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Maize kernel metabolome
involved in resistance to
fusarium ear rot and
fumonisin contamination

Ana Cao1, Noemi Gesteiro1, Rogelio Santiago1,2,
Rosa Ana Malvar1,2 and Ana Butrón1*

1Misión Biológica de Galicia (CSIC), Pontevedra, Spain, 2Agrobiologı́a Ambiental, Calidad de Suelos y
Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Pontevedra, Spain
Fusarium verticillioides poses a threat to worldwide maize production due to its

ability to infect maize kernel and synthesize fumonisins that can be accumulated

above safety levels for humans and animals. Maize breeding has been proposed

as key tool to decrease kernel contamination with fumonisins, but metabolic

studies complementary to genomic approaches are necessary to disclose the

complexity of maize resistance. An untargeted metabolomic study was proposed

using inbreds genetically related but with contrasting levels of resistance in order

to uncover pathways implicated in resistance to Fusarium ear rot (FER) and

fumonisin contamination in themaize kernel and to look for possible biomarkers.

Metabolite determinations were performed in kernels collected at 3 and 10 days

after inoculation with F. verticillioides (dat). Discriminant metabolites between

resistant and susceptible RILs were rather found at 10 than 3 dat, although

metabolite differences at later stages of colonization could be driven by subtle

variations at earlier stages of infection. Within this context, differences for

membrane lipid homeostasis, methionine metabolism, and indolacetic acid

conjugation seemed highly relevant to distinguish between resistant and

susceptible inbreds, confirming the polygenic nature of resistance to FER and

fumonisin contamination in the maize kernels. Nevertheless, some specific

metabolites such as the polyamine spermidine and/or the alkaloid isoquinoline

seemed to be promising indirect selection traits to improve resistance to FER and

reduce fumonisin accumulation. Therefore, in vitro and in vivo experiments will

be necessary to validate the inhibitory effects of these compounds on

fumonisins biosynthesis.
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Introduction

Fusarium verticillioides poses a threat to worldwide maize

production because maize kernels infected with this fungus can

accumulate fumonisins above safety levels for animal and human

health. Fumonisin accumulation is mainly determined by

environmental conditions, but there is wide genetic variability in

maize for resistance to fumonisin accumulation that can be used to

generate maize varieties with reduced fumonisin content (Eller et al,

2008; Santiago et al, 2015). However, breeding gains are hindered by

the complex inheritance of kernel resistance to fumonisin

accumulation due to the highly polygenic nature of the trait and

the large effect of the genotype x environment interaction (Santiago

et al, 2020). In such scenario, the predictive power of genetic data

can be significantly improved when combined with metabolic

measurements, because metabolites are the result of both genetic

and environmental factors and, as such, provide great potential to

bridge knowledge between genotype and phenotype (Gartner et al,

2009; Schrimpe-Rutledge et al, 2016). In this sense, untargeted

metabolomics offers a discovery and hypothesis-generating

approach to provide new biomarkers to be used in plant

breeding, as well as valuable insights into the pathways used by

maize to limit kernel contamination with fumonisins (Gauthier

et al, 2015; Ribbenstedt et al, 2018). In addition, these metabolic

studies could complement and/or corroborate results previously

obtained by using transcriptomic and proteomic approaches

(Lanubile et al., 2010; Lanubile et al., 2012; Campos-Bermudez

et al., 2013; Yuan et al., 2013; Lanubile et al., 2014; Wang et al., 2016;

Lanubile et al., 2017; Cao et al., 2022).

Campos-Bermudez et al. (2013) studied the transcriptomic and

metabolomic changes associated to kernel infection by F.

verticillioides in mature kernels of two unrelated inbreds with

different performance against infection by F. verticillioides. These

authors found no significant changes in transcriptional and

metabolomic profiles between resistant and susceptible inbreds,

and they suggested that a constitutive defense mechanism may

confer the resistant inbred an advantage against F. verticillioides

infection. Righetti et al. (2019) investigated differences in mature

kernel metabolic profiles among three maize commercial hybrids

under natural inoculation at open-field conditions and concluded

that the maize lipid signature was strongly involved in the maize-F.

verticillioides interaction and in the modulation of fumonisin

accumulation; maize lipidome signature being genotype

dependent. However, as metabolic differences among unrelated

genotypes with contrasting values for resistance to fumonisin

contamination could be attributed to genes related to resistance

but also to many other genes these genotypes differ for,

metabolomic studies aimed at identifying relevant biomarkers of

genotype resistance should be performed with genotypes genetically

related to avoid the possible biased caused by the genetic

background. Ciasca et al. (2020) studied the metabolomics

changes of two maize recombinant inbred lines with contrasting

phenotypes obtained from the same cross, but they sampled

germinated kernels instead of intact kernels. In the current study,

we propose to compare the metabolomes of recombinant inbred

lines (RILs) derived from the same cross but differing for resistance
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to kernel contamination with fumonisins to eliminate as much as

possible the influence of genetic background on metabolic

differences. Four different RILs were included in each category,

resistant and susceptible, and would be identical in one or more

genomic regions implicated in resistance but arbitrary in all

unlinked regions (Michelmore et al, 1991). Specifically, this study

was focused on maize metabolomics of immature kernels since

genotype-driven specific resistance factors could act at the

beginning of maize colonization by the fungus and would be no

longer detectable at the harvest stage (Righetti et al, 2021). In this

sense, authors have reported that fumonisin production can be

initiated during late-milk stage (approximately 18 days after

pollination), but plant resistance mechanisms appear to became

relevant for reducing fumonisin accumulation between 22 and 29

days after pollination (Picot et al, 2011; Maschietto et al, 2015).

Therefore, in order to find compounds in developing maize kernels

that contribute most to the resistance to fumonisin accumulation,

kernels should be harvested at the milk-dough stage (Atanasova-

Penichon et al, 2014). Taking all this into account the main

objectives of this study were (i) to uncover metabolic pathways

implicated in resistance to FER and fumonisin contamination in the

maize kernel and (ii) to identify possible biomarkers to be used in

future breeding programs.
Materials and methods

Experiment setup and sample collection

Eight RILs of maize were selected from a set of 144 RILs derived

from the cross between the European flint inbred line EP42

(susceptible to FER and kernel contamination with fumonisins)

and the American dent inbred line A637 (resistant), and previously

genotyped and phenotyped for FER and kernel fumonisin content

under inoculation with F. verticillioides (Santiago et al, 2013;

Samayoa et al, 2014; Cao et al, 2022). The four RILs with the

lowest values (resistant) for fumonisin content (10-15 µg/g) and

FER (~ 2 in a visual scale from 1 to 7) along with the four RILs with

the highest values (susceptible) for fumonisin content (55-75 µg/g)

and FER (~ 4) were selected based on previous evaluations

(Supplementary Table 1) (Cao et al., 2022). In 2018, 15 seeds

from each RIL were sown in a single row of 3.5 m; distance

between adjacent rows being 0.8 m. RILs were arranged in four

pairs, each pair formed with one resistant and one susceptible RIL.

RILs within each pair were planted in adjacent rows in order to

minimize the contribution of field heterogeneity to differential

metabolite content between resistant and susceptible inbreds. We

self-crossed at least six plants per RIL, and 15 days later the main ear

of each plant was inoculated, using a kernel inoculation technique

(Cao et al., 2014), with a spore suspension of F. verticillioides as

previously described (Cao et al, 2022). Ears were individually

collected at 3 or 10 days after inoculation treatment (dat) (18 and

25 days after pollination, respectively). Immediately, undamaged

immature kernels around the inoculation point were carefully

collected into closed cap tubes kept in liquid nitrogen and stored

at – 80 °C until lyophilization. Three biological replicates (ears)
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were obtained for each RIL and sampling date, except for one

susceptible RIL at the 3-day sampling date for which no ears

were obtained.
Metabolite extraction

Lyophilized kernels were ground in a mortar and 20 mg per

sample were extracted twice with 1 ml of 75% methanol in acetate

buffer, mixed in a vortex, sonicated (ultrasonic bath 30 Hz for 5

min) and centrifuged (20,000 g for 10 min). The supernatants were

combined and filtered through a 0.22 µm PTFE membrane filter to

an Eppendorf tube and an aliquot was transferred to a certified vial.

Samples were stored at 4° C until analysis. For MS/MS analysis

sample replicates pools were prepared in separate vials.
Untargeted liquid chromatography–
mass spectrometry

The untargeted metabolomic analysis was conducted by ultra-

high-performance liquid chromatography (UHPLC) (Ultimate

3000 LC; Thermo Scientific) coupled to a quadrupole-time-of-

flight mass spectrometer (QTOF-MS) equipped with an

electrospray ionization source (ESI) (Bruker Compact; Bruker

Daltonics). Samples (5 µl injection volume) were separated in an

Intensity Solo 2 C18 column (1.7 µm, 2.1× 100 mm; Bruker

Daltonics) at 35°C. A binary solvent system consisted of 0.1% of

formic acid on water (solvent A) and acetonitrile (solvent B) with a

0.4 ml/min flow rate was used with the following gradient

conditions: 0 min, 3% B; 4 min, 3% B; 16 min, 25% B; 25min,

80% B; 30 min, 100% B; 32 min, 100% B; return to initial conditions

at 33 min (3% B) and maintain until 36 min.

The MS acquisition was performed in both negative and

positive ionization modes for full scan and auto MS/MS, in a

mass scan range of m/z 100-1200. Specific conditions used were:

gas flow 9 L/min, nebulizer pressure 38 psi, dry gas 9 L/min, and dry

temperature 220°C; capillary and end plate offset were set to 4500

and 500 V, respectively. MS/MS analysis was performed by using

different collision energy ramps to cover a range from 15 to 50 eV.

The instrument was calibrated externally with a solution of 1mM

sodium formate/acetate in 2-propanol:water 50:50 with 0.2% formic

acid directly infused to the source. The calibration solution was

injected at the beginning of each run and all the spectra were

calibrated prior to statistical analysis.
Data processing and statistical analyses

The UHPLC-MS andMS/MS raw data were processed using the

MetaboScape 4.0 software (Bruker Daltonics) and the algorithm T–

Rex 3D for peak detection and alignment in a retention time (Rt)

range from 0.5 to 30 min. Data obtained from positive and negative

ionization modes were combined and system contaminants were

manually removed (Supplemental Tables 2, 3). The web server

MetaboAnalyst 5.0 (Chong et al, 2019) was used for further data
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filtering and statistical analyses. Variables with more than 50%

missing values were removed and all missing values were replaced

with a low value (1/5 of the minimum positive value of each

variable). Then, the interquantile range filter was used to remove

uninformative variables with a near-constant values throughout the

dataset and a Pareto scaling was applied for adjusting for the

disparities in fold differences between the metabolites. Within

each sampling date, Orthogonal Projections to Latent Structures

Discriminant Analysis (OPLS‐DA) was carried out to investigate

and visualize the pattern of metabolite changes between the

resistant and susceptible RILs. OPLS-DA disentangle group-

predictive and group-unrelated variation in the measured data

and provides a model in which the variables with the largest

discriminatory power between groups are determined (Bylesjo

et al, 2006). The OPLS‐DA model was evaluated through cross‐

validation and the R2Y (estimation of the goodness of fit of the

model) and Q2 (qualitative measure of the predictive ability of the

model) statistics were used for quality assessment. We performed

1000-run permutations to test the possibility of obtaining those

values for the goodness of fit and predictability by chance. In

addition, the fold change ratio (FC) and p-value of the t-test for

each peak between resistant and susceptible inbreds were calculated.

For each sampling date, features with a variable importance in

projection (VIP) score >1 in the OPLS‐DA model, |Log2FC| > 0.6

and p value < 0.05 were considered as significant and those with

FDR < 0.10, VIP score >1, and |Log2FC| > 0.6 as highly significant.
Metabolite annotation

Significant metabolite features were annotated based on the

accurate mass, molecular formula and fragmentation spectrum

when available. MetaboScape 4.0 software and the bioinformatic

tool SIRIUS 4 (version 4.9.12) (Duhrkop et al, 2019) were used for

molecular formulas calculations, and the CSi : FingerID tool

(Duhrkop et al, 2015) in SIRIUS 4 and the spectral library MS-

DIAL (Tsugawa et al, 2020) for molecular structures and MS/MS

experimental spectra comparisons in metabolomic databases.

Putative annotations were performed using publicly available

databases as Pubchem (https://pubchem.ncbi.nlm.nih.gov ), Lipid

Maps (h t tp s : / /www. l ip idmaps .o rg ) , KEGG (ht tps : / /

www.genome.jp), ChEBI, (https://www.ebi.ac.uk/chebi), MoNA

(https://mona.fiehnlab.ucdavis .edu), PlantCyc (https://

plantcyc.org) (all accesed between February and October 2022),

and consulting literature references.
Pathway analyses

For addressing the metabolic pathways and network-level

changes in the resistant vs susceptible RILs, we performed a joint

analysis with mummichog and gene set enrichment analysis

(GSEA) using the Functional Analysis module of MetaboAnalyst

(Pang et al, 2021). These computational algorithms predict

functional activity from mass spectrometry data without a priori

identification of metabolites by leveraging the collective power of
frontiersin.org
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metabolic pathways and networks. The mummichog algorithm

infers pathway activities using an over-representation analysis

method to evaluate pathway-level enrichment based on significant

features (with p-values above a p-value cutoff) from a ranked list of

MS peaks identified by untargeted metabolomics (Li et al. (2013).

The GSEA method (Subramanian et al, 2005) can extract biological

meaning from a ranked feature list (based on t scores) without using

a significance cutoff. The setup parameters used to perform

functional analysis were: the library selected was the KEGG

pathway library for Oryza sativa japonica; a mass tolerance of 5

ppm was stablished for putative annotation; and mummichog

default cutoffs for p-values were used (0.1 and 0.01 for metabolite

data at 3 and 10 dat, respectively).

Finally, we used the Pathview platform (Luo and Brouwer, 2013;

Luo et al, 2017) to integrate and visualize previous transcriptomic

data (Cao et al, 2022) and the current untargeted metabolomic data.

Target pathways for visualization were: phenylpropanoid

biosynthesis, and glutathione and glycerophospholipid metabolisms.
Results

738 and 609 features were identified in kernel samples taken

three and 10 days, respectively, after inoculation with Fusarium

verticillioides (Supplementary Tables 2, 3). In order to identify the

metabolomic differences between resistant and susceptible maize

RILs, we first performed an OPLS-DA of the metabolomic data. The

OPLS-DA model for kernel samples harvested at 3 dat explained

63% of metabolite variability (R2X); 57.3% of variability was

structured in three orthogonal components meanwhile only the

5.8% of metabolite variation was predictive and assisted in

differentiating resistant from susceptible inbreds (Figure 1 and

Supplemental Figure 1). The model had an overall goodness of fit

(R2Y) of 0.961 and an overall cross-validation coefficient (Q2) of
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0.504; the probabilities of obtaining those values by chance being

0.083 for R2Y and 0.007 for Q2, respectively.

The OPLS-DA model for kernel samples collected at 10 dat

comprised one predictive and three orthogonal components;

predictive metabolite variability being the 6.4% of total metabolite

variability (Figure 1 and Supplemental Figure 1). R2Y was 0.975 (p

< 0.001) and Q2 0.714 (p < 0.001). The overall metabolite variability

explained by the model was 55.5%, most variability being structured

but uncorrelated to the differentiation between resistant and

susceptible RILs.

Figure 2 shows the metabolite features from kernel samples

harvested 3 and 10 dat with FC higher than 1.5 or lower than 0.7 (|

Log2FC | > 0.6) and p values less than 0.05 for t-test between

resistant and susceptible RILs. Discriminant features with a VIP

score > 1 in the OPLS-DA model and that fulfilled the above

mentioned FC and t-test criteria were considered as differentially

accumulated metabolites in the resistant vs susceptible RILs

(Tables 1, 2). However, only 10 metabolites out of them were

high-significant differentially (FDR < 0.10, p value < 0.002)

accumulated at 10 dat and no metabolite at 3 dat in contrast with

most metabolomic studies in which differentially accumulated

features between treatments on a single genotype are studied. In

the current study, the genetically heterogeneous composition of

each bulk could be behind the reduced number of features

differentially accumulated between resistant and susceptible RILs.

However, detected features are expected to play significant roles in

resistance as they would be regulated by genomic regions shared by

all resistant or susceptible RILs.

When possible, the differentially accumulated metabolite

features in kernels were putatively annotated based on public

databases and literature references, and about 75% of them could

be related to known compounds (Tables 1, 2). A total of 30% were

lipid or lipid-related compounds, 21% were related to methionine

and glutathione, 20% were indole-3-acetic acid (IAA) derivative
BA

FIGURE 1

Biplot representation of the scores of resistant (R), in red, and susceptible (S), in green, recombinant inbred lines of maize for predictive and first
orthogonal components of supervised least square and orthogonal projections to latent structures discriminant analysis (OPLS-DA) for metabolomic data
acquired at (A) 3 and (B) 10 days after inoculation (dat) with F. verticillioides.
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compounds, and only 3% were phenolic compounds. Compounds

displayed a deprotonated ion at m/z 337 were annotated as IIA-

hexose based on the exact mass and the characteristic fragmentation

ions at m/z 176 (IAA) and at m/z 130 (isoquinoline). The fragment

at m/z 176 (IAA) was generated by a neutral loss of 162 Da of one

hexose that probably correspond tomyo-inositol, since the forms of

indole-3-acetyl-myo-inositol are the most abundant IAA conjugates

in maize kernels (Bandurski, 1979; Ostrowski et al, 2020). Thus,

ions [M+Na]+ at m/z 522 and [M+HCOOH-H]- at m/z 544 were

assigned as sodium and formic acid adducts of IAA-myo-inositol-

hexose (499.1693 Da). Compounds eluted at 1.5 min with [M+H]+

ions at m/z 133, 104 and 102 were assigned as dissociation products
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of methionine (m/z 150) eluted at the same retention time (Kotiaho

et al, 2000). Compound with an [M-H]- ion at m/z 164 in 3 dat

samples was annotated as the benzoxazinoid 6-methoxy-2-

benzoxazolinone (MBOA) based on its fragmentation pattern at

m/z 164, 149, 121 according to Bruijn et al. (2016). Metabolite

displayed a [M-H]- ion at m/z 379 at 28.6 min in 10 dat samples was

left as unidentified. However, the fragment ion at m/z 279.23 and

the detection of a octadecadienoic acid form ([M-H]- at m/z 279.23)

at the same retention time, suggested that it could be a fatty acid

related compound.

The Functional Analysis results showed several pathways such

as the cysteine and methionine metabolism; aminoacyl-tRNA
FIGURE 2

Volcano plot of differentially accumulated features in kernels collected 3 (3dat) and 10 (10dat) days after inoculation with F. verticillioides in resistant
and susceptible RILs. Up-regulated (UP), marked in red, and down-regulated (DOWN), marked in blue, features were more and less, respectively,
accumulated in resistant versus susceptible RILs. Grey dots corresponded to features not differentially accumulated (Non-SIG). Labels of features
were composed of the neutral mass/retention time.
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TABLE 1 LC-MS/MS data, tentative annotation, fold changes, p values and VIP scores for differentially accumulated metabolites between resistant and
susceptible maize RILs at 3 days after inoculation with Fusarium verticillioides.

RT
(min) Ionization m/z

Neutral
mass

MS/MS fragments
(m/z)

Molecular
formula

Error
(|D
m/z|
ppm)

Tentative
compound FC log2FC p VIP

0.94 [M-H]- 131.0456 132.0529 n.d. C4H8N2O3 4.37 Asparagine 0.57 -0.81 0.0366 2.21

0.97 [M-H]- 815.2776 816.2849 n.d. 0.60 -0.74 0.0471 2.08

0.97 [M-H]- 473.1626 474.1699 341.107, 293.107, 179.054,
161.042, 131.045, 113.035

C16H30N2O14 0.33 Asparagine
di-hexoside

0.56 -0.83 0.0296 2.32

1.08 [M+H]+ 104.0547 103.0475 n.d. 2.15 1.10 0.0398 1.70

1.12 [M+H]+ 150.0585 149.0512 104.052, 84.047, 74.023,
61.011, 56.050

C5H11NO2S 0.92 Methionine 1.78 0.84 0.0487 1.67

1.50 [M+H]+ 150.0583 149.0511 104.052, 84.047, 74.023,
61.011, 56.050

C5H11NO2S 0.44 Methionine 1.61 0.68 0.0267 1.81

1.50 [M+H]+ 133.0320 132.0248 61.012. 56.051 C5H8O2S 1.86 Methionine
derivative

1.68 0.75 0.0218 1.78

1.50 [M+H]+ 104.0531 103.0459 n.d. C4H9NS 2.60 Methionine
derivative

1.69 0.76 0.0231 1.77

1.50 [M+H]+ 102.0551 101.0494 n.d. C4H7NO2 1.76 Methionine
derivative

1.67 0.74 0.0237 1.76

9.88 [2M-H]- 737.2042 738.2116 368.097, 206.045, 162.053 C16H19NO9 1.21 Hydroxy-
oxindole-3-
acetyl-
hexoside

2.01 1.01 0.0275 2.14

10.82 [M
+HCOOH-

H]−

544.1669 499.1687 498.154, 341.107, 323.097,
203.055, 179.055, 174.055,
161.044, 143.034, 130.065,
119.034, 113.023

C22H29NO12 0.24 Indole-3-
acetyl-myo-
inositol
hexoside

2.42 1.27 0.0125 2.23

10.83 [M+Na]+ 522.1585 499.1693 348.098, 290.066, 203.046,
177.067, 130.066

C22H29NO12 0.66 Indole-3-
acetyl-myo-
inositol
hexoside

1.78 0.83 0.0369 1.92

10.83 [M+H]+ 338.1236 337.1163 176.071, 130.065, 109.029,
81.034, 57.033

C16H19NO7 0.43 Indole-3-
acetyl-
hexoside

2.37 1.24 0.0178 2.18

10.85 [M+H]+ 130.0651 129.0579 105.048, 77.039, 53.039 C9H7N 1.04 Isoquinoline 2.21 1.15 0.0211 2.13

11.53 [M-H2O
+H]+

177.0543 194.0574 117.035, 105.043, 97.011,
89.042, 78.042, 53.041

C10H10O4 1.55 Ferulic acid 0.44 -1.17 0.0323 2.02

13.25 [M-H]- 164.0353 165.0426 149.009, 121.015, 96.962 C8H7NO3 0.28 MBOA 0.33 -1.59 0.0383 2.20

15.13 [M+H+H2]
3

+
438.5943 1312.7610 n.d. 2.30 1.20 0.0478 1.51

23.83 [M
+HCOOH-

H]−

723.3808 724.3880 677.368, 415.145, 397.134,
379.122, 323.097, 305.088,
279.232, 235.082, 179.056,
119.035

C33H58O14 0.72 DGMG 18:2 1.57 0.65 0.0193 1.91

24.01 [M-H]- 476.2780 477.2853 279.232, 214.048, 196.037,
140.012

C23H44NO7P 0.52 LysoPE 18:2 1.56 0.64 0.0035 2.21

24.01 [M+H]+ 478.2936 477.2862 337.267, 306274, 255.149,
173.017, 121,098, 95.084,
62.061

C23H44NO7P 1.64 LysoPE 18:2 1.51 0.59 0.0485 1.83

25.16 [M+Na]+ 539.3202 516.3308 212.118, 165.047, 141.043,
133.088, 89.062

C27H48O9 2.07 MGMG 18:2 1.52 0.60 0.0357 2.00
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biosynthesis; arginine biosynthesis; alanine, aspartate and glutamate

metabolism; and porphyrin and chlorophyll metabolism that were

significantly (combined p-values < 0.01) enriched among

metabolites differentially accumulated in 3 dat kernel samples of

resistant and susceptible RILs (Figure 3). Meanwhile, the pathway

enrichment analysis for metabolites in kernel samples collected at

10 dat showed that the pathways glutathione metabolism; arginine

and proline metabolism; and cysteine and methionine metabolism

were significantly enriched (Figure 3).

Visualization of genes and metabolites differentially regulated in

resistant compared to susceptible RILs within three different

pathways, phenylpropanoid biosynthesis and glutathione and

glycerophospholipid metabolisms can be made through

Supplemental Figures 2–4, respectively.
Discussion

Higher metabolic differences at later stage
of Fusarium infection

The metabolic profiles in maize kernels from RILs with

contrasting resistance-susceptibility levels to F. verticillioides

infection and fumonisin accumulation were explored at 3 and 10

days after infection with the fungus. Results of the supervised

OPLS-DA show that differences between resistant and susceptible

RILs were better explained by metabolite abundances at 10 dat than

at 3 dat. In addition, high-significant differentially accumulated

metabolites were only found at 10 dat. This suggests a larger

response occurs at later stages of F. verticillioides infection of

maize kernels. These results agree with those obtained by Wang

et al. (2016) comparing gene expressions at 1 and 10 dat; these

authors suggested that genes involved in biosynthesis of secondary

metabolites with antifungal effects would be preferentially induced

at the late stage of F. verticillioides colonization. Conversely,

functional analyses showed that aminoacyl-tRNA biosynthesis

and cysteine, methionine, arginine, proline and glutathione

metabolic pathways were enriched among metabolites

differentially accumulated in resistant and susceptible RILs in

both sampling dates. Therefore, we could hypothesize that some
Frontiers in Plant Science 07
final changes could be driven by subtle differences at earlier stages of

Fusarium infection between resistant and susceptible inbreds. That

is the case for isoquinoline, a type of alkaloid with a clear fungicidal

effect and proven inhibitory effects on the synthesis of fumonisins

by Fusarium oxysporum (Tims and Batista, 2007). However, at 10

dat, fewer features differentially accumulated were detected in

comparison to differentially transcribed genes (364) between

resistant and susceptible RILs that could suggest that a longer

period of exposition to the fungus is necessary to reveal all

relevant metabolome differences between resistant and susceptible

inbreds (Cao et al., 2022). Therefore, metabolome and

transcriptome studies would bring complementary results

although some pathways detected by both approaches will

be emphasized.
Importance of the membrane lipid
homeostasis in resistance

Three probable lysophospholipids were differentially

accumulated in resistant vs susceptible RILs at 10 dat, but those

changes co-occurred with a more significant difference for

phosphatidylcholines content between resistant and susceptible

RILs. Similarly, an untargeted approach to look for metabolites

involved in kernel resistance to fumonisin contamination showed

that kernel lipid signature at harvest was strongly involved in the

plant−pathogen interaction and in the modulation of fumonisin

accumulation; the phosphatidylcholine PC(O-16:0/18:2) being

significantly more accumulated in the resistant than in the

susceptible hybrid at harvest (Righetti et al, 2019; Righetti et al,

2021). The gene Zm00001d010840, that encodes the enzyme

triacylglycerol lipase-like 1, has been proposed as QTL candidate

gene for fumonisin content since this gene was significantly

upregulated in the resistant RILs compared to the susceptible

ones, and was within the confidence interval of one QTL for

fumonisin content detected in the RIL population from which the

eight RILs used in the current study were selected (Cao et al, 2022).

This gene could be involved in degradation of oil bodies in seeds by

hydrolysis of ester linkages of triglycerides to diacylglycerol which

can be re-directed to the synthesis of lysophospholipids and,
TABLE 1 Continued

RT
(min) Ionization m/z

Neutral
mass

MS/MS fragments
(m/z)

Molecular
formula

Error
(|D
m/z|
ppm)

Tentative
compound FC log2FC p VIP

27.32 [M+H]+ 760.5857 759.5785 n.d. 0.31 -1.69 0.0208 1.97

27.64 [M-H]- 433.2351 434.2424 279.230, 171.006, 152.995,
96.970, 78.959

C21H39O7P 2.24 LysoPA 18:2 3.75 1.91 0.0135 2.04

28.73 [M+Na]+ 780.5520 757.5636 721.470, 597.475, 575.496,
520.330, 502.314, 500.300,
478.317, 465.228, 184.070,
146.979, 86.096

C42H80NO8P 1.78 PC 34:2; PC
(16:0/18:2)

0.15 -2.73 0.0318 2.46
frontiers
RT, Retention time (minutes); Log2FC, Log2 Fold change between resistant and susceptible RILs; p, p-value for the t-test; V1, VIP score in the OPLS-DA model. n.d. stands for non detected.
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TABLE 2 LC-MS/MS data, tentative annotation, fold changes, p values and VIP scores for differentially accumulated metabolites between resistant and
susceptible maize RILs at 10 days after inoculation with Fusarium verticillioides.

RT
(min) Ionization m/z

Neutral
mass

MS/MS frag-
ments (m/z)

Molecular
formula

Error
(|D
m/z|
ppm)

Tentative
compound FC log2FC p FDR VIP

0.75 [M+H]+ 146.1652 145.1579 n.d. C7H19N3 0.24 Spermidine 1.84 0.88 0.0001 0.05 2.87

0.91 [M+H]+ 222.9881 221.9809 n.d. 1.66 0.74 0.0215 0.32 1.88

0.92 [M+H]+ 185.0327 184.0255 124.997, 116.993,
98.982, 86.095,
71.072, 45.033

1.64 0.71 0.0422 0.4 1.62

0.92 [M-H]- 298.1141 299.1214 132.030, 118.050,
96.970, 74.027,

72.010

1.71 0.77 0.0190 0.31 1.97

0.94 [M+H]+ 351.069 350.0618 n.d. 2.48 1.31 0.0020 0.08 2.47

1.05 [M+H]+ 179.0485 178.0413 n.d. C5H10N2O3S 0.18 Cysteinylglycine 1.81 0.86 0.0153 0.31 2.05

1.05 [M+H]+ 308.0922 307.0849 142.031, 116.016,
104.070, 84.045,

76.022

C10H17N3O6S 3.59 Glutathione 1.79 0.84 0.0099 0.27 2.15

1.07 [M+H]+ 492.1814 491.1742 n.d. 1.87 0.91 0.0124 0.27 2.08

1.08 [M+H]+ 150.0585 149.0513 84.044, 65.039,
61.010, 56.048

C5H11NO2S 0.83 Methionine 1.82 0.86 0.0260 0.34 1.83

1.49 [M+H]+ 308.0908 307.0836 142.031, 116.016,
104.070, 84.045,

76.022

C10H17N3O6S 0.87 Glutathione 1.61 0.68 0.0235 0.32 1.94

1.50 [M+H]+ 179.0483 178.0410 n.d. C5H10N2O3S 0.97 Cysteinylglycine 1.58 0.66 0.0223 0.32 1.96

1.50 [M+H]+ 102.055 101.0492 n.d. C4H7NO2 1.3 Methionine
derivative

1.56 0.64 0.0061 0.2 2.22

1.50 [M+H]+ 133.0319 132.0247 108.955, 90.954,
87.022, 72.004,
61.013, 56.051

C5H8O2S 1.46 Methionine
derivative

1.52 0.60 0.0240 0.32 1.91

1.50 [M+H]+ 150.0583 149.0511 84.044, 65.039,
61.010, 56.048

C5H11NO2S 0.14 Methionine 1.64 0.71 0.0127 0.27 2.05

9.35 [M+H]+ 130.0648 129.0576 n.d. C9H7N 2.17 Isoquinoline 1.70 0.77 0.0130 0.27 2.16

9.35 [M+Na]+ 360.1056 337.1164 306.061, 259.688,
167.054, 131.066,
130.062, 94.035,

57.070

C16H19NO7 1.02 Indole-3-acetyl-
hexoside

1.69 0.76 0.0126 0.27 2.16

10.82 [M
+HCOOH-

H]-

544.1667 499.1684 498.154, 341.111,
323.099, 245.070,
203.057, 179.058,
174.057, 161.047,
143.036, 130.067,
119.036, 101.024,

89.026

C22H29NO12 0.60 Indole-3-acetyl-
myo-inositol
hexoside

2.46 1.30 0.0011 0.07 2.55

10.83 [M+Na]+ 522.1581 499.1689 499.125, 360.100,
203.358, 176.069,

130.062

C22H29NO12 0.42 Indole-3-acetyl-
myo-inositol
hexoside

2.80 1.48 0.0005 0.07 2.72

10.83 [M+H]+ 338.1231 337.1162 n.d. C16H19NO7 0.09 Indole-3-acetyl-
hexoside

2.80 1.49 0.0007 0.07 2.64

10.86 [M+H]+ 130.065 129.0577 118.064, 115.017,
105.045, 95.055,

90.947

C9H7N 0.94 Isoquinoline 2.80 1.49 0.0010 0.07 2.60
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TABLE 2 Continued

RT
(min) Ionization m/z

Neutral
mass

MS/MS frag-
ments (m/z)

Molecular
formula

Error
(|D
m/z|
ppm)

Tentative
compound FC log2FC p FDR VIP

10.89 [M+Na]+ 360.1056 337.1164 190.063, 169.027,
167.050, 138.953,

130.064

C16H19NO7 1.17 Indole-3-acetyl-
hexoside

2.03 1.02 0.0066 0.2 2.27

12.59 [M-H2O
+H]+

207.065 224.0683 149.019, 135.040,
119.048, 105.044,
91.054, 65.040,

53.039

C11H12O5 0.73 Sinapic acid 1.95 0.97 0.0163 0.31 1.93

24.01 [M+H]+ 337.2732 336.2659 335.143, 296.288,
195.085, 188.089,
119.058, 109.100,
95.083, 81.069

C21H36O3 1.37 Glycidyl
linoleate

2.05 1.03 0.0181 0.31 1.82

24.01 [M-H]- 476.2763 477.2836 279.233, 214.049,
196.038, 140.012,

78.690

C23H44NO7P 4.30 LysoPE 18:2 1.77 0.82 0.0389 0.39 1.54

24.01 [M+H]+ 478.2934 477.2863 337.268, 306.271,
263.228, 173.015,
109.099, 95.083,
81.069, 62.062

C23H44NO7P 4.30 LysoPE 18:2 2.09 1.06 0.0191 0.31 1.81

24.09 [M+H]+ 184.0737 183.0665 n.d. C5H14NO4P 2.41 Choline
phosphate

1.65 0.72 0.0435 0.4 1.57

24.09 [M+H]+ 520.3404 519.3331 502.320, 377.268,
258.104, 184.065,
124.996, 104.105,

86.095

C26H50NO7P 1.11 LysoPC 18:2 1.67 0.74 0.0340 0.38 1.66

24.09 [2M+H]+ 1039.674 519.3337 n.d. C26H50NO7P 2.48 LysoPC 18:2 2.89 1.53 0.0495 0.43 1.49

25.01 [M+H]+ 337.2736 336.2664 335.143, 296.288,
195.085, 188.089,
119.058, 109.100,
95.083, 81.069

C21H36O3 0.20 Glycidyl
linoleate

1.86 0.89 0.0172 0.31 1.89

25.16 [M+Na]+ 539.32 516.3306 486.279, 402.982,
328.154, 264.243,
230, 200, 163,
124, 104, 87, 57

C27H48O9 1.81 MGMG 18:2 1.61 0.69 0.0437 0.4 1.57

25.16 [M
+HCOOH-

H]-

561.3261 516.3279 506.324, 281.249,
279.233, 253.093,
224.070, 44.998

C27H48O9 3.85 MGMG 18:2 1.64 0.71 0.0223 0.32 1.75

27.57 [M+H]+ 441.1595 440.1523 n.d. 2.78 1.48 0.0305 0.37 1.71

27.58 [M+H]+ 119.0854 118.0782 n.d. 2.21 1.15 0.0409 0.4 1.62

27.58 [M+H]+ 147.081 146.0737 103.052, 91.052,
62.926

2.77 1.47 0.0348 0.38 1.67

27.58 [M+H]+ 559.284 558.2767 n.d. 2.75 1.46 0.0238 0.32 1.77

27.64 [M-H]- 433.2342 434.2415 431.193, 279.236,
152.996, 96.970,

78.959

C21H39O7P 4.35 LysoPA 18:2 16.70 4.06 0.0067 0.2 2.07

28.69 [M-H]- 379.157 380.1643 367.157, 349.148,
279.230, 116.925,
99.926, 84.950,

44.998

Octadecadienoic
acid derivative

0.57 -0.81 0.0013 0.07 2.54

28.70 [M+Na]+ 804.5536 781.5643 745.458, 621.469,
599.489, 146.978,

89.094

C44H80NO8P 2.84 PC 36:4; PC
(18:2/18:2)

2.21 1.14 0.0358 0.38 1.67
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specially, phosphatydilcholine in the resistant RILs (Dubots et al,

2012; Wang et al, 2012; Lu et al, 2020; Bates, 2022). The higher

accumulation of phosphatidylcholines, key building blocks of

membrane bilayers, in resistant RILs could contribute to ROS

scavenging as it has been shown that phosphatidylcholine inhibits

lipid oxidation synergistically with primary antioxidants, especially

tocopherols (Cui and Decker, 2016). In addition, exogenous

application of phosphatidylcholine had a positive effect on

maintaining cell integrity and cell-membrane structure possibly

through keeping cell membrane phospholipid homeostasis (Sun

et al, 2022). On the other hand, head-group acylation of mono- and

digalactosyldiacylglycerols (MGDC and DGDG, respectively), main

lipids in plastid membranes (amyloblasts, seed plastids in which

starch is synthesized and stored, membranes contain MGDG and

DGDG in high abundance), is a common stress response in plants.

In this sense, the galactolipid monogalactosylmonoacylglycerol

(18:2) (MGMG) derived from the acylation of MGDG could

contribute to the maintenance of galactolipid homeostasis (Myers

et al, 2011; Shimojima and Ohta, 2022). Therefore, lipid differences

found between resistant and susceptible RILs could be a key factor

in order to increase the stability of cell membranes during F.

verticillioides infection.
The multifunctional role of methionine
metabolism in resistance

The amino acid methionine is the immediate precursor of S-

adenosylmethionine (SAM), the major methyl-group donor in

transmethylation reactions and intermediate in the biosynthesis of

compounds related to plant defense against pathogens such as

glutathione, polyamines and the phytohormone ethylene (Ravanel

et al, 1998; Nikiforova et al, 2002; Makinen and De, 2019). Methyl

groups of choline, phosphatidylcholine, and phosphorylcholine being

major end products of transmethylation by SAM (Giovanelli et al,

1985). In kernels of the resistant RILs collected at 10 dat, Cao et al.
Frontiers in Plant Science 10
(2022) already showed that genes involved in ethylene signaling were

upregulated compared with the susceptible ones. In the current study,

glutathione and spermidine, a polyamine that at a concentration of 1

ng/mL has proven to inhibit in vitro fumonisin production in an 80%

with no effect on F. proliferatum growth, were more accumulated in the

kernels of resistant RILs. These results suggested that increased levels of

methionine at earlier stages of fungal infection could lead to increased

accumulation of metabolites involved in detoxification and inhibition

of fumonisins (Maschietto et al, 2016; Perincherry et al, 2021). Higher

contents of spermidine and/or spermine have been also associated to

higher resistance to Aspegillus flavus and aflatoxin contamination

(Majumdar et al, 2019). Kovács et al. (2023) showed that, after

inoculation with Fusarium verticillioides, seedlings of a tolerant

inbred line presented higher levels of spermidine in the radicle than

those of a susceptible inbred although differences were not significant.

The visual integration of transcriptomic and metabolomic data showed

that genes involved in glutathione catabolism were inhibited

meanwhile spermidine and reduced glutathione increased in resistant

versus susceptible RILs (Supplemental Figure 1). Therefore, we

hypothesize that interplay between spermidine and ROS homeostasis

could have and important role in controlling fumonisin accumulation

in a similar mechanism to that showed by the plant to control Na+

toxicity (Saha et al, 2015; Chen et al, 2017). Chen et al. (2017) showed

that spermidine was a key molecule for inducing plant salt tolerance

through accumulation of glutathione to reduce damage by reactive

oxygen species and regulation of the salt overly sensitive pathway that

led to detoxification of Na+. Saha et al. (2015) suggested that

polyamines modulate ROS homeostasis by the shift between

polyamine anabolism and catabolism resulting in a lower polyamine

concentration which, in turn, may favor programmed cell death (Saha

et al, 2015). According with this hypothesis, Cao et al. (2022) found that

genes involved in programmed cell death were downregulated in the

resistant RILs compared to the susceptible ones and the candidate gene

proposed (probably encoding an NF-kB inhibitor-like protein) for the

most relevant QTL for fumonisin content could participate in

preventing polyamide catabolism (Liu et al, 2020).
TABLE 2 Continued

RT
(min) Ionization m/z

Neutral
mass

MS/MS frag-
ments (m/z)

Molecular
formula

Error
(|D
m/z|
ppm)

Tentative
compound FC log2FC p FDR VIP

28.81 [M
+HCOOH-

H]-

826.5574 781.5592 766.538, 504.307,
486.302, 430.272,
279.232, 224.068,
168.044, 44.996

C44H80NO8P 3.19 PC 36:4; PC
(18:2/18:2)

3.35 1.75 0.0003 0.07 2.72

29.33 [M
+HCOOH-

H]-

802.5574 757.5592 742.540, 504.307,
486.296, 480.309,
462.299, 279.233,
255.233, 224.069,
168.042, 44.997

C42H80NO8P 3.83 PC 34:2; PC
(16:0/18:2)

2.44 1.28 0.0007 0.07 2.75

29.64 [M-H]- 279.1621 280.1694 200.465, 155.081,
133.141, 96.960,

79.956

. 0.34 -1.55 0.0016 0.07 2.47
frontiers
RT, Retention time (minutes); Log2FC, Log2 Fold change between resistant and susceptible RILs; p, p-value for the t-test; FDR, p-adjusted value; VIP, VIP 1 score in the OPLS-DA model. n.d.
stands for non detected.
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Modulation of IAA conjugates in
relation to resistance

IAA-myo-inositol and its glycosidic forms with galactose and

arabinose are the major IAA ester conjugates in maize seed

endosperm; IAA ester conjugates comprising the 97-99% of

endogenous IAA (Ostrowski et al, 2020). Cao et al. (2022) found
Frontiers in Plant Science 11
that genes involved in auxin signaling repression were upregulated

in the resistant compared to susceptible RILs using the same kernel

samples, agreeing with the idea that induced auxin biosynthesis or

modulated auxin signaling is associated with increased host

susceptibility (Brauer et al, 2019). The net level of free IAA in the

cell is determined by hormone IAA synthesis, conjugation,

degradation and transport, but Fusarium species appear much
FIGURE 3

Functional analysis using the Oryza database of metabolomic features detected in maize kernels collected 3 (3dat) and 10 (10dat) days after
inoculation (dat) with F. verticillioides in resistant and susceptible RILs. This analysis uses the “mummichog” algorithm to predict pathway activities
based on a list of peaks ranked based on t-tests (Pang et al., 2021). Larger and more reddish circles (smaller combined p-value) represent more
reliably perturbed pathways.
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more likely to manipulate plant auxin homeostasis by hydrolysis of

IAA-amino acid and sugar conjugates or perhaps, regulating

enzymes participating in synthesis, than by de novo synthesis

(Vrabka et al, 2019). Therefore, the higher accumulation of IAA-

conjugates, particularly IAA-myo-inositol conjugates (immature

maize seeds do not produce amide linkages of IAA), in resistant

compared to susceptible RILs could be related to reduced

susceptibility by controlling auxin homeostasis (Ostrowski

et al, 2020).
Other metabolites likely related
to resistance

Therefore, subtle changes observed at 3 dat for isoquinoline and

metabolites involved in methionine metabolism, lipid remodeling,

IAA signaling are kept at 10 dat and, in some cases, amplified as it is

the case for phosphatidylcholines, isoquinoline and IAA-

conjugates. However, there were other metabolites that were

high-differentially accumulated in kernel collected at 10 dat but

they did not appear as differentially accumulated at 3 dat: the

polyamine spermidine, already discussed, and an octadecadienoic

acid derivative were over and under-accumulated, respectively, in

resistant compared to susceptible RILs. Octadecadienoic acid

derivatives such as the Lox3 derived oxylipins haves been already

associated to increased fumonisin content (Dall’Asta et al, 2012;

Battilani et al, 2018; Righetti et al, 2019). Sinapic acid also increased

in resistant versus susceptible RILs at 10 dat and deserves to be

discussed as it has been found along with two other compounds as

the only discriminants between phenolic extracts from different

parts of the same mushroom species (Lentinula edodes) with very

contrasting effects on fumonisin biosynthesis and no effect on F.

verticillioides biomass (Merel et al, 2020).

Finally, ferulic acid and the benzoxacinoid MBOA appeared as

discriminant between resistant and susceptible RILs at 3 dat, and no

longer, but they deserve special attention because these metabolites

have been described as involved in resistance to fungal diseases but

in the current study were more accumulated in the susceptible RILs.

Benzoxazinoids are abundant indole-derived specialized

metabolites in several monocot crop species that function as iron

chelators, allelochemicals and in plant defense against herbivorous

arthropods and fungal pathogens (Niemeyer, 2009; Poschenrieder

et al, 2005). Benzoxazinoid hydroxamic acids are stored as inactive

glucosides in the vacuoles, but they are enzymatically converted to

the active aglycones by glucosidases upon plant cell disruption and

the resulting aglycones are further degraded spontaneously to the

corresponding benzoxazolinones, MBOA and its desmethoxy

derivative (BOA) (Hashimoto and Shudo, 1996). Therefore,

higher accumulation of MBOA could be associated to increased

cell damage which promotes H2O2 and, consequently, ferulic acid

accumulation, but would be only evident at early stages of infection

because F. verticillioides can metabolize and detoxify active

benzoxazinoids such as MBOA (Glenn et al, 2001; Jabeen et al,

2007; Li et al, 2020). According to the hypothesis of increased cell

damage in susceptible inbreds, in a previous transcriptomic study
Frontiers in Plant Science 12
with the same materials, genes related to cell death were

downregulated in the resistant compared with the susceptible

RILs (Cao et al, 2022).

Metabolomic differences between resistant and susceptible RILs

would confirm some results from the previous transcriptomic study

(Cao et al, 2022) such as the down-regulation of auxin signaling, up-

regulation of the phenylpropanoid pathway, activation of electron

transport chain toward amino acid synthesis and reduced oxidative

stress in the resistant RILs compared with the susceptible ones.

However, in the current study, new insights on the pathways

involved in resistance have been uncovered because the specific

increase in methionine metabolism toward polyamine and

glutathione over accumulation in resistant versus susceptible RILs

has been revealed. Similarly, Cao et al. (2022) suggested that

mobilization of lipids from oil bodies to phytoalexin synthesis

could have an important role in resistance, but the metabolic

study have shown that lipid re-modelling would be rather re-

directed toward phosphatidylcholine accumulation.
Conclusions

Discriminant metabolites between resistant and susceptible RILs

were rather found at 10 than 3 dat, although differences for key

metabolites were kept across kernel sampling times suggesting that

longer exposition to fungal colonization is necessary to uncover

biomarkers but those changes could be driven by subtle changes at

earlier stages of infection. Within this context, differences for

membrane lipid homeostasis, methionine metabolism and IAA-

conjugation seemed highly relevant in order to distinguish between

resistant and susceptible inbreds. In addition, some metabolites such

as spermidine and isoquinoline seemed to be promising indirect traits

to improve resistance to FER and reduce fumonisin accumulation.

However, their role in resistance should be validated using in vitro

and in vivo experiments to determine the real effects of these

compounds on F. verticilllioides growth and fumonisins biosynthesis.
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SUPPLEMENTARY FIGURE 1

Validation of supervised least square and orthogonal projections to latent

structures discriminant analysis (OPLS-DA) for data acquired at 3 and 10 days

after inoculation (dat) with Fusarium verticillioides in resistant and susceptible
RILs. (A) Cross-validation for R2X, R2Y, and Q2 coefficients for the OPLS-DA

model with one predictive (p1) and three orthogonal (o1, o2, and o3)
components for samples collected at 3 dat, (B) Visualization of permutation

test to validate the results of OPLS-DA analysis for samples collected at 3 dat,
(C) Cross-validation for R2X, R2Y, and Q2 coefficients of the OPLS-DA model

with one predictive (p1) and three orthogonal (o1, o2, and o3) components for
samples collected at 10 dat, and (D) Visualization of permutation test to

validate the results of OPLS-DA analysis for samples collected at 10 dat.

SUPPLEMENTARY FIGURE 2

Integrative visualization by Pathview platform of genes (Cao et al, 2022) and
metabolites of the phenylpropanoid biosynthesis pathway differentially

expressed and accumulated, respectively, in immature maize kernels of
resistant and susceptible RILs to FER and fumonisin contamination

collected 10 days after inoculation with F. verticillioides.

SUPPLEMENTARY FIGURE 3

Integrative visualization by Pathview platform of genes (Cao et al, 2022) and
metabolites of the glutathione metabolism pathway differentially expressed

and accumulated, respectively, in immature maize kernels of resistant and
susceptible RILs to FER and fumonisin contamination collected 10 days after

inoculation with Fusarium verticillioides.

SUPPLEMENTARY FIGURE 4

Integrative visualization by Pathview platform of genes (Cao et al, 2022) and
metabolites of the glycerophospholipid metabolism pathway differentially

expressed and accumulated, respectively, in immature maize kernels of
resistant and susceptible RILs to FER and fumonisin contamination

collected 10 days after inoculation with Fusarium verticillioides.
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