tables 2, S2). For

comparison, if there was strong evidence of a non-independent

pattern of sequentially sampled individuals (i.e., p = 0.75), the bias

induced by both biased and unbiased Rao’s indices derived from

totally independent sampling of individuals was much higher than
TABLE 1 Estimate averages, averaged bias (BIAS), and root mean squared error (RMSE) of the original Solow’s estimator and the proposed estimators
for the non-independence parameter p in the semi-numerical test using abundance information for Phyllostomid (leaf-nosed bats) from Selva
Lacandona habitats in Chiapas, Mexico.

m p
Solow’s estimator: v Proposed estimator: p

Avg BIAS RMSE Avg BIAS RMSE

50 0.10 0.129 0.029 0.056 0.100 0.000 0.050

75 0.129 0.029 0.048 0.100 0.000 0.040

100 0.128 0.028 0.043 0.099 -0.001 0.034

125 0.129 0.029 0.042 0.100 0.000 0.031

50 0.25 0.274 0.024 0.069 0.251 0.001 0.067

75 0.274 0.024 0.057 0.250 0.000 0.053

100 0.274 0.024 0.050 0.250 0.000 0.046

125 0.273 0.023 0.047 0.249 -0.001 0.042

50 0.40 0.418 0.018 0.073 0.400 0.000 0.074

75 0.418 0.018 0.060 0.400 -0.000 0.060

100 0.419 0.019 0.053 0.400 0.000 0.051

125 0.419 0.019 0.049 0.400 -0.000 0.046

50 0.55 0.564 0.014 0.071 0.552 0.002 0.073

75 0.564 0.014 0.059 0.550 0.000 0.060

100 0.564 0.014 0.051 0.551 0.001 0.051

125 0.563 0.013 0.047 0.549 -0.001 0.046

50 0.70 0.710 0.010 0.065 0.703 0.003 0.067

75 0.711 0.011 0.053 0.703 0.003 0.054

100 0.710 0.010 0.046 0.702 0.002 0.046

125 0.709 0.009 0.042 0.700 0.000 0.043
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the proposed estimators derived from the assumption of non-

independent sampling (Tables 2, S2). The comparative studies for

the Gini–Simpson index had similar results: the proposed index

based on non-independent sampling had the best performance

(Tables S3, S4).

In the three empirical datasets with varying spatial sampling

scales, the non-independence parameter was estimated to be low

(approximately 0.047) when conducting line-transect sampling in

the BCI plot (Table S5), while being relatively high when

conducting line-transect sampling in both the HSD forest plot

(approximately 0.269; Table S6) and for Australian Acacia species

(approximately 0.327; Table S7). Moreover, the estimation of the

non-independence parameter p was not influenced by the largest

sample sizes in all three empirical datasets (Tables S1, S5–S7).

When the sample size was sufficiently large (e.g., m = 5,000 or

8,000), the estimated p values became asymptotically stable,

regardless of which dataset was tested (Tables S5–S7).

As a comparison, in all three datasets, the bias and RMSE were

quite low when the non-independence parameter was incorporated

into the Markov sampling model (Figures 2–4 and Tables S5–S7).

Moreover, as expected, when the required sampling size for the line-
Frontiers in Plant Science 06
transect sampling increased, the bias and RMSE approached zero, as

the estimated Rao’s quadratic diversity index and the estimated

Gini–Simpson index were close to their true values (Figures 2–4 and

Tables S5–S7).
Discussion

In the empirical tests, the non-independence parameter was

estimated to be low for the BCI plot. However, this low number did

not necessarily imply that we need not consider the non-

independence sampling in forest ecosystems in that region. The

estimates of Rao’s quadratic diversity and Gini–Simpson indices

were the most accurate when the Markov sampling-derived

estimator was used. Additionally, if the data were collected by an

independent sampling scheme and applied to the Markov

sampling-derived estimator, the result should be similar to the

random sampling-derived estimator (i.e., Q̂U (p) for Rao’s quadratic
diversity index) as the estimated value of p should not be too large

for random walk data. Therefore, the non-independence of

sampling did influence the collection of individuals from the
TABLE 2 Estimate average, average bias (BIAS), and root mean squared error (RMSE) of the original unbiased Rao’s index and the proposed estimators
from an ecological community (i.e., 34 Phyllostomid bat genera abundances in Selva Lacandona habitats).

m p MLE: Q ð p̂ Þ Unbiased: Q̂ U ð p Þ Proposed: Q̂M ð p Þ

Avg BIAS RMSE Avg BIAS RMSE Avg BIAS RMSE

Bat data in Selva lacandona habitats: Q(p)=177.3

50 0.10 173.0 -4.4 5.3 176.5 -0.8 3.2 177.3 -0.0 3.1

75 174.4 -2.9 3.8 176.8 -0.5 2.5 177.3 0.0 2.5

100 175.2 -2.2 3.0 176.9 -0.4 2.2 177.3 -0.0 2.1

125 175.6 -1.7 2.5 177.0 -0.3 1.9 177.3 -0.0 1.9

50 0.25 171.5 -5.8 6.9 175.0 -2.3 4.4 177.5 0.2 3.8

75 173.4 -3.9 4.9 175.8 -1.0 3.4 177.4 0.1 3.0

100 174.4 -2.9 3.9 176.2 -1.2 2.8 177.4 0.0 2.6

125 175.0 -2.3 3.2 176.4 -0.9 2.4 177.4 0.1 2.2

50 0.40 169.3 -8.0 9.3 172.8 -4.6 6.6 177.8 0.5 4.8

75 171.9 -5.5 6.6 174.2 -3.2 4.9 177.5 0.1 3.7

100 173.2 -4.1 5.1 175.0 -2.4 3.8 177.4 0.1 3.0

125 174.0 -3.3 4.2 175.4 -1.9 3.3 177.4 0.0 2.7

50 0.55 165.5 -11.8 13.4 168.9 -8.5 10.6 178.3 1.0 6.5

75 169.4 -79 9.2 171.7 -5.6 7.3 177.8 0.4 4.7

100 171.4 -6.0 7.1 173.1 -4.3 5.7 177.6 0.3 3.9

125 172.5 -4.9 5.9 173.9 -3.5 4.8 177.4 0.1 3.4

50 0.70 158.4 -18.9 21.0 161.7 -15.7 18.3 180.7 3.3 10.9

75 164.3 -13.0 14.6 166.5 -10.8 12.8 178.5 1.2 7.1

100 167.6 -97 11.1 169.3 -8.0 9.7 178.1 0.7 5.0

125 169.5 -7.8 9.0 170.9 -6.4 7.9 177.8 0.5 4.6
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diverse spatially explicit sampling methods. Moreover, all Markov

sampling-derived estimators remained valid when applied to

randomly sampled individuals.

In practice in the field, totally independent or random sampling

of individuals over a studied region can be highly impractical and

labour intensive, and travel across the region may be required.

Consequently, it is important to recognise that the collection of

individuals from selected quadrats in the study region will run the

risk of over-representing or under-representing some species if their

distributions are highly aggregated. Therefore, it is necessary to

recognise that the application of previously developed biodiversity

estimators that were built upon the assumption of independent

sampling of individuals might not be as powerful as assumed and

should be used with relevant caveats. As a result, the first-order

Markov chain model employed in the present study may be effective

in alleviating the compounding effect of limited spatially dependent

sampling for ecologists who wish to accurately estimate the

biodiversity level of a region.

The present study represents one possible solution to the non-

independent sampling issue in the field setting by deriving pertinent

unbiased estimators for the Markov model studied. More

importantly, we demonstrated that the non-independence issue
Frontiers in Plant Science 07
was likely to exist when conducting line-transect surveys of

ecological communities in the real world (as demonstrated by the

HSD tree species and Australian Acacia species). Finally, the

simulation and empirical tests demonstrated that the proposed

estimators provide accurate estimates of important biodiversity

indices, such as Rao’s quadratic diversity and the Gini–

Simpson index.

The Markov model and the associated estimators were

developed for cost-effective sampling in practice. In combination

with line-transect sampling, the estimators proposed in this study

can save ecologists’ time and energy spent in field sampling without

compromising the accuracy of biodiversity estimation. If ecologists

have sufficient budget and time available, they may opt for field-

sampling methods that are labour-intensive, and individuals of a

species may be well sampled in an approximately random manner.

By contrast, if ecologists wish to reduce the workload and guarantee

work safety by only selecting sampling sites that have potentially

strong spatial relationships, non-independent sampling of

individuals can be expected. In this case, our estimators should be

a good alternative. In addition, as mentioned above, our Markov

sampling-derived estimators are robust regardless of whether the

data were collected from non-independent or independent
BIAS RMSE

R
ao

's d
iv

ersity
 in

d
ex

G
in

i−
S

im
p
so

n
 in

d
ex

50 100 500 1000 2000 5000 8000 50 100 500 1000 2000 5000 8000

−5

0

5

10

15

−0.02

0.00

0.02

0.04

m

Estimator

ML

Unbiased

Proposed

FIGURE 2

The average bias (BIAS) and root mean squared error (RMSE) of the ML (maximum likelihood) estimator, the unbiased Rao’s index, and the proposed
estimators for the tree data sampled from the line transects in the 50-ha BCI forest plot.
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sampling. Consequently, the methods proposed in the present

study are recommended in practical applications from a cost-

effective perspective.

Our present method provides avenues for future research. First,

we only estimated the quantityoS
i=1p

2
i across all the species in the

target area. The estimation of the true relative abundance of each

species pi may become possible by effectively estimating those

unseen species that are not observed in current samples. This is

of particular importance given that their estimates will greatly

influence the accuracy of estimated biodiversity levels at the

regional scale. Previous studies have developed very robust

methods for accurately estimating the relative true abundances of

unseen species (Good, 1953; Chiu et al., 2014; Chao et al., 2015;

Chao et al., 2017). However, these methods may not be appropriate

under the context of Markov non-independent sampling. To this

end, we call for the development of suitable methods that can

effectively alleviate the confounding impact of unseen species in

non-independent sampling. Second, there is a knowledge gap

concerning the accurate interpretation of the non-independence

parameter under spatially explicit sampling scenarios. For example,

to what extent is the non-independence parameter related to the

spatial non-randomness? Can a single parameter be applicable
Frontiers in Plant Science 08
to the multi-species situation at the community level? How

can we explicitly incorporate spatial information in the modelling

(e.g.., distance of subsequently sampled individuals) and estimation

of biodiversity indices? We believe that many interesting questions

are open to be explored by ecologists to provide accurate

and reliable biodiversity indices in community ecology and

conservation studies.

Naturally, as George Box pointed out, “All models are wrong,

some are useful.” All statistical models should be used with caution.

Our sequential sampling protocol and the associated improvements

in the estimate of some well-known diversity metrics have limitations

if the sampling conditions do not follow the theoretical assumptions.

For example, if sampling areas have very heterogeneous landscape

conditions, the power of our proposed estimators (and other

estimators as well) will be affected. In addition, if ecologists

conducted original field sampling along dry roads but performed

the interpolation in boggy areas without roads.

In conclusion, it is important to recognise and understand

ecological mechanisms relevant to estimating bias for biodiversity

indices, as this may influence accuracy and may lead to incorrect or

even misleading comparisons of biodiversity levels between

ecological communities (Chen et al., 2018b). The present study
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FIGURE 3

The average bias (BIAS) and root mean squared error (RMSE) of the ML (maximum likelihood) estimator, the unbiased Rao’s index, and the proposed
estimators for the tree data sampled from the line transects in the 50-ha HSD forest plot.
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suggests that practical cost-effective spatial sampling methods

employed in biodiversity surveys can compromise the power of

common biodiversity indices, particularly when developed under

the simple assumption of independent sampling. To this end, the

present study is one of the first to model the non-independent

sampling issue in the collection of biodiversity data to provide a

more realistic and accurate estimate of biological diversity derived

from field-collected ecological data sets.
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