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“How sweet are your
strawberries?”: Predicting
sugariness using non-destructive
and affordable hardware

Junhan Wen1,2, Thomas Abeel2 and Mathijs de Weerdt1*

1Algorithmics Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, Delft, Netherlands, 2Delft Bioinformatics Lab, Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology, Delft, Netherlands
Global soft fruit supply chains rely on trustworthy descriptions of product quality.

However, crucial criteria such as sweetness and firmness cannot be accurately

established without destroying the fruit. Since traditional alternatives are

subjective assessments by human experts, it is desirable to obtain quality

estimations in a consistent and non-destructive manner. The majority of

research on fruit quality measurements analyzed fruits in the lab with uniform

data collection. However, it is laborious and expensive to scale up to the level of

the whole yield. The “harvest-first, analysis-second” method also comes too late

to decide to adjust harvesting schedules. In this research, we validated our

hypothesis of using in-field data acquirable via commodity hardware to obtain

acceptable accuracies. The primary instance that the research concerns is the

sugariness of strawberries, described by the juice’s total soluble solid (TSS)

content (unit: °Brix or Brix). We benchmarked the accuracy of strawberry Brix

prediction using convolutional neural networks (CNN), variational autoencoders

(VAE), principal component analysis (PCA), kernelized ridge regression (KRR),

support vector regression (SVR), and multilayer perceptron (MLP), based on

fusions of image data, environmental records, and plant load information, etc.

Our results suggest that: (i) models trained by environment and plant load data

can perform reliable prediction of aggregated Brix values, with the lowest RMSE at

0.59; (ii) using image data can further supplement the Brix predictions of individual

fruits from (i), from 1.27 to as low up to 1.10, but they by themselves are not

sufficiently reliable.

KEYWORDS

non-destructive analysis, in-field test, machine learning, computer vision, data fusion,
feature selection, total soluble solid, crop management
1 Introduction

Soft fruits such as strawberries, raspberries, blueberries, etc. are popular and profitable

fruit varieties. The annual consumption of strawberries in Europe is estimated to be more

than 1.2 million tonnes, which leads the market share of horticultural crops (Calleja et al.,

2012; Ministry of Foreign Affairs (CBI), 2021a; Ministry of Foreign Affairs (CBI), 2021b).

Worldwide production of strawberries is stable with increasing demands and prices and is
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continuously growing even through the COVID-19 pandemic

(Chandler et al., 2012; Bos-Brouwers et al., 2015; Simpson, 2018;

Ministry of Foreign Affairs (CBI), 2021b). However, without the

protection of hard skins, soft fruits are vulnerable during

production and post-harvest activities. This results in significant

food waste and economic loss (Fruitteelt, 1991; Food and

Agriculture Organization of the United Nations, 2011; 31

Stenmarck et al., 2016). The food loss and waste comprise up to

50% loss along the supply chain in some countries (Macnish, 2012;

Kelly et al., 2019), among which the production loss is the majority,

which consists of up to 20% (Terry et al., 2011; Porat et al., 2018). It

has been estimated that for every ton of food waste, €1,900 of

production and processing costs are lost. Moreover, it is argued that

50% of the waste could be edible (Stenmarck et al., 2016).

The nutritional and economic value of crops is influenced by

the harvesting strategy. However, subjective assessments and

inappropriate maintenance of fruit quality could bring conflicts in

logistics planning between suppliers and distributors, which results

in even further post-harvest loss (Ramana et al., 1981; Elik et al.,

2019). Therefore, early decision-making supports both ecological

and economic interests. To make logistic and harvesting decisions

as early as possible, it is highly desirable to predict the quality of

ready-to-harvest strawberries in the field (Abasi et al., 2018; Corallo

et al., 2018; Soosay and Kannusam, 2018; Lezoche et al., 2020).

Multiple variables determine the quality of a strawberry,

including maturity, shape, sweetness, and firmness (Montero

et al., 1996; Xu and Zhao, 2010; Liu et al., 2014). As the majority

of strawberry products are consumed fresh, the taste is the highest

priority for most European consumers of strawberries (Chandler

et al., 2012; Ministry of Foreign Affairs (CBI), 2021b). Therefore, we

narrow our research scope of this paper to concern the interior

quality of the fruit, which is not directly told by their appearances:

this paper explores the assessment of the level of sweetness of

strawberries, which is quantitatively described by total soluble solid

(TSS) content in the juice of freshly harvested fruits, using

informatics and machine learning (ML) approaches.

Traditionally, the TSS content is measured by a refractometer,

quantified by the degree Brix (°Brix or Brix) (Azodanlou et al.,

2003). The measurement is expensive in both labor cost and capital

because the samples that are sent to destructive measurements can

no longer be sold (Gómez et al., 2006; Agulheiro-Santos et al., 2022).

To reduce errors and optimize the supply chain, there is a desire for

more accurate, quantitative, and non-destructive tools to assess the

quality of each fruit (Ventura et al., 1998; Mancini et al., 2020).

Therefore, we explore the feasibility of Brix prediction with easily-

acquirable data, such that the prediction can be carried out on-site

without specific fruit preparation.

Related research has demonstrated the feasibility of applying

computer vision (CV) in grading the quality of fruits (Zhang et al.,

2016; Liu et al., 2017; Munera et al., 2017; Klinbumrung and

Teerachaichayut, 2018) and in assessing specific quality attributes

(Montero et al., 1996; Azodanlou et al., 2003; Abeytilakarathna

et al., 2013; Vandendriessche et al., 2013). CV and spectral analysis

from hyperspectral imaging (HSI) are popular techniques that have

often been applied in investigating the intrinsic properties (Amodio

et al., 2019; Liu et al., 2019; Gao et al., 2020; Agulheiro-Santos et al.,
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2022). High prediction accuracy could be was achieved when fruit

photos were acquired under a (mostly-)uniform experiment setup

(Xu and Zhao, 2010; Nandi et al., 2016; Mancini et al., 2020; Weng

et al., 2020; Shao et al., 2021). Such setup requires delicate devices

which hinder the applications in a real-world setting and on an

enormous number of samples. Moreover, the “harvest first, analysis

second” methodology limits the possibility of adjusting the harvest

strategy for supply chain optimizations because strawberries stop

growing after being harvested. Hence, our study concerns the

implication of the fruit’s intrinsic characteristics by its appearance

under natural light, when the fruit is still on the plant.

Meanwhile, the micro-climate in the greenhouse and the

horticultural treatments strongly influence the harvest quality and

pace of growing (Choi et al., 2015; Sim et al., 2020; Dıáz-Galián

et al., 2021). The temperature, humidity, CO2 level, lighting

conditions, and irrigation are proven to be crucial factors (Hidaka

et al., 2016; Avsar et al., 2018; Corallo et al., 2018; Muangprathub

et al., 2019; Sim et al., 2020). The crop load is also argued to

influence the quality of fruits (Verrelst et al., 2013; Belda et al., 2020;

76 Correia et al., 2011). In modern horticulture, environmental data

is readily collected by field sensors or climate computers in most

greenhouses (Hayashi et al., 2013; Samykanno et al., 2013;

Muangprathub et al., 2019; Sim et al., 2020). Nevertheless, these

point measurements cannot provide distinctive information to

specify the quality of individual fruits. Thus, our research

introduces approaches to integrate in-the-wild fruit images with

environmental and plant-load data in predicting the Brix values of

individual fruits.

By investigating the performances of Brix prediction models, we

aim at providing insights in answering two main questions: i) how

accurately can the models estimate the Brix values by different sets

of inputs? and ii) which data are valuable for training the Brix

prediction models? The research contributes from four

perspectives: i) we collected and labeled a dataset of strawberry

images and quality measurements, using commodity hardware; ii)

we designed a conceptual methodology of non-destructive quality

estimation; iii) we shaped and implemented our methodology to

predict the strawberry sugariness; iv) by comparing the model

performances, we suggest how to develop reliable prediction

models by CV and ML techniques.
2 Materials and methods

2.1 Data collection

Data were collected from May 2021 to November 2021. This

was carried out on overwintered trays of Favori strawberry plants in

a greenhouse at the Delphy Improvement Centre B.V. (Delphy) in

Bleiswijk, the Netherlands. Strawberries were cultivated in baskets

that were hung from the ceiling in the greenhouse. For the plants

monitored by the cameras, the harvesting frequency is mostly once

per week, or twice per week when the strawberries grow faster in

warmer periods. There is exactly one harvest round per day, so we

use “from a harvest” to describe the data collected from the

same date.
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The data collection setup consisted of the following parts: i)

static cameras facing the planting baskets to take periodic photos; ii)

Brix measurements of the strawberries by the horticulturalists from

Delphy; iii) physical labels on the branches to identify the

measurement results of a strawberry with its appearance in

images; iv) climate sensors to record the environment in the

greenhouse and the outside weather; v) plant loads, represented

by the average number of Favori fruits and/or flowersper unit area;

vi) other logs about the plant cultivation.

Representations of individual strawberries were the major inputs

to train the Brix predictionmodels.We considered image data because

they are objective and distinct. The images were collected hourlywith a

time-lapse setting. The same sections of six example images are shown

in Figure 1. As is shown in the figures, we stuck a yellow label to

indicate the ID of a strawberry a few hours before the harvest

(namely the “ID label”), such that the strawberry’s appearance

in the images can be connected to the measurement results. The

measurement data that are assigned to identified strawberries are

called the “connected measurements” in the following text.

Based on previous research on influencing factors of strawberry

qualities (Chen et al., 2011; Correia et al., 2011; Avsar et al., 2018)

and the expertise of our collaborating horticulturalists, temperature,

humidity, radiation level, CO2 density, and relevant plant treatment

records (additional lighting, watering were all considered as the

environment data. The number of fruits and/or flowers per unit area

was counted weekly and noted as the “plant load”. Both the

environment and plant load data were collected by Delphy.

The strawberries with the ID labels were stored separately. On

the same day of the harvest, researchers from Delphy measured the

Brix value and the firmness of those strawberries, with a

refractometer and a penetrometer respectively. The size category

is defined by a ring test, and the ripeness level is evaluated according

to the experience of the greenhouse researchers.
2.2 Methodology of experiment
implementations

We segmented the strawberries from the in-field images, such

that only the pixels that describe the sample strawberry were

analyzed. We trained a Mask R-CNN model (He et al., 2017)

with a ResNet101 backbone for semantic segmentation. We used

the Detectron2 platform (Wu et al., 2019) to build the model. The
Frontiers in Plant Science 03
ResNet101 backbone was pre-trained on the ImageNet dataset. We

resized the image segments to 200*200*3 pixels. They were the raw

inputs for Brix prediction and feature extraction in the pa, the

image-with-env experiment, and the image-with-Brix experiment.

We considered only the last available observations, e.g. the

strawberry segment from the 5 image in Figure 1. In this way, we

limited the quality changes between when it was in the image and

when it was measured. We also normalized the colors of the images

to reduce the distraction from the changing lighting conditions

during the day by applying elastic-net regressions at the red, green,

and blue channels respectively.

To analyze the images in the image-only experiment, we built

Convolutional Neural Networks (CNNs) and Variational Auto-

Encoders (VAEs) to analyze and encode the image segments of

individual strawberries with Multi-Layer Perceptrons (MLPs). The

models were either trained from scratch or with weights pre-trained

by other popular datasets such as the ImageNet (Deng et al., 2009).

Details of model architectures can be found in the supplementary

materials. We also introduced principal component analysis (PCA) in

the experiments for feature dimensionality reduction and model

regularization (Geladi et al., 1989; Shafizadeh-Moghadam, 2021). By

taking the largest differences among the pixel data, PCA helps to

exclude disturbance from the shared information of strawberry images

to some extent. Hereafter, we use the word “encode” to represent the

process of dimensionality reduction by the encoder parts of the VAEs

and/or PCA. We use “attribute” to describe the content of information

that our model concerns. “Feature” or “input” represents what goes

directly to the models, such as information from the latent space of the

VAEs and/or after PCA.

We trained the CNNs, MLPs, the predictor part of the VAEs,

and the PCA models by the strawberry observations with connected

measurements, which are 178 out of 304 Brix measurements. We

trained the encoder and decoder parts of the VAEs by all the

segmentation outputs of the Mask R-CNN model. Hence, this

dataset includes images that were taken over the life cycles and of

more strawberries. The image-only experiment and the image-with-

env experiment applied the same encoders.

We designed the env-only experiment to analyze the relationship

between the environment data and the Brix. We used rolling averages

of the environment data over different periods. Since the environment

data does not include specific information about individual

strawberries, we took all of the 304 Brix measurements into account

and grouped them by each harvest. They are called the “aggregated
FIGURE 1

Illustration of the time-lapse images. The same parts of six images are selected. The time stamps of data collection are indicated above the images.
According to the images, by 9 am on 2021-08-20, the yellow physical label is stuck onto the branch. The strawberry 20.8.1.1 was harvested
between 3 pm and 4 pm of the same day, so the last time when it was observable on images was 3 pm, 2021-08-20.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1160645
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wen et al. 10.3389/fpls.2023.1160645
Brix”. The reliability of the aggregated Brix could also be better ensured

by introducing more sample measurements. We not only trained

machine learning models to predict the value expectation, but also the

standard deviation (std.) and the percentiles from 10% to 90% (with

intervals of 10%). The representations of the Brix distribution were

considered in supporting further experiments of individual

Brix prediction.

Since the amount of data points was reduced to the same as the

days of harvests after the aggregation, the volume of the dataset

became too small to support the training of deep neural networks.

Hence, we applied linear regression (LR), support vector regression

(SVR), and kernelized ridge regression (KRR) models. In addition,

leave-one-out experiments were considered to enlarge the training

sets of the env-only experiment. That means we split only one data

point as the validation set in each experiment run, instead of

proportionally splitting. Under this setting, we ensured all the

data was used once in performance validation so that we could

get a predicted value at every data point. The performance of

individual Brix prediction in the env-only experiment is discussed

based on the results from the leave-one-out experiments, by

considering the predicted value expectation as the Brix

predictions of all harvests on the same day.

In the image-with-env experiment, we stacked the features of

images and the environment data according to the object

strawberries to train models. By the encoder parts of the VAEs

and the PCAs fitting to the training set, we encoded the images to

image features. We trained the models of the image-with-Brix

experiment by the same image features but with the outputs from

the env-only experiment– predictions of the mean, std., and

percentiles, etc. We established four neural network architectures

to fit the various size of features in both the image-with-env

experiment and the xpd, including three three-layer MLPs and

one four-layer MLP.

We used the Keras library (Chollet et al., 2015) to build and

train the CNNs, VAEs, and MLPs in the experiments. All model

training used the Adam optimizer (beta1 = 0.9, beta2 = 0.999) and a

learning rate of 0.0003. We considered random rotation, mirroring,

and flipping to augment the image data. When training the VAE, we

also considered random scaling up to ±10%. We used the Scikit-

Learn library (Pedregosa et al., 2011) to conduct PCA and to

construct LR, SVR, and KRR models in the env-only experiment.

The KRR used polynomial kernels of degrees up to 3 and penalty

terms of 1 and 10. These are all state-of-the-art implementations in

data analytics.

For all experiments except with specific definitions, we split the

data into 7:1:2 for training: testing: performance validation. We run

each experiment 15 times with a fixed series of data splits. All the

deep learning models were trained on a Geforce GTX 1080 GPU

under a maximum of 300 epochs.
3 Results

This chapter describes our research findings in four steps: i)

the exploration of the dataset that we collected; ii) our

conceptual methodology of designing the experiments; iii) the
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model performance of each series of experiments respectively;

iv) two influencing feature selections: whether to use the plant

load data or not and which image encoder to choose. The last

section gives a comparison among the experiment series

and states our suggestions for developing a reliable Brix

prediction model.
3.1 An integrated dataset describing the
growth and harvest quality of strawberries

In order to predict Brix from non-destructive in-field data, we

collected observations of the fruits and related environmental

records in a greenhouse. The observations were in the form of

images, and the environmental records are time-series and single-

value measurements. All relevant data were linked with the

observations of individual fruits. As such, we could implement

machine learning techniques to discover the mapping from the

collected data to the Brix values.

From April 2021 to November 2021, we recorded the growth of

strawberries by 13,400 images from three RGB cameras and

collected environmental records during this period. We measured

the Brix of 304 ready-to-harvest strawberries, which were selected

from 28harvests in 22 weeks. The overall statistics of the

measurement data set are shown in Figure 2. According to the

box plots and the line plot, the Brix at each harvest usually has a

median value lower than the mean. It is implied that using the

average sample measurements to estimate the Brix of every fruit has

a higher probability to overestimate the quality.

The environmental records during the data collection period

were archived hourly and were grouped by rolling averaging over

periods. As a preliminary analysis, we computed the correlations of

the environmental data under different averaging periods and the

aggregated Brix values of each harvest. The results indicate a strong

correlation between temperatures (measured on the leaves, plants,

and in the air), radiation levels, watering, and cyclic lighting

strengths with the mean Brix of each harvest. The correlations of

the Brix with humidity and CO2 density are weaker. Details are

shown in Figure S2 in Supplementary Materials.
3.2 Conceptual experiment design

We designed four series of experiments to study the

effectiveness of using these data, shown in Figure 3: we first

analyzed whether the images (section 3.3) or the environment

data (section 3.4) could work alone in Brix prediction, and then

we considered two ways of data fusion (section 3.5).

In the image-only experiment, the Brix prediction model was

trained solely by the images of strawberries. We considered both

supervised learning (SL) and semi-supervised (SSL) in training the

models in this experiment series. A challenge in this experiment was

that the inclusion of non-relevant pixel data lowered the learning

process and even reduced the prediction accuracy. To reduce this

effect, some of the models were accompanied by additional

regularization procedures, such as conducting principal
frontiersin.org
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component analysis (PCA) on the training dataset and using the

principal components as the features for learning.

We considered environmental records and/or plant loads as the

input in the env-only experiment. Together we call these the

environment data. In the primary step, we conducted correlation

analysis to classify the importance of each sort of attribute and to

define sets of features. Since the environment data cannot express

information about individual strawberries, we trained regression

models to predict the expectation and the distribution of Brix value

aggregations of each harvest.

We established the image-with-env experiment and the image-

with-Brix experiment respectively as two ways of integrating the
Frontiers in Plant Science 05
image data and environmental records in training. We encoded the

image of each strawberry to comprise the image features. These

features were combined directly with the environmental records to

train the neural networks in the image-with-env experiment. We

considered the image features and the aggregated Brix predictions

from the env-only experiment as the inputs in the image-with-Brix

experiment. The setup was chosen based on two assumptions: i) the

predictions from the env-only experiment are good indications of

the overall quality of harvests; ii) compared to predicting the

absolute Brix, the appearance information might be more helpful

in terms of estimating the relative position out of value distribution

of Brix.
FIGURE 2

Statistics of the Brix measurements, grouped by harvests per week. On the left, the x-axis indicates the calendar week number of the harvests. The
green y-axis presents the number of tested samples. The blue line and its contour indicate the averaged Brix value and the standard deviation (std.)
of the measurements of the week respectively. The box plots illustrate the distribution of the measurement for the week. On the right, the histogram
gives an overview of the distribution of all Brix measurements in 2021.
FIGURE 3

The methodology of the four experiment series in this research. They are described by the data flow, consisting of the input attributes, the output
objects, and the models to map the corresponding inputs and outputs. The line colors and the short notes indicate different experiment series: red
represents the image-only experiment(“Exp1”), yellow is for the env-only experiment(“Exp2”), blue is for the image-with-env experiment(“Exp3”), and
green is for the image-with-Brix experiment(“Exp4”). All the models are evaluated by comparing the outputs with the ground truth.
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We set up two exam baselines to evaluate the experiment

outcomes. Firstly, we used the average value of all the Brix

measurements as the expectation of the Favori species. It

represents the empirical Brix value that members of the soft fruit

supply chain usually believe, so it is named the empirical baseline. It

is the baseline of this Brix prediction study. Secondly, we considered

the average Brix of each harvest as the expected value. As it

represents the traditional way of sugariness assessment, which is

anticipated by sample measurements, it is called the conventional

baseline. According to the experiment setup, the conventional

baseline is essentially the optimal situation of models from the

env-only experiment.

We used root mean squared error (RMSE) and mean absolute

error (MAE) to represent the model accuracy. The RMSE is

regarded as the main indicator of model performance. It gives

increasingly more punishments if the predicted value is further

from the ground truth. After running the experiments over different

dataset splits, we used the standard deviation of the RMSEs (RMSE-

std.) to indicate the robustness of model performances. The

coefficient of determination (also called the R2 score) is

considered a quantitative assessment of the level of model fitting.

It is the proportion of the variation in the dependent variable, i.e.

the individual or the aggregated Brix in this case, that is predictable

from the input data. Higher R2 scores indicate better correlations

between the inputs and outputs in the mapping.
3.3 Practical Brix prediction models cannot
be trained with images alone

By the image-only experiment, we inspect the feasibility to train

a Brix predictor with only images. We trained CNNs from scratch,

with transfer learning (TL), and with semi-supervised learning

(SSL) methods. The best-performing model of the entire
FIGURE 4

Performance comparison of Brix prediction accuracies among the four expe
standard deviation of RMSEs (RMSE-std) across different splits of validation s
environmental records. The y-axis shows the minimum RMSE of models from
experiment sets. The best performance of models using only image data is p
corresponding RMSE-std. The horizontal line in gray and brown indicates the
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experiment series has an averaged RMSE of ca. 1.33 over different

validation splits.

As the horizontal lines in Figure 4 indicate, the selected model

outperforms empirical baseline, while it is slightly worse than

conventional baseline. It is implied that the appearances of

strawberries provide hints of the Brix to a limited extent, whereas

the time of harvest has more predictive power. We hence conducted

further experiments to unravel the other attributes for

Brix prediction.

Among the experiment results, we noticed that the involvement

of feature dimensionality reduction facilitates the model

performance. A possible mechanism would be that a large

proportion of overlapping features were condensed in the latent

space of VAEs or the orthonormal bases of PCA (Goharian et al.,

2007). Meanwhile, the model fitting might also be regularized with

the help of PCA, particularly when the model was trained with a

small data set in our situation (Geladi et al., 1989; Delac et al., 2005).

These findings also motivated us to encode the images in the data

fusion steps of further experiments.
3.4 Models reveal significant dependencies
of aggregated Brix on environment data

3.4.1 The performance in predicting
aggregated values

In the env-only experiment, we trained LR, SVR, and KRR

models to assess how well the collective Brix value can be predicted

with only the environment data. When aggregating the data points,

overfitting was an indispensable issue. Particularly, when the data

are very few whilst the inputs have a large dimension. To assess the

level of model-fitting, we calculated the R2 score of models using

different subsets of features, hyper-parameters, and train-test splits

to predict the representations of value aggregations on the testing
riment sets, using RMSE as an indicator. The error bars indicate the
ets. The models are grouped by the ending point of the periods of the

the same group. The colors indicate the input attributes of the
resented by a horizontal line. The contour around it indicates the
two benchmarks that are mentioned in the methodology section.
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data set. When we grouped the scores by the algorithms of models

to evaluate the level of model determination, we found more than

half of the LR models have a negative R2 score, which indicates that

simple linear models cannot fit this mapping. With a stronger

regularizer, or with higher outlier flexibility, the R2 scores of KRR

(alpha=10) and SVR models are more condensed to 0.5-0.6. The

generally higher R2 scores also indicate they are more practical

models in tackling this circumstance.

3.4.2 The performance in predicting
individual values

To make the results comparable, the predictions of the averaged

Brix were regarded as the estimation of all the strawberry

measurements at each harvest. The RMSEs were hence calculated

on the same validation splits as the other experiment sets take.

Figure 4 compares the effectiveness of using various periods of

environment data with other experiments, of which the time spans

are grouped by the ending time.

As the bars in Figure 4 demonstrate, when models use features

from the periods closer to the harvest time, they obtain lower and

less diverged RMSEs in general. The RMSE-std of the models in the

env-only experiment is lower than the best-performing model from

the image-only experiment. The result argues that even using only

the environment data in Brix prediction could train more reliable

and stable models. Hence, it is strongly suggested to involve the

environment data in training further comprehensive models.
1 To limit the variables, we took only results from the KRR model with

alpha=10 and polynomial degree=3.
3.5 Images give the power to
perform individual prediction
with environment data

Results from the env-only experiment indicate that we need

specific information to distinguish fruit-to-fruit differences from

each harvest. Since the environment data are all point

measurements, we encoded the images into 200, 50, 10, and 5

features by four combinations of VAEs and PCA respectively to fit

the dimension differences between the two types of data. The image-

with-env experiment and the image-with-Brix experiment introduce

two ways of fusing the image feature and environment data.

3.5.1 Combining image features with direct
environmental information

The image-with-env experiment straightforwardly combined the

two types of data to train the MLPs for the individual Brix

prediction. Unsurprisingly, the lowest RMSEs from all the groups

outperformed the best models from the image-only experiment and

the env-only experiment, as is illustrated in Figure 4.

Curiously, the performance difference caused by the collection

time span of environment data was remarkably reduced in this

experiment. A possible reason would be that the MLPs also learn

the trend of changes within the time-series data – such that the

performance did not reduce as much as in the env-only experiment.

Meanwhile, the nonlinearity and regularization performed by

the neural network also ensured the robustness of the

model performances.
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3.5.2 Combining image features with predicted
Brix distribution of a harvest

The fourth experiment, the image-with-Brix experiment, allows

us to explore another way of integrating the knowledge from the

two sorts of data: to use the image features to predict the relative

quality within the distribution of Brix values. We used the

predictions of Brix aggregations1 from the leave-one-out

experiments from the env-only experiment. Among all the

experiment series, the models from the image-with-Brix

experiment resulted in the lowest RMSEs, as illustrated in

Figure 4. Among the different features of the aggregated Brix,

models that were trained by Brix percentiles slightly outperform

the models that assumed a Gaussian-distribution fit, i.e. using the

mean and std. as inputs.
3.6 Plant load is crucial as part of the
indirect environmental information

As is illustrated in Figure 5, introducing the plant load as part of

the input attributes has a positive effect on the model performances,

which is more outstanding on the models from the env-only

experiment. In the image-with-env experiment, the upper limit of

model accuracy was slightly improved. But more importantly, there

were notable decreases in the std. of RMSEs over different data

splits. Both changes were limited in the image-with-Brix experiment.

In all, we suggest that plant load is a crucial feature when the raw

environmental information comprises the input data.

Moreover, since our plant load data was averaged over different

branches of strawberries, they did not directly reflect the division of

nutrition on the camera-monitored plants as the literature suggests.

Hence, we suppose that the data could reveal the general influence

of the growing environment on strawberries in this greenhouse

compartment in an indirect and deferred way.
3.7 Image encoders have a noteworthy
influence on the model performances

The best-performing models of each family are considered in the

previous result discussions. However, the number of image features

also influenced the model accuracy. The information from different

latent spaces is illustrated in Figure 6. Figure 7 discusses the effects

when the image features are utilized with different representations of

environment data. When we used only the images in the prediction, it

is still important to keep as many features as possible. Referring to the

illustrations in Figure 6, it is indicated that considering the texture

and the shape of strawberries could have a positive influence on the

intrinsic quality representation. When using image features together

with the raw environment data, we cannot see much difference in the

best performances. Nevertheless, we observe an increase in the
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FIGURE 5

Performance comparison of Brix prediction using different attributes of environmental information, using RMSE as an accuracy indicator. The colors
indicate the involvement of the plant load data. The y-values indicate the minimum RMSEs of models from the same group.
FIGURE 6

Examples of an image segment and its latent features from the four VAEs, plotted in a monologue style. The first column is the original image
segment uniformed into a size of 200x200 pixels. The segment background is saved as black and transparent pixels. The level of dimensionality
reduction from each encoder is shown on top of the latent space illustrations.
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RMSEs when using larger dimensions of image features with the

aggregated Brix. Overall, it is suggested that similar dimensions of

image features and the other source of data could generally achieve

better RMSEs.
4 Discussion

With this paper, we propose and evaluate a practical

methodology for estimating the sugariness of individual

strawberries, starting from planning the data collection setups.

This approach uses affordable devices to collect relevant

observations in the field and does not require harvesting or

destroying the fruit. The experiment results demonstrate that it is

feasible to anticipate the quality of strawberries when they are still
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growing. Such information could support the decision-making of

harvesting and supply-chain strategies of greenhouse managers.

According to Figure 4 and Table 1, the models using image features

with aggregated Brix information are the optimal choices among all the

attribute combinations. The models could reduce the RMSE by up to

28.8% and 18.9% from the empirical baseline and the conventional

baseline respectively. Compare to the image data, the environmental

information has shown to be more relevant for the models to learn

from, yet they lack the capability to tell fruit-to-fruit variances.

Compared to using data from a sole source, a mixed-use of both

could lead to an accuracy improvement of 10.0% and 6.2%, respectively.

Compared to other research in the field, we included multiple

types of data to build machine-learning models. Our models show

competitive performances in the sweetness prediction of

strawberries [RMSE 1.2 from Sun et al. (2017), MSE 0.95 from
FIGURE 7

Performance comparison of Brix prediction using different image encoders, using RMSE as an accuracy indicator. The x-axis indicates the input
attributes of the experiment sets. The colors indicate the dimensionality of the image features involved in the experiments. The y-values show the
minimum RMSEs of all models from the same group.
TABLE 1 Detailed accuracy indicators of the best-performing models using different sets of input attributes.

Image Feature Env. Data Plant Load Brix Agg. MAE RMSE RMSE-std.

Included In Agg. Pred. In Agg. Pred Percentiles 0.81 1.10 0.158

Included In Agg. Pred. In Agg. Pred Mean + std. 0.86 1.12 0.139

Included In Agg. Pred. In Agg. Pred Mean 0.90 1.15 0.118

Included Included Included N/A 0.90 1.18 0.103

Included Included Not included N/A 0.90 1.22 0.119

the conventional baseline 0.91 1.22 0.151

N/A Included Included N/A 0.96 1.24 0.128

N/A Included Not included N/A 1.00 1.27 0.146

Included Included Included N/A 1.04 1.32 0.134

Included Not included Not included N/A 1.00 1.33 0.189

the empirical baseline 1.21 1.56 0.312
f

The models are ranked according to the “RMSE” column. the empirical baseline is calculated by using the Brix expectation of the strawberry variety as all the predicted values. the conventional
baseline is calculated by taking the average Brix of each harvest as the individual predictions. The MAE and RMSE of all models and benchmarks are calculated by averaging over 15 random
validation splits. The std. of the RMSE on each validation split is presented in the “RMSE-std” column.
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Cho et al. (2019)] while using in-field data collected more easily-

acquired devices. On top of that, the dataset that we collected for

pursuing this research is also useful for more research in this field.

In the above-mentioned experiments, we performed all the

procedures step-by-step, yet we see the possibility to exploit

higher levels of model integration. Nevertheless, as state-of-the-

art computer vision technologies allow detection models to be faster

and more portable, expanding the capability of real-time

assessments of fruit quality could also be an interesting topic.

The research primarily studies in-field and non-destructive data

that are worth to be considered in training Brix prediction models.

The images, which the prediction models were trained with, are

essentially a subset of the time-lapse image dataset. With the entire

dataset, further research is suggested to include temporal

information for refining the quality prediction models. It is also

an interesting topic to explore the practicability of using earlier

images in forecasting future Brix values.

Our results suggest that environmental information plays a vital

role in training a reliable model. Particularly, the environmental

information from up to fourteen days before the harvest is crucial to

ensure the model’s accuracy. Nevertheless, we did not discuss the

detailed influence of specific sources of climate data on our model

accuracies. It is therefore recommended to conduct subsequent studies

on the effectiveness of learning with different environmental factors.
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