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Genome-wide identification,
phylogeny, and expression
analysis of GRF transcription
factors in pineapple
(Ananas comosus)

Wen Yi1†, Aiping Luan2†, Chaoyang Liu1, Jing Wu1, Wei Zhang1,
Ziqin Zhong1, Zhengpeng Wang1, Mingzhe Yang1,
Chengjie Chen1* and Yehua He1*

1Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China,
Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University,
Guangzhou, China, 2Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical
Agricultural Sciences, Haikou, China
Background: Pineapple is the only commercially grown fruit crop in the

Bromeliaceae family and has significant agricultural, industrial, economic, and

ornamental value. GRF (growth-regulating factor) proteins are important

transcription factors that have evolved in seed plants (embryophytes). They

contain two conserved domains, QLQ (Gln, Leu, Gln) and WRC (Trp, Arg, Cys),

and regulate multiple aspects of plant growth and stress response, including

floral organ development, leaf growth, and hormone responses. The GRF family

has been characterized in a number of plant species, but little is known about this

family in pineapple and other bromeliads.

Main discoveries: We identified eight GRF transcription factor genes in

pineapple, and phylogenetic analysis placed them into five subfamilies (I, III, IV,

V, VI). Segmental duplication appeared to be the major contributor to expansion

of the AcGRF family, and the family has undergone strong purifying selection

during evolution. Relative to that of other gene families, the gene structure of the

GRF family showed less conservation. Analysis of promoter cis-elements

suggested that AcGRF genes are widely involved in plant growth and

development. Transcriptome data and qRT-PCR results showed that, with the

exception of AcGRF5, the AcGRFs were preferentially expressed in the early stage

of floral organ development and AcGRF2 was strongly expressed in ovules.

Gibberellin treatment significantly induced AcGRF7/8 expression, suggesting

that these two genes may be involved in the molecular regulatory pathway by

which gibberellin promotes pineapple fruit expansion.
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Conclusion: AcGRF proteins appear to play a role in the regulation of floral organ

development and the response to gibberellin. The information reported here

provides a foundation for further study of the functions of AcGRF genes and the

traits they regulate.
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1 Introduction

Pineapple is one of the three most widely cultivated tropical

fruit crops in the world and the only commercially grown member

of the Bromeliaceae family (Lobo and Paull, 2017). Because of its

excellent flavor and texture, it has been called the queen of fruits

(Baruwa, 2013). Its unique shape, fiber content, and nutritional

value give it an important place in medicine and industry (Sanewski

et al., 2018). However, adverse environmental factors such as

temperature extremes, as well as changes in hormone levels, can

seriously affect pineapple growth and development, reducing yield

and quality. Exploring the mechanisms that regulate flower and

fruit development and stress responses is important for maintaining

the commercial value of pineapple.

Transcription factors regulate the ability of cells to express

different genes and thereby control development (Riechmann et al.,

2000; Levine and Tjian, 2003). Growth-regulating factor (GRF)

proteins are widespread transcription factors in plants, and their

highly conserved N-terminal QLQ and WRC domains are their

most prominent feature (Van der Knaap et al., 2000). These two

domains have different functions; the QLQ domain is involved in

protein interaction and is rich in aromatic/hydrophobic amino

acids (Kim and Kende, 2004), whereas the WRC domain

mediates DNA-binding ability (Osnato et al., 2010; Kim et al.,

2012; Kuijt et al., 2014).

Since the first GRF protein was discovered in rice (Oryza sativa)

(Van der Knaap et al., 2000; Omidbakhshfard et al., 2015), GRFs

have been shown to influence almost all plant growth and

developmental processes, including leaf growth (Kim and Kende,

2004; Kim and Lee, 2006; Arvidsson et al., 2011; Debernardi et al.,

2014; Wu et al., 2014; Zhang et al., 2021), floral organ development

(Arvidsson et al., 2011; Pu et al., 2012; Liang et al., 2013; Liu H.

et al., 2014; Pajoro et al., 2014; Lee et al., 2017), root development

(Bao et al., 2014), seed oil content (Bao et al., 2014), plant lifespan,

and stress responses (Kim et al., 2012; Casadevall et al., 2013; Liu J.

et al., 2014). Understanding the roles of GRFs is therefore important

for plant growth research and genetic improvement.

Recent studies have shown that AtGRFs from the model plant

Arabidopsis thaliana can significantly improve the transgenic

transformation efficiency of a variety of crops, in addition to

performing some of the functions above. For example,

overexpression of AtGRF5 and its orthologs increases

transformation efficiency, callus cell proliferation, and transgenic
02
bud formation in Beta vulgaris, corn (Zea mays), soybean (Glycine

max), and Helianthus annuus (Debernardi et al., 2020; Kong et al.,

2020). Expression of a GRF4–GIF1 fusion protein significantly

increased the regeneration efficiency, regeneration rate, and

somatic embryogenesis of wheat (Triticum aestivum) and rice

(Oryza sativa) (Debernardi et al., 2020). Although there are

multiple literature reports on the functions of GRF family

members, detailed genome-wide phylogenetic and functional

studies of GRF genes are not yet available for pineapple or

other bromeliads.

To better understand the evolutionary dynamics of GRF genes

in pineapple and explore their potential regulatory roles in flower

and fruit development and hormone and stress responses, we

identified eight AcGRF genes in pineapple and performed a series

of analyses, documenting their chromosome locations, motif

compositions, evolutionary relationships, genomic collinearity,

and selection pressure. We also investigated the potential roles of

these AcGRFs using interaction network prediction and gene

expression analysis. These results provide insights into the

functions of GRF family members in pineapple growth

and development.
2 Materials and methods

2.1 Data sources and sequence retrieval

All protein sequences of pineapple were obtained from the

Pineapple Genome Project (Ming et al., 2015). Sequences of nine A.

thaliana GRF genes and 12 rice GRF genes were obtained from

previous studies (Kim et al., 2003; Choi et al., 2004). The

corresponding protein sequences were downloaded from the

Arabidopsis Information Resource Library (TAIR) (http://

www.arabidopsis.org/) and the UniProt Database (https://

www.uniprot.org) (Boutet et al., 2016; Cheng et al., 2017). Protein

sequences from Phalaenopsis equestris and Nymphaea colorata were

obtained from recent studies (Zhang et al., 2017; Zhang and Chen,

2019), and the Amborella trichopoda proteins were downloaded

from the PLAZA database (https://bioinformatics.psb.ugent.be/

plaza/) (Van Bel et al., 2017). Protein sequences for Vitis vinifera,

Sorghum bicolor,Musa acuminata, and other species were obtained

from Phytozome (http://www.phytozome.net/).
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2.2 Identification and classification of GRFs

We used two strategies to identifyGRF genes in pineapple. First, we

performed a local BlastP search of pineapple protein sequences using

GRF protein sequences from A. thaliana as queries. We then obtained

hidden Markov models of the QLQ (PF08880) and WRC (PF08879)

domains from the Pfam database (http://pfam.xfam.org/) and used

them to query the pineapple protein files using TBtools with an E value

of 1e−10 (Chen C. et al., 2020). We identified 21 protein sequences as

candidate GRFs in pineapple. We confirmed the presence of GRF core

sequences using the Batch CD-Search and SMART programs, further

examining all candidate genes that appeared to contain QLQ andWRC

domains in the BlastP and HMMER search results. Each candidate

gene was then manually checked, and the structurally annotated gene

was corrected to ensure that there were conserved heptapeptide

sequences at the N terminus of the predicted QLQ and WRC

domains. Thirteen protein sequences with no or incomplete QLQ or

WRC domains were removed. We identified GRF genes in 23

additional species using the same method, and the complete set of

GRF protein sequences was used to study their evolutionary

relationships. The ExPASy ProtParam database (https://

web.expasy.org/protparam/) was used to analyze the physicochemical

properties of the AcGRF genes/proteins, including coding region

length, number of amino acids, molecular weight (MW), and

theoretical isoelectric point (pI).

The subcellular localizations of the AcGRFs were predicted using

Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/#), the

transmembrane domains using TMHMM (http://www.cbs.dtu.dk/

services/TMHMM/), and the signal peptides using SignalP (http://

www.cbs.dtu.dk/services/SignalP/).

We next characterized the evolutionary relationships among GRF

genes from various species and assigned the putative pineapple GRF

genes to specific subfamilies. Multiple-sequence alignments of amino

acid sequences were constructed usingMAFFT with default parameters,

and a species-tree of 26 taxons was constructed using their protein

sequences with the maximum likelihood method and 1,000 bootstrap

replicates in OrthoFinder with the following parameters: orthofinder -f

dataset -M msa -S diamond -t fasttree -t 16 -a 16.
2.3 Chromosome locations, gene
structures, and conserved motifs of
the AcGRFs

We obtained chromosome locations and genetic structures of

each AcGRF gene from the pineapple genome annotation file (Ming

et al., 2015). The data were then integrated and plotted using

TBtools (Chen C. et al., 2020). We identified conserved motifs

shared among the AcGRF proteins (Bailey et al., 2009) using MEME

tools with the following parameters: maximum number of cardinal

orders, 10; minimum width, 20; maximum width, 50.
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2.4 Duplication, collinearity, and
evolutionary analysis of the AcGRF
gene family

We performed collinearity analysis using the method described

in TBtools (Chen et al., 2022). We first prepared the pineapple

genome and annotation file, then used it as input for collinearity

analysis using the “One Step MCScanX Wrapper” function with the

following parameters: CPUs for BlastP, 8; e-value, 1e−3; number of

blast hits, 10. Dispersed, proximal, tandem, and segmental/WGD

duplicates in the AcGRF family were identified using TBtools. We

connected segmentally duplicated gene pairs by red and green arcs

in the Circos plot. We also performed collinearity analysis of GRF

genes in pineapple and other plant species, including A. thaliana, V.

vinifera, A. trichopoda, N. colorata, O. sativa, S. bicolor, M.

acuminata, Phalaenopsis equestris, and Spirodela polyrhiza.

TBtools was used to visualize a portion of the results.
2.5 Identification of cis-elements in the
AcGRF promoters

The 2,000-bp sequence upstream of each AcGRF gene was

extracted using TBtools and defined as the promoter region.

PlantCARE software (http://bioinformatics.psb.ugent.be/webtools/

plantcare/html/) was then used to predict the cis-elements in the

promoter region (Lescot, 2002), and the results were visualized

using TBtools.
2.6 Expression profiles of AcGRF genes in
different pineapple tissues

Earlier transcriptome studies have generated data on AcGRF

gene expression in floral organs at different developmental stages

(Wang et al., 2020) and in various fruit tissues during development

(Mao et al., 2018). The transcriptome data from both projects were

downloaded from NCBI using the project IDs PRJEB38680 and

PRJNA483249. The two datasets were analyzed separately using

FPKM values. TBtools was used to transform the FPKM values to

log2(FPKM+1) values and generate an expression heatmap for the

relevant genes.
2.7 Hormone and stress treatments, RNA
extraction, and RT-PCR

Well-grown “Shenwan” calli were sampled after exposure to 0.1

mM jasmonic acid (JA), 0.1 mM abscisic acid (ABA), 0.1 mM auxin

(IAA), 0.1 mM gibberellin (GA), or 150 mM NaCl in suspension

culture medium for 0, 4, 8, 16, 24, 36, and 48 h. All materials were

immediately frozen in liquid nitrogen and stored at −80°C for

subsequent RNA extraction.
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The CWBIO RNApure Plant Kit (DNase I) was used to extract

total RNA. RNA quality was checked by agarose gel electrophoresis,

and RNA concentration was estimated using a Nanodrop ND-1000

spectrophotometer. First-strand cDNA was synthesized from

DNA-free RNA using the HiScript II First-Strand cDNA

Synthesis Kit (YEASEN) according to the manufacturer’s

protocol. qRT-PCR was performed on a Roche LightCycler 480

instrument with SYBR Green Master Mix (YEASEN). The total

reaction volume was 10 mL and contained 5 mL SYBR mix, 0.4 mL
upstream and downstream primer mix (2.5 mM), 0.5 mL cDNA

template, and 4.1 mL ddH2O. Each reaction was performed in

triplicate. The reaction conditions were 95°C for 30 s, followed by

40 cycles of 95°C for 10 s and 60°C for 30 s. Relative gene expression

was calculated by the 2−DDCt method with b-actin as the internal

reference gene. Primer sequences used in this study are provided in

Table S10.
2.8 Protein–protein interaction
network prediction

All AcGRF protein sequences were submitted to the STRING

website (http://string-db.org), and their rice orthologs were selected

as a reference. After completing the BLAST step, the network was

built using the proteins with the highest scores (bitscores). Proteins

that were not predicted to interact with any other proteins

were removed.
2.9 miRNA target prediction for AcGRFs

Pineapple miRNAs were obtained from previous studies (Yusuf

et al., 2015), and AcGRF genes targeted by miRNAs were predicted

using psRNATarget (https://www.zhaolab.org/psRNATarget/) with
Frontiers in Plant Science 04
default parameters while selecting target accessibility as described in

Dai et al. (2018). We visualized the interactions among the

predicted miRNAs and the corresponding target AcGRF genes

using TBtools v1.106.
3 Results and analysis

3.1 Physicochemical properties of AcGRF
transcription factors

We identified eight GRF gene family members with intact QLQ

and WRC domains in pineapple and named them AcGRF1 to

AcGRF8 based on their chromosome locations (Table 1). The

eight GRFs encoded proteins with 249 (AcGRF4) to 612

(AcGRF6) amino acids, molecular weights (MWs) from 25.1 kDa

(AcGRF4) to 65.7 kDa (AcGRF7), and isoelectric points (pIs) from

6.57 (AcGRF5) to 9.63 (AcGRF4). All AcGRF proteins had a

negative hydrophilicity score (GRAVY), indicating that they are

hydrophilic proteins. Subcellular localization predictions indicated

that seven AcGRF proteins were localized to the nucleus and

AcGRF4 was localized to the cell membrane.
3.2 Characterization of AcGRF sequences

All the pineapple GRFs contained a highly conserved WRC

protein domain with the RTDGKKWRCmotif. Seven contained the

canonical QLQ (Gln-Leu-Gln) motif; the exception was AcGRF5, in

which Leu was replaced by Met (Gln-Met-Gln) (Figure 1A). A

similar result was reported in A. thaliana, in which the Leu in

AtGRF9 is replaced by Phe (Kim et al., 2003).

The scattered distribution of AcGRF gene members on different

chromosomes is shown in Figure 1B. There are two GRF genes on
TABLE 1 Characteristics of AcGRFs.

Gene
name

Gene ID Chr location CDS
(bp)

Exon
no.

Protein length
(aa)

MW
(kDa)

pI GRAVY
score

Subcellular locali-
zation

AcGRF1 Aco009479 LG01:1916306-
1917558

903 2 300 33.4 8.18 −0.519 Nucleus

AcGRF2 Aco023268 LG02:11260633-
11262425

1,167 4 388 43.3 7.74 −0.887 Nucleus

AcGRF3 Aco020046 LG03:9349100-
9351207

927 3 308 34.4 9.00 −0.530 Nucleus

AcGRF4 Aco015543 LG03:12472433-
12473582

750 3 249 25.1 9.63 −0.077 Cell membrane

AcGRF5 Aco015755 LG09:10903631-
10910491

831 4 276 30.8 6.57 −0.852 Nucleus

AcGRF6 Aco000277 LG12:3038602-
3042504

1,839 4 612 64.7 8.03 −0.502 Nucleus

AcGRF7 Aco013343 LG15:11084401-
11088716

1,821 4 606 65.7 9.16 −0.711 Nucleus

AcGRF8 Aco013172 LG24:222856-
228237

1,200 5 399 43.9 8.80 −0.539 Nucleus
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chromosome 3, but they are physically distant. Most AcGRF genes

tend to cluster in regions with higher gene density.

A conserved motif search was performed on the eight AcGRF

proteins, and the number of conserved motifs in individual proteins

ranged from 3 to 9. Motifs 1 and 2 were components of the WRC

and QLQ domains, respectively, and were present in all GRF

proteins, whereas other motifs were only present in certain

members. AcGRF proteins in the same subgroup had similar

motif compositions (Figures 1C–E, S1). Exon numbers ranged

from 2 to 5, and most GRF genes did not have 5′ or 3′ UTR
annotation information (Figure 1F). Four was the most common

number of exons (4 AcGRF genes), followed by three (2 genes).
Frontiers in Plant Science 05
3.3 Phylogenetic relationships
of the AcGRFs

To reveal the evolutionary relationships among GRF genes from

various species, we constructed a phylogenetic tree of GRFs from 26

species (Figure 2A). GRF genes were identified from 23 additional

plant species and two algal species using the same method applied

to pineapples (Figures 2B, C). Most species had around 10 GRF

genes; exceptions included Marchantia polymorpha and

Physcomitrella patens (1), Musa acuminata (19), and Gossypium

raimondii (41) (Figure 2B). We constructed phylogenetic trees of

the GRF protein sequences from these species using the maximum
B

C D E F

A

FIGURE 1

Conserved sequences, chromosomal distribution, gene structures, and motif patterns of AcGRF genes and their encoded proteins. (A) Conserved
sequences in AcGRF genes. The QLQ and WRC domains are marked with a red rectangular box, and the amino acids replaced in the QLQ domain
are indicated in a red font. (B) Chromosomal distribution of AcGRF genes. The sliding window size was set to 100 kb, and the color from red to blue
indicates high to low gene density. Blank areas on chromosomes are genetic regions for which information on gene distribution is lacking.
(C) Phylogenetic clustering of AcGRF proteins. (D) Motif patterns of AcGRF proteins. (E) Conserved domains in AcGRF proteins. (F) AcGRF gene
structures. Yellow boxes indicate 5′ and 3′ UTR regions; green boxes indicate exons; black lines represent introns; and the number (0–2) indicates
the intron phase.
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likelihood method, dividing them into specific subfamilies

(Figures 2C, S2; Table S1). Pineapples contained members of all

subfamilies except subfamily II: AcGRF6/7 in subfamily I, AcGRF1/

2 in subfamily III, AcGRF4/5 in subfamily V, and AcGRF3 and

AcGRF8 in subfamilies IV and VI, respectively (Figure S2). Across

all species, subfamily I had the most members, followed by

subfamilies III, VI, and V (Figure 2C), which accounted for

21.38%, 18.42%, 17.10%, and 16.78% of all GRF genes in the 26

species, respectively. Interestingly, GRF genes from bryophytes and

ferns were not grouped into any of the six subfamilies but were

present in a separate outer group. GRFs from basal angiosperms

(i.e., N. colorata and A. trichopoda) were found in three of the six

subfamilies, and some were in the outer group. Banana (no

subfamily IV) and pineapple (no subfamily II) contained

members of five GRF subfamilies, and other monocots contained

members of only four subfamilies (no subfamilies II or IV). All

dicots contained members of all six subfamilies, with the exception

of soybean, which lacked members of subfamily V.
3.4 Origins of AcGRF gene members

Gene duplication is thought to be the main driver of species

evolution and a direct cause of gene family expansion (Lynch and

Conery, 2000; Moore and Purugganan, 2003; Maere et al., 2005).

Pineapple experienced two whole-genome duplication (WGD)

events in its early evolution, corresponding to two peaks in Figure
Frontiers in Plant Science 06
S3. We searched for tandem and segmental duplicates among the

AcGRFs (Tables S2, S3) and visualized them using the Circos plot

(Figure 3A). Expansion of the AcGRF gene family appeared to have

occurred mainly through segmental duplication, and no tandem

duplication events were found. There was one segmentally

duplicated gene pair (Figure 3A); the AcGRF1–AcGRF2 gene pair

was associated with the WGD events of pineapple.

To understand the ancestral relationships among AcGRF genes

and GRF genes from other species, we examined collinear

relationships among genes from pineapple and two core eudicots

(A. thaliana, V. vinifera), two basal angiosperms (A. trichopoda, N.

colorata), and five core monocots (O. sativa, S. bicolor, P. equestris,

M. acuminata, and S. polyrhiza). Four GRF genes from A. thaliana

had collinear relationships with AcGRF genes from pineapple; the

numbers of collinear genes in other species were 7 in V. vinifera, 14

inM. acuminata, 9 in O. sativa, 6 in S. bicolor, 9 in S. polyrhiza, 2 in

P. equestris, and 3 in N. colorata (Table S4; Figures 3B, C). AcGRF2

had collinear relationships with gene(s) in all species except N.

colorata; the collinear block in which AcGRF1 is located is present

in species other than rice (O. sativa) and S. bicolor, and the collinear

block in which AcGRF4 is located is present in species except A.

thaliana and P. equestris. Interestingly, AcGRF5-related collinear

blocks were found only in O. sativa, and AcGRF3-related blocks

were found only in water lilies (N. colorata). We next calculated the

Ka/Ks (non-synonymous/synonymous substitution ratio) values of

AcGRF genes and their orthologs in nine other species (Tables S4,

S5; Figure 3D). All AcGRF orthologous gene pairs had Ka/Ks values
B CA

FIGURE 2

Evolutionary relationships among 26 species and their GRF gene compositions. (A) Phylogenetic relationships among 26 species. (B) Numbers of
GRF genes in different species. (C) Distribution of GRF genes in various subfamilies. Phylogenetic analyses of 26 species were performed using
OrthoFinder (Emms and Kelly, 2019). The GRF genes in pineapple are marked with a red rectangular box.
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less than 1, indicating that the AcGRF gene family has experienced

strong purifying selection during evolution.
3.5 Promoter analysis and expression of
AcGRF genes

Gene promoters interact with DNA or regulatory proteins to

control gene expression (Biłas et al., 2016). We extracted promoter

sequences from the pineapple GRF genes (2,000 bp upstream of the

start codon) and identified their cis-acting elements. A total of 156

cis-elements were detected in the promoter regions of the AcGRF

genes and were divided into three classes (Figures 4A, B and Table

S6). Hormone response elements included those responsive to IAA

(4; 2.56%), GA (4; 2.56%), ABA (14; 8.97%), JA (10; 6.41%), and

salicylic acid (5; 3.21%). With the exception of subfamily III

members (AcGRF1/2), the promoter regions of all other subfamily

members contained JA and ABA response elements. Growth- and

development-related elements included those related to meristem

expression (3; 1.92%; present in AcGRF1 and AcGRF8), endosperm

expression (4; 2.56%; present in AcGRF1/2/7), light response (72;

46.15%; present in all AcGRF genes), and circadian rhythm control
Frontiers in Plant Science 07
(1; 0.64%; present in AcGRF4). Stress response elements included

those related to drought induction (5; 3.21%), low temperature

response (2; 1.28%), and anaerobic induction (25; 16.03%).

Anaerobic induction elements were present in all genes except

AcGRF5, and other response elements were unevenly distributed

among the AcGRFs.

Studies have reported that GRF genes have a positive regulatory

effect on callus proliferation (Kong et al., 2020), and GRF genes

regulate plant growth and development by regulating GA, IAA, and

ABA (Kim et al., 2012; Chen Y. et al., 2020; Huang et al., 2022). To

investigate whether the expression of AcGRF genes is affected by

abiotic stress and hormone treatments, we measured the expression

of seven AcGRF family members by qRT-PCR after exposure to

different hormones or 150 mM NaCl (Figure 4C). AcGRF1

expression was induced by all tested treatments. The expression

of AcGRF1 and AcGRF5 gradually increased with ABA exposure

time, whereas that of AcGRF6 showed the opposite trend. GA

significantly induced AcGRF1, AcGRF7, and AcGRF8 expression

and inhibited that of AcGRF2 and AcGRF6. JA significantly induced

the expression of AcGRF6. IAA significantly induced the expression

of AcGRF8 but inhibited that of AcGRF6. Most AcGRF genes

increased in expression with increasing duration of NaCl
B

C D

A

FIGURE 3

Collinearity and Ka/Ks analyses of pineapple AcGRFs and their homologs in other species. (A) Circos plot of pineapple collinear homologous genes.
Genome-wide collinear blocks are set against a gray background, and duplicate AcGRF gene pairs are highlighted by red and green curves. Each
pineapple chromosome is accompanied by 100 kb of gene density information, depicted by heat maps and waveform maps. (B) Collinearity of GRF
genes in pineapple and six representative species. Same-line blocks are set to a gray background, and collinear GRF genes are highlighted with red
curves. (C) Venn diagram of non-redundant collinear GRF genes in pineapple and other species. (D) Box plot of Ka/Ks ratios of GRF orthologs.
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exposure. AcGRF8 had the highest expression levels during ABA

and GA treatment, with relative expression levels of 110 and 387,

respectively, and AcGRF7 had a relative expression level of 237 after

GA treatment. These findings suggest potential roles for AcGRF

genes under different hormone treatments and stress conditions.

We next analyzed the expression profiles of GRF genes at

different developmental stages of pineapple tissues using our

previously reported transcriptome data (Mao et al., 2018)

(Figure 5 and Table S7). The analysis included roots, stems,

leaves, petals, stamens, pistils, discs, peduncles, ovules, ovaries,

fruit hearts, bracts, sepals, and placenta (Figure 5A). In general,

GRF genes from the same clade tended to exhibit similar expression

patterns. Subfamily I members AcGRF6 and AcGRF7 showed a

similar expression in nearly all tissues tested. Interestingly, almost

all AcGRF genes were relatively highly expressed in the early stages

of floral organ development (Figure 5A), with the exception of

AcGRF5, which was relatively highly expressed in the late

developmental stages of most tissues.

To determine whether individual AcGRF genes are

associated with specific developmental stages of pineapple
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floral organs, we analyzed transcriptome data from five floral

organs (sepals, petals, stamens, pistils, and ovules) at different

developmental stages (Wang et al., 2020). Almost all AcGRF

genes showed the highest expression in ovules at all stages of

development, followed by stamens; the only exception was

AcGRF3, which was specifically expressed in pistils (Figure 5B

and Table S8).

To better visualize the different expression patterns of AcGRF

genes in various tissues, we created cartoon heatmaps of relevant gene

expression from all pineapple GRFs (Figure 5C). Subfamily III

member AcGRF1 was highly expressed in petals, stamens, and

pistils. AcGRF2 was highly expressed in petals and ovules, and

subfamily VI member AcGRF8 was expressed at higher levels in

pistils and ovules. Subfamily I members AcGRF6 and AcGRF7 were

highly expressed in petals, pistils, and ovules.AcGRF4 from subfamily

V was highly expressed in pistils, and AcGRF5 was highly expressed

in bracts, sepals, and ovules. Subfamily IV member AcGRF3 showed

relatively high expression in petals. The expression patterns of

AcGRF genes thus differ among pineapple tissues, suggesting their

potential regulatory roles in pineapple development.
B

C

A

FIGURE 4

cis-Elements in AcGRF gene promoters and AcGRF expression profiles under hormone and salt stress treatments. (A) cis-Acting elements in the
2,000-bp region upstream of the AcGRF genes. (B) Distribution of cis-Acting elements of the AcGRF genes. (C) AcGRF gene expression profiles
under different hormone and salt stress treatments. Data were normalized to the expression of b-actin and expressed as mean ± standard deviation.
Different lowercase letters indicate significant differences between treatment times (P < 0.01, F test).
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3.6 Predicted protein interaction network
of AcGRFs

A predicted protein interaction network indicated that AcGRFs

had multiple interaction partners (Figure 6A), including growth
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regulator interaction factor 1 (GIF1), the TCP (teosinte branched1/

cincinnata/proliferating cell factor) transcription factor PCF5, and

the YABBY transcription factor YAB2. With the exception of

AcGRF1/3/4, all other members interacted with one or more

proteins. AcGRF2/5/6/7/8 were predicted to interact with 6, 2, 5,
B

C

A

FIGURE 5

Expression of AcGRF genes in different tissues of pineapple. (A) Clustered heat map showing the expression patterns of AcGRF genes in various
tissues at different developmental stages. (B) Expression heat map of AcGRF genes in five floral organs (stamens, pistils, ovules, sepals, and petals) of
pineapple at different developmental stages: four stages of sepals (S1–S4), three of petals (S1–S3), five of stamens (S1–S5), and seven of pistils (S1–
S7) and ovules (S1–S7). Relative gene expression is quantified as log2(FPKM+1). Blue, white, and red indicate low, medium, and high expression levels.
(C) Cartoon heatmap showing the expression patterns of AcGRF genes from different clades in different tissues.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1159223
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yi et al. 10.3389/fpls.2023.1159223
4, and 2 proteins, respectively. There were also predicted

interactions between the AcGRF proteins themselves.

We next performed miRNA target site prediction for the AcGRF

genes. As shown in Figure 6B, six AcGRF genes were predicted to be

targeted by two miRNAs (miRNA164/miRNA396). AcGRF6/7

contained targets for both miRNAs, whereas AcGRF1/2/4/8

contained targets for miRNA396 only (Table S9). Interestingly, all

miRNA target sites were located in the CDS regions.
4 Discussion

GRF proteins regulate important processes in plant biology,

including leaf growth, floral organ development, root development,

seed oi l content , plant l i fespan, and stress response

(Omidbakhshfard et al., 2015). Pineapple is the third most

important tropical fruit crop in the world after bananas and

citrus, and various biotic and abiotic stresses have a significant

impact on its yield and quality. Although GRF genes have been

studied in other plant species, they have not yet been characterized

in the bromeliad family. We therefore identified the GRF genes in

pineapple, analyzed their evolutionary relationships, compared

their sequence features, and analyzed their expression patterns in

response to hormone and salt stress treatments.
4.1 Identification, classification, and
characteristics of the AcGRF genes

We identified eight AcGRF proteins from the pineapple genome

and assigned them to five subfamilies on the basis of phylogenetic

analysis (Figures 2A, C). Pineapple has fewer GRF genes than the

monocots banana (18) and maize (18) but a similar number to

Setaria italica and S. bicolor. This suggests that GRF family

expansion in monocots may be associated mainly with lineage-

specific WGD events. Pineapple contained members of five of the
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six major GRF subfamilies, similar to rice (four major subfamilies),

banana (5), B. distachyon (4), A. thaliana (5), soybean (5), and B.

rapa (5) and more than non-angiosperm species such as M.

polymorpha (0), S. moellendorffii (0), and Pinus taeda (1).

Notably, genes that fell outside the main subfamilies were found

only in algae, ferns, gymnosperms, basal angiosperms, and

Brachypodium distachyon; they may have been preserved from

more ancient duplication events or acquired only in specific

clades. Among monocots, there were five GRF subfamilies in

banana (missing subfamily IV) and pineapple (missing subfamily

II) and four subfamilies in other species (missing both subfamily II

and subfamily IV). By contrast, all dicots except soybean (missing

subfamily V) contained members of all six subfamilies. These

results suggest that the preservation of specific subfamilies may

vary among species with different evolutionary histories. Several

genomic evolutionary models have been proposed in model species

on the basis of comparative genomic analysis (Wolfe and Shields,

1997; Moore and Purugganan, 2003; Hurley et al., 2005). If

duplicated genes are retained, they tend to diverge in their

regulatory and coding regions, and differences in coding regions,

especially those that alter gene function, may cause amino acid

changes or substitutions or changes in exon/intron structure (Xu

et al., 2012). In general, proteins from the same family have

relatively conserved intron/exon structures, such as b-expansins
in A. thaliana and rice (Lee and Kende, 2001). However, the

number and length of introns are not conserved in GRF genes

from pineapple, A. thaliana, and rice (Figure 1C), even within the

same subfamily, and GRF genes are randomly distributed in the

genome (Table 1 and Figure 1B). This suggests that no recent

duplication events have occurred in the GRF gene family and that

expansions in this gene family reflect early duplication events.

Gain and loss of exons/introns and differences in exon/intron

length can result from chromosome rearrangement and fusion (Zan

et al., 2020). In pineapple, AcGRF2 contains three introns, whereas

its paralog AcGRF1 contains only one intron. Likewise, intron

lengths were much greater in AcGRF5 than in its paraphyletic
BA

FIGURE 6

Predicted protein interaction network of AcGRF proteins and miRNA target sites in AcGRF genes. (A) Protein interaction network predicted using
AcGRF orthologs from rice. (B) Predicted miRNA targets in the AcGRF genes. The scissors represent the miRNA and its targeted AcGRF gene, with
penalty score ≤5 and lower expectations indicating higher prediction accuracy.
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homologous gene AcGRF4. We therefore speculate that differences

in intron/exon length or number may have led to different

biological functions for AcGRF4 and AcGRF5. Previous studies

have reported that the N-terminal QLQ domain is involved in

protein–protein interactions (Kim et al., 2003; Kim and Kende,

2004). Here, we found that the QLQ motif of AcGRF5 is actually

Gln-Met-Gln, with a Met substituted for Leu (Figure 1A), similar to

that of A. thaliana AtGRF9 in which Phe is substituted for Leu (Kim

et al., 2003). The mutated QLQ domain of AcGRF5 may lead to

alterations in its protein interaction activity.
4.2 Evolution of the AcGRF genes

Gene duplication, including tandem, segmental, and whole-

genome duplication, is one of the main drivers of genome evolution

(Moore and Purugganan, 2003), and most seed plants have

experienced one or more WGD events in their evolutionary

history (Rensing et al., 2007). Pineapple has undergone at least

two WGD events (Ming et al., 2015; Ming et al., 2016) (Figure S3),

and its gene family expansion reflects the effects of WGDs, as well as

tandem and segmental duplications. In this study, we analyzed the

presence of GRF genes in 26 species, including algae, mosses,

angiosperms, and gymnosperms (Figures 2B, C). GRF genes were

present in all species except algae, suggesting that GRF genes

appeared in land plants and may have supported their terrestrial

adaptation. Two of the eight pineapple GRF genes were associated

with segmental duplication events (Figure 3A), consistent with

findings in wheat that 26 of 30 GRF genes were associated with

such events (Zan et al., 2020). This suggests that segmental

duplication may have played an important role in the early

expansion of the GRF gene family. The number of AcGRF genes

was significantly lower in pineapple than in banana (18) compared

with other plants used for collinearity analysis, and it was similar to

the number of GRF genes in other plant species (Osnato et al., 2010;

Kim et al., 2012; Debernardi et al., 2014; Kuijt et al., 2014;

Omidbakhshfard et al., 2015). The large number of banana GRFs

may thus reflect banana-specific duplication events. Notably, there

was no significant correlation between the number of GRF genes

and genome size. For example, A. thaliana has nine GRFs and

pineapple has eight, despite the pineapple genome being 3.2 times

the size (375 Mb) (Ming et al., 2015) of the A. thaliana genome (115

Mb) (Hou et al., 2022). After identifying non-redundant GRF genes

that showed collinear relationships between pineapple and nine

other species, we found that an AcGRF5 ortholog was present only

in pineapple and rice and an AcGRF3 ortholog was present only in

pineapple and water lily (Figure 3C). This suggests that the

retention of gene family members can vary among species with

different evolutionary histories. All AcGRF orthologous genes had

Ka/Ks values less than 1 (Figure 3D), indicating that GRFs

experienced strong purifying selection during evolution.
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4.3 Inference of biological functions of
AcGRF genes

Because of the importance of pineapple as a tropical fruit crop

and ornamental plant, the mechanisms that regulate its flower and

fruit development are of significant interest. The biological

functions of pineapple AcGRF genes remain to be clarified, but

identification of their presumed orthologs in different species can

provide insight into their functions (Nehrt et al., 2011). GRF genes

have previously been studied in other species to characterize their

regulatory network and understand their functions in a wide range

of biological processes (Omidbakhshfard et al., 2015). Here, we used

GRFs with known functions in other species to infer potential

functions of their pineapple orthologs (Figure S4 and Figure 6).

Clade 2 includes AcGRF1/2, AtGRF6, and OsGRF1. Previous studies

have shown that AtGRF6 and OsGRF1 have a role in controlling leaf

size (Kim et al., 2003; Luo et al., 2005) and OsGRF1 also influences

rice stem elongation, juvenile growth, and panicle extension (Van

der Knaap et al., 2000; Luo et al., 2005). AcGRF1/2 in the same clade

were highly expressed in early developmental stages of petals and

ovules, suggesting that they may have similar functions in

pineapple. ZaGRF6, OsGRF3, and AcGRF8 were included in clade

3. Heterologous overexpression of ZaGRF6 increased branching

and chlorophyll synthesis and delayed aging in transgenic tobacco,

and ectopic overexpression of OsGRF3 in rice reduced tiller

numbers and induced the formation of ectopic roots and shoots

on the nodes (Kuijt et al., 2014; Zhang et al., 2021). Promoter

analysis revealed the presence of two ABA response elements and

one gibberellin response element in the AcGRF8 gene promoter,

and qRT-PCR results showed that AcGRF8 expression responded

significantly to ABA and GA treatment. These results suggest that

AcGRF8 may regulate pineapple aging and root and shoot

formation through the abscisic acid and gibberellin pathways.

Clade 5 included AcGRF4/5, AtGRF9, OsGRF10, and ZmGRF10.

In previous studies, overexpression of ZmGRF10 in maize led to

reductions in leaf size and plant height, and knockout and

overexpression of AtGRF9 made petals and other organs of A.

thaliana larger and smaller, respectively (Wu et al., 2014;

Omidbakhshfard et al., 2018). Here, AcGRF4 was preferentially

expressed in pistils and AcGRF5 in bracts, sepals, and ovules.

AcGRF4 and AcGRF5 have IAA response elements, and their

expression responded to increasing durations of IAA treatment.

We therefore suggest that AcGR4/5 may participate in the

regulation of floral organ and leaf size, plant height, and other

traits through the auxin pathway. Clade 6 included AcGRF3,

AtGRF7, and AtGRF8. Leaves of an AtGRF7 single-allele mutant

were reported to be smaller than those of the wild type (Kim et al.,

2012), but this phenomenon was not observed by Lee et al. (2022).

AtGRF8 has been reported to positively regulate cell proliferation

(Tsukaya, 2021). We found that AcGRF3 was preferentially

expressed in petals and contained GA-responsive elements in its
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promoter. We therefore speculate that AcGRF3 may regulate

pineapple cell proliferation, leaf size, and petal growth through

the GA pathway. Clade 8 included AcGRF6/7, PagGRF15, and

OsGRF7/8. PagGRF15 regulates leaf size through its effects on cell

expansion during poplar leaf development, and OsGRF7/8 influence

plant structure and leaf growth by regulating gibberellin and indole-

3-acetic acid metabolism. Here, AcGRF6 and AcGRF7 were

preferentially expressed in petals, pistils, and ovules. qRT-PCR

experiments showed that GA significantly induced the expression

of AcGRF7 but inhibited that of AcGRF6, and IAA significantly

inhibited AcGRF6. AcGRF6/7 may therefore regulate pineapple

flower and leaf development and plant structure through GA and

IAA pathways.
5 Conclusion

We identified eight GRF gene family members on seven

chromosomes of the pineapple genome and classified them into

five of six known subfamilies on the basis of phylogenetic analysis.

In contrast to other gene families, the GRFs showed little

conservation of gene structure and motif composition.

Collinearity analysis showed that early segmental duplications

promoted expansion of the pineapple GRF gene family, and

purifying selection was the main force acting on the GRF genes.

The paralogs AcGRF1 and AcGRF2 had different expression profiles

in different floral organs, perhaps related to their differences in

structure. Transcriptome data suggested that all AcGRF genes were

involved in regulation of floral organ development, and AcGRF1/2/

3/6/7 may have functionally redundant roles in petal development.

The AcGRF promoters contained cis-acting elements involved in

hormone response, developmental regulation, and stress response,

and changes in expression of AcGRFs under ABA, GA, IAA, JA, and

NaCl treatments may reflect their different regulatory effects.

Protein interactions between AcGRF proteins or with YABBY,

TCP, and AcGRF-miRNA may contribute to the formation of

more complex regulatory networks. These results support further

research on the functions and regulatory mechanisms of AcGRF

transcription factors during pineapple growth and development.
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