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Towards grapevine root
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To sustainably adapt viticultural production to drought, the planting of rootstock

genotypes adapted to a changing climate is a promising means. Rootstocks

contribute to the regulation of scion vigor and water consumption, modulate

scion phenological development and determine resource availability by root

system architecture development. There is, however, a lack of knowledge on

spatio-temporal root system development of rootstock genotypes and its

interactions with environment and management that prevents efficient

knowledge transfer into practice. Hence, winegrowers take only limited

advantage of the large variability of existing rootstock genotypes. Models of

vineyard water balance combined with root architectural models, using both

static and dynamic representations of the root system, seem promising tools to

match rootstock genotypes to frequently occurring future drought stress

scenarios and address scientific knowledge gaps. In this perspective, we discuss

how current developments in vineyard water balance modeling may provide the

background for a better understanding of the interplay of rootstock genotypes,

environment and management. We argue that root architecture traits are key

drivers of this interplay, but our knowledge on rootstock architectures in the field

remains limited both qualitatively and quantitatively. We propose phenotyping

methods to help close current knowledge gaps and discuss approaches to

integrate phenotyping data into different models to advance our understanding

of rootstock x environment x management interactions and predict rootstock

genotype performance in a changing climate. This could also provide a valuable

basis for optimizing breeding efforts to develop new grapevine rootstock cultivars

with optimal trait configurations for future growing conditions.
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1 Introduction

Grapevine (Vitis vinifera L.) is recognized as being well adapted

to challenging environments (Ollat et al., 2019). With current

climate change projections, however, abiotic stress in viticulture is

likely to increase to levels that potentially jeopardize grape

production, quality and wine typicity (Fraga et al., 2016; Schultz,

2016; Ollat et al., 2019). Temperatures and evaporative demand

have risen and are expected to continue rising in many viticultural

areas (Schultz, 2017). In addition, precipitation patterns are likely to

be affected, with rainfall events becoming more erratic, resulting in

increased frequency, severity and duration of drought periods and

making water availability arguably one of the most crucial

environmental factors limiting future growth and productivity of

crops in general and viticulture in particular (Costa et al., 2016;

Delrot et al., 2020; Gambetta et al., 2020; IPCC, 2021).

Winegrowers have high awareness of the effects of climate

change. The vast majority of wineries in Europe (Loose and

Pabst, 2019) and worldwide (Neethling et al., 2020) state that

they have noticed climate change effects in the recent past, with a

majority referring specifically to drought stress and water scarcity.

Climate change effects are perceived as particularly detrimental in

already hot and dry regions such as Spain and southern France

(Neethling et al., 2020), and even in parts of the world with

extensive irrigation infrastructure recent experience shows that

water security is not guaranteed under extended drought (Van

Dijk et al., 2013; Lund et al., 2018). In the case of Germany, growers

perception of climate change effects on yield and quality has

changed from positive (Battaglini et al., 2009) to overwhelmingly

negative in the past decade (Loose and Kiefer, 2020), with drought

risk in steep slope viticulture (Strub and Loose, 2021) and young

vineyards perceived as particularly critical scenarios (Friedel

et al., 2022).

There is a wide diversity of adaptation levers to improve the

management of viticulture under future climatic conditions

(Naulleau et al., 2021). Among them, the choice of existing or

breeding of novel rootstocks suitable for site-specific environmental

characteristics represents an elegant way ensuring adaptation to a

range of abiotic and biotic stresses (Delrot et al., 2020), while

maintaining traditional scion varieties that are familiar to the

market (Ollat et al., 2016; Zhang et al., 2016). There is wide

consensus that rootstocks will be central to adapting to the

challenges of climate change, notably the rising risk of drought

stress, with both choice of the right plant material and breeding of

new rootstock genotypes presenting key strategies (Marguerit et al.,

2012; Corso and Bonghi, 2014; Berdeja et al., 2015; Grossi et al.,

2016; Ollat et al., 2016; Delrot et al., 2020; Gambetta et al., 2020).

The great diversity of existing rootstocks, however, still remains

widely underexploited in viticultural practice (Ollat et al., 2016),

possibly due to a lack of decision support for growers regarding the

choice of rootstocks (e.g. for Germany: Friedel et al., 2022).

The choice of adequate rootstock varieties to reduce drought

stress is a challenging task, as plant performance under drought is

subject to strong genotype x environment (G x E) interactions

(Tardieu, 2012). Grapevine drought tolerance is a particularly
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complex integrative trait with multiple underlying physiological

mechanisms subject to rootstock x scion x environment x

management (G1 x G2 x E x M) interactions. Such complexity

and lack of mechanistic understanding of many drought responses

can also prevent accurate prediction of drought stress risk under

future climatic scenarios (Gambetta et al., 2020).

There is a general consensus in the plant research community

that, among plant traits that play a role in drought stress physiology,

root system architecture stands out as being of utmost relevance

(Wasson et al., 2012; Comas et al., 2013; White et al., 2013; Lynch,

2018; Shoaib et al., 2022). The importance of root system

architecture (i.e. the spatial distribution and shape of different

root types within a volume of soil) and its temporal development

lies in the fact that water is heterogeneously distributed in the soil in

space and time. The spatio-temporal deployment of roots will

therefore substantially determine the ability of plants to take up

water (De Dorlodot et al., 2007; Rogers and Benfey, 2015; Tron

et al., 2015). The challenge is that root architecture traits are

complicated to assess in a meaningful spatial and temporal

resolution, particularly in perennials grown under field conditions

(Dumont et al., 2016).

To better match rootstocks to target growing areas, it is

necessary to combine detailed knowledge of current and future

drought stress scenarios with an understanding of root architecture

traits that may contribute to drought tolerance (White et al., 2013).

In that sense, modeling can assist with explaining observed data,

testing hypotheses and integrating drought conditions and plant

performance on the scale of individual plants up to crop stands and

deepen our understanding of the complex high-dimensional space

of G x E x M interactions (Soualiou et al., 2021). Root architecture

models can assist in our understanding how roots access and extract

soil resources. They enable researchers to plan and interpret the

results of root sampling strategies and help to explore how single or

sets of root architecture traits contribute to drought adaptation

within various growing scenarios, without the necessity of executing

numerous experiments that would be required to display the vast

array of soil and drought conditions found in agricultural regions

(Dupuy et al., 2010; Schnepf et al., 2018a; Schnepf et al., 2018b).

This can also provide a basis to formulate breeding targets for the

development of improved rootstock cultivars with desired trait

configurations (Cooper et al., 2021).

In this perspective, we review state-of-the-art knowledge from

different disciplines and propose an approach to bridge knowledge

gaps in the role of grapevine root system architecture under

drought, with an emphasis on dynamic root development of

young vines. We investigate how a highly interdisciplinary

collaboration with a strong focus on modeling might enhance our

understanding of spatio-temporal interplays of both soil water

availability and root architecture, and thereby identify modeling

strategies that may advance our understanding of grapevine

rootstock traits. Such an integrative approach would facilitate

knowledge transfer into viticultural practice and broaden the

possibilities of decision support for winegrowers. It could also

help to improve rootstock genetic improvement programs that

target specific future environmental scenarios.
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2 Simulating realistic environments
for rootstocks

Environmental effects and G x E interactions have been shown

to be larger sources of variance for target traits than genotype effects

alone, particularly under stress conditions (Chenu, 2015). Hence,

detailed knowledge on the spectrum of drought stress scenarios

representative for the majority of future vineyard situations is

necessary to advise growers on their choice of rootstock and

inform breeders about the requirements rootstocks will have to

meet in the course of climate change. Such drought stress scenarios

can be adequately characterized for different environments by

modeling the vineyard water balance (Hofmann et al., 2022).

The capacity to model the vineyard water balance based on

observed or simulated weather data (e.g. Lebon et al., 2003; Pieri

et al., 2012; Gaudin et al., 2014; Hofmann et al., 2014) is also of high

importance for the identification of traits with high agronomic

relevance, and to define trait combinations in new rootstocks with

improved performance in future vineyards. For example, Hofmann

et al. (2022) modeled future drought stress risk on a vineyard plot

scale for two winegrowing regions using an ensemble of climate

change projections. In their model, topographical, geological,

meteorological and vineyard management factors (e.g. slope and

aspect, cover crop use, row spacing) were integrated to obtain

precise predictions of the vineyard water balance. While such

model approaches fulfill the requirements for the description of

future drought stress scenarios for established vineyards, they do

not specifically use root parameters such as rooting depth or root

length density (RLD), and assume that roots can extract water from

the complete soil reservoir defined by a default effective root zone.

Further, soil water content is modeled only by the fraction of the

available water capacity without considering the vertical

distribution of soil water. Hence, their use for specific predictions

such as young vine survival might be limited, as only a fraction of

soil water may be available for young vines due to limited rooting

depth and radius. Under the assumption that water extraction of

young vines can be represented by limiting the effective root zone,

the model was applied to predict the water balance of young

vineyards, but such predictions remain to be validated by targeted

experiments (Hofmann et al., 2022). As genetic variability for root

parameters has been shown to exist (e.g. Tandonnet et al., 2018),

extended models that are capable of capturing a range of root trait

configurations would provide the opportunity to consider root

genetic diversity in the modelling process.

Due to the high variability of topologic and geologic parameters

typically associated with many traditional winegrowing regions, and

a high variability of monetary and cultural value of vineyards often

located in close spatial proximity, a plot-scale resolution as chosen

by Hofmann et al. (2022) seems adequate for water balance

simulations in viticulture. Water balance modeling has also

shown the importance of E x M interactions for the water balance

of target growing environments and demonstrated the particular

importance of cover cropping (Celette et al., 2010; Gaudin et al.,

2014; Hofmann et al., 2014). Figure 1 illustrates simulated annual
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courses of water consumption by grapevine transpiration,

evapotranspiration of cover cropped soil and evaporation of bare

soil of three different vineyards located in close spatial proximity. In

the extreme example illustrated in Figure 1A (steep slope, southern

inclination, shallow soil, wide, cover-cropped rows), a large fraction

of the available water is transpired by the cover crop before the

grapevines start to consume water. This could lead to early drought

stress during shoot development and flowering in dry springs. As

cover cropping practice differs substantially among dry farmed

winegrowing regions (e.g. Celette et al., 2008; Abad et al., 2021),

the inclusion of a cover crop component in modeling drought stress

scenarios is fundamental to apply water balance models on a large

scale and may justify further model refinements such as the type of

cover crop used.

In perspective, relevant drought stress scenarios might be

extracted from a cluster analysis (e.g. Mishra and Singh, 2011;

Crespo-Herrera et al., 2021) performed on the results of a large scale

application of water balance models combined with ensembles of

climate change projections (Chenu, 2015). Input data needed to run

water balance models on large scales with high (plot-scale) spatial

resolution have become increasingly available in the past decades by

use of digital elevation models and the increased availability of high-

resolution soil maps for many European regions (Panagos et al.,
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FIGURE 1

Example simulation of grapevine transpiration, evapotranspiration of
cover cropped soil and evaporation of bare soil for three vineyards in
the Rheingau region in 2022 (A–C). (A) Ehrenfels vineyard, row spacing
2.50 m, 85 mm available water capacity (AWC), fully cover cropped with
exception of the undervine area (width 0.4 m). (B) Burgweg vineyard,
row spacing 1.60 m, 115 mm AWC, every other row cover cropped.
(C) Wilgert vineyard, row spacing 1.60 m, 320 mm AWC, fully cover
cropped with exception of the undervine area. Development of cover
crops is divided into several growth stages.
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2022). Data on soil water availability may also become available in

higher spatial (i.e. horizontal and vertical) resolution using novel

techniques such as cosmic ray neutron sensing (Baroni et al., 2018).
3 Root architecture is a key
determinant of grapevine
performance under drought

Grapevines can cope with water deficits through a range of

mechanisms that help to delay the onset of severe water stress, and

through mechanisms that help the plant tolerate more negative

water potentials without significant tissue damage (Chaves et al.,

2010; Tsegay et al., 2014; Lovisolo et al., 2016; Simonneau et al.,

2017; Gambetta et al., 2020). In this regard, various single traits have

been discussed to play a pivotal role in grapevine drought

adaptation, including an array of morphological, anatomical and

physiological characteristics of both aerial and underground organs

(Simonneau et al., 2017; Gambetta et al., 2020). Although difficult to

rank according to their importance for rootstock drought tolerance

with the current state of knowledge, a large body of evidence

suggests that root architectural traits, the temporal pattern of

their deployment and their plasticity in response to soil water

availability seem crucial parameters to estimate rootstock

performance in any drought prone area (e.g. Tsegay et al., 2014;

Ollat et al., 2017; Tandonnet et al., 2018). Despite the extensive

knowledge gained in these studies, our knowledge on rootstock

architecture in the field remains limited due to the difficulty in

accessing the root system of the vine, which restricts phenotyping

throughput (Soar and Loveys, 2007; De Herralde et al., 2010;

Tandonnet et al., 2010; Dumont et al., 2016; Archer and

Saayman, 2018; Tandonnet et al., 2018; Ollat et al., 2019).

Knowledge about early root development and root morphology of

grapevines grown in the field and particularly their relationship

with vine performance in established vineyards, root growth

plasticity and root growth dynamics seems particularly limited

(Ollat et al., 2017). This prevents a better understanding of root

deployment in the field, an important step to address issues with

practical relevance such as grower uncertainties regarding the

optimal rootstock choice to support the survival of young vines.

A range of traits are commonly used in the literature to describe

grapevine root architecture and growth (Table 1), among them

static root traits (i.e. measurable at a single point of time) and

dynamic root traits (i.e. related to spatio-temporal changes, De

Dorlodot et al., 2007).

Many of these root traits play a context-dependent role in

the drought tolerance of grapevines. For instance, in intermittent

drought scenarios prevailing in most central European winegrowing

regions, the ability to take up water in topsoil when summer

precipitation becomes available (either by maintaining or

reinitiating growth of fine roots and high total root length

density) is likely to contribute to drought tolerance (Cuneo et al.,

2021), but such traits would be of limited value in storage-driven

hydrology typical of vineyards in Mediterranean climates, in which

rooting depth seems to play a crucial role (Tron et al., 2015).
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Soil water depth is another major parameter of the drought

stress scenario and determines the strategy to ensure plant

performance. In soils with available deep water, a strategy to

outgrow the water deficit might be best suited for plant survival

and productivity (e.g. high root length density at depth). In rather

shallow soils or soils where no deep water is available, a reduction of

metabolic investment into root development may be beneficial for

vine survival, since a trade-off exists between the carbon costs of

root systems and the benefit of increased water uptake under

drought, limiting the necessity of investing into large root system

under specific growing conditions (Tardieu et al., 2017). It is,

however, unclear whether such parsimonious strategies will

benefit vine survival and productivity in case there is cover crop

competition (see Figure 1).

Management practices such as planting density, cover cropping

strategy or canopy management, and soil parameters such as

penetration resistance also exert a strong role in shaping root

system architecture and its development (Richards, 1983; Reimers

et al., 1994; Smart et al., 2006; Celette et al., 2008; Hunter et al.,

2016). Describing the complex interplay of rootstock genotypes and

their interactions with various environment and management

factors would require an enormous amount of field phenotyping

studies - an impossible task considering the difficulties in accessing

the root network.

To get a better understanding of the complex interactions

shaping root growth, a combinat ion of phenotyping

methods with increased throughput or increased spatio-temporal

resolution and advanced modeling is suggested in the

following paragraphs.
4 Phenotyping techniques to capture
root system development

Root phenotyping studies in the field and, under significant

limitations, in the greenhouse, are needed to capture root

architecture traits under conditions as close as possible to

practical viticulture. In the following section, we briefly discuss

methods to capture root architectural traits and discuss their

advantages and drawbacks.

Rhizoboxes and rhizotrons (hereinafter referred to as

rhizoboxes) are specialized growth chamber systems. Usually,

simple designs comprising a frame, at least one transparent pane

and an opaque cover are used to monitor the temporal below-

ground development of young grapevine plants, cuttings or

seedlings grown in a soil-like medium in a non-destructive way

and to characterize a range of static and dynamic root architecture

traits in a limited space, yet basically in 2 dimensions (Dumont

et al., 2016; Baldi et al., 2018; Krzyzaniak et al., 2021; Yee et al.,

2021). The benefit of this simple and cost-effective approach is the

investigation of root growth under controlled conditions with low

space requirement and high throughput. However, there are

limitations in the use of rhizoboxes in perennial plants like

grapevines. In particular, the design of rhizoboxes restricts root

growth (e.g. maximum rooting depth, 2D), thus determining the
frontiersin.org
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boundaries of the experiment spatially and temporally (Poorter

et al., 2012).

To phenotype root systems of field grown grapevines with

minimal soil disturbance, soil coring and minirhizotrons provide

complementary methods for characterizing spatio-temporal

differences in root growth traits (e.g. Soar and Loveys, 2007;

Linsenmeier et al., 2010). These techniques are particularly suited

for studies where comparisons of multiple genotypes or locations

are of interest, or where there is a requirement to follow the

development of root systems with repeated observations at a

limited spatial resolution (Soar and Loveys, 2007; Bauerle et al.,

2008). The information obtained from soil coring should be

complemented with soil moisture monitoring in assessing the

functional implications of measured root distribution and can

assist in parametrizing water balance models where depth of

water uptake and relative share of soil water with cover crops can
Frontiers in Plant Science 05
be used as inputs (Hofmann et al., 2014; Zhu et al., 2021). For

minirhizotrons, the ability to make more frequent observations

down to a scale of individual roots provides further functional

insight by allowing detailed assessments of root elongation rates,

root lifespan, and seasonal fine root growth dynamics (e.g. Comas

et al., 2010; Savi et al., 2018). Aspects of both methods are labor

intensive, but technological developments in image collection and

analysis, as well as opportunities to apply molecular techniques in

the study of soil and roots collected from cores is greatly increasing

the value of information that can be obtained (Haling et al., 2011;

Lobet et al., 2013). For example, molecular techniques could allow

to reliably discriminate cover crop from grapevine roots and hence

obtain information about the spatial distribution of the roots of

multiple species in a cover cropped vineyard. In addition, inverse

estimation methods have been used to derive root architecture traits

such as maximum length, elongation rate, insertion angles, and
TABLE 1 Overview of root architecture traits commonly used in grapevine research.

Trait Unit References

rooting angle ° Smart et al., 2006; De Herralde et al., 2010; Fort et al., 2017; Cochetel et al., 2019; Schmitz et al., 2021

rooting depth cm; m Morlat and Jacquet, 2003; Smart et al., 2006; De Herralde et al., 2010; Tsegay et al., 2014; Hunter et al., 2016; Kocsis et al.,
2016; Fort et al., 2017; Cochetel et al., 2019

total root length mm; cm; m Bassoi et al., 2003; De Herralde et al., 2010; Alsina et al., 2011; Dumont et al., 2016; Kocsis et al., 2016; Ollat et al., 2017;
Peccoux et al., 2018; Yıldırım et al., 2018; Peiró et al., 2020; Schmitz et al., 2021; Burgess, 2022

root length density mm/cm3; cm/
cm3; m/m3

Bassoi et al., 2003; Soar and Loveys, 2007; Tsegay et al., 2014; Peccoux et al., 2018; Burgess, 2022

root length area cm/cm2 Peccoux et al., 2018

root density no./m2 Morlat and Jacquet, 2003; Hunter et al., 2016; Ferlito et al., 2020

root diameter mm; cm Bauerle et al., 2008; De Herralde et al., 2010; Tsegay et al., 2014; Barrios-Masias et al., 2015; Dumont et al., 2016; Kocsis
et al., 2016; Peccoux et al., 2018; Peiró et al., 2020

total number of roots no. Morlat and Jacquet, 2003; Bauerle et al., 2008; Comas et al., 2010; Hunter et al., 2016; Kocsis et al., 2016; Tandonnet et al.,
2018; Cochetel et al., 2019; Schmitz et al., 2021

root biomass g Bassoi et al., 2003; Morlat and Jacquet, 2003; De Herralde et al., 2006; Soar and Loveys, 2007; De Herralde et al., 2010;
Tandonnet et al., 2010; Gambetta et al., 2012; Dumont et al., 2016; Hunter et al., 2016; Fort et al., 2017; Tandonnet et al.,
2018; Yıldırım et al., 2018; Ferlito et al., 2020; Bartlett et al., 2021

root volume m3 Soar and Loveys, 2007; Jones, 2012; Gambetta et al., 2020; Peiró et al., 2020; Schmitz et al., 2021

root surface area cm2; m2 Bassoi et al., 2003; Gambetta et al., 2012; Dumont et al., 2016; Yıldırım et al., 2018; Peiró et al., 2020; Bartlett et al., 2021;
Cuneo et al., 2021

specific root length m/g Pérez-Harguindeguy et al., 2013; Zhu et al., 2021

rooting index no. of roots < 2
mm/no. of roots

> 2 mm

Swanepoel and Southey, 1989; Ferlito et al., 2020

ramification/number
of lateral roots/
branching frequency

no.; no./volume;
no./branching

point

De Herralde et al., 2010; Cochetel et al., 2019; Schmitz et al., 2021

root growth plasticity mm/cm2 per
season

Bauerle et al., 2008

root growth/elongation
rate

mm/d; cm/d;
mm/h

Dumont et al., 2016; Mahmud et al., 2018; Cuneo et al., 2021

root production
pattern

no./period; mm/
period; cm/

period

Comas et al., 2005; Bauerle et al., 2008; Comas et al., 2010; Fort et al., 2017
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numbers of zero-order roots from soil coring (Morandage et al.,

2021), a strategy also applicable to minirhizotron data (Schnepf

et al., 2018a).

Root architecture traits of field grown grapevines can be

acquired at very high spatial resolution by excavating entire root

systems followed by 3D-digitization (e.g. using a low magnetic field

digitizer such as Fastrak, Polhemus, Colchester, VT, USA). 3D-

digitization has successfully been applied to phenotype

aboveground grapevine growth (Schmidt et al., 2019) and to

digitize root architecture of different tree species (Danjon et al.,

2005; Danjon et al., 2013; Danquechin Dorval et al., 2016), but to

the best of our knowledge has not been applied to root systems of

grapevines. Manual excavation is laborious, whereas removing the

soil with high-pressure air is efficient without harming fine and

coarse roots (Danjon et al., 2005). Manual uprooting can be done

for smaller plants, but for larger plants, mechanical uprooting using

a mechanical shovel is generally much more rapid. In this case, the

number of roots lost during uprooting is large in the peripheral part

of the root system. Once excavated, the root system can be

measured in situ or brought to the laboratory, provided that the

roots are rigid enough to maintain the overall 3D structure of the

root system. In situ measurement is specifically suitable for young

plants to reduce the loss of roots and to accurately measure root

system geometry. After the excavation or uprooting the root system

can be digitized. According to the downstream data distribution

method, the digitized root geometry data are available in different

formats: simple lists, structured lists (compare Schmidt et al., 2019)

or multiscale tree graph (MTG) format file (Godin and Caraglio,

1998), where the root system is defined as a set of root axes

subdivided into segments. Although both parts of this method,

excavation and digitization, are very time-consuming and come at

the expense of throughput, the high-resolution data output along

with a functional annotation makes such data sets ideally suited for

the integration into root growth models.

Of the methods described here, only rhizoboxes allow for

a throughput in the scale needed to run genetic studies on root

traits and/or screen larger breeding collections. Connecting field-

based observations taken from older vines to seedling and/or

cutting-based root measurements (e.g. on adventitious roots), for

example via genetic correlation analyses, would provide highly

valuable information for breeding regarding potential proxy-traits

that genetic improvement programs could target at much

higher throughput.
5 Modeling root growth

Root phenotyping data may be used to inform or parametrize

models that might advance our understanding of the interaction of

root architecture and drought stress response in specific

environments, both for young and mature grapevines. This can

be achieved by integrating traits of individual rootstocks into

existing models, by the extension of existing models and by the

parameterization of new root growth models. Root growth models

describe growth of roots over time – often in relation to drivers such
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as water availability or nutrients. In this respect, such models are

often part of classical crop models (e.g. APSIM, Keating et al., 2003).

They typically consider root growth processes in relation to soil

depth, focusing on one dimension only. Models for root

architecture explicitly consider positioning of root segments in

the soil, either in 2D or in 3D (e.g. Leitner et al., 2010; Postma

et al., 2017; Barczi et al., 2018; Schnepf et al., 2018a; Schnepf et al.,

2018b; Morandage et al., 2021). A root architectural model might

belong to the class of functional-structural model (FSPM), if it

integrates interactions with physiological processes. Functional-

structural models may be static or dynamic over time. A dynamic

FSPM includes both the growth and development (appearance) of

new organs (Buck-Sorlin, 2013).

Among existing plant growth models that include root

architectural traits, SurEau (Cochard et al., 2021) and APSIM

grapevine (Zhu et al., 2021) are examples for a mechanistic plant

model and a crop model, respectively, that allow the integration of a

variety of rootstock traits. SurEau was developed to test the effect of

drought stress on woody species hydraulics in the soil-plant-

atmosphere continuum, and has been applied to study the effects

of drought stress on hydraulic failure of several grapevine scion

genotypes (Dayer et al., 2020; Dayer et al., 2022). Soil in SurEau is

divided into several layers, each with its own root distribution. It

however seems to have limitations in the application to vineyard

situations, as it does not consider the row structure of the vineyard,

or effects of cover cropping. APSIM is a modeling framework that

has recently been parametrized for grapevine (Zhu et al., 2021). It

can integrate several root traits (e.g. rooting depth; biomass

accumulation; root length density; fine root distribution in

specific vineyard zones like the inter-row space) in specific soil

layers. One limitation of APSIM grapevine is that the variety of

drought stress functions available in the parent framework have not

been integrated into APSIM grapevine yet.

Further progress can be achieved by extending or modifying

existing models. Modifying models such as SurEau to represent

vineyard situations more accurately (e.g. by introducing row

structure or a cover crop module), and possibly integrate a larger

number of root traits will greatly expand our possibility to analyze

drought damage to grapevines as a function of rootstock genotype.

Similar output, but with a stronger focus on vineyard water balance

on a large scale, might be obtained by expanding existing water

balance models such as the one published by Hofmann et al. (2022)

with root architecture traits. If an interface between physiological

models (e.g. SurEau) and vineyard water balance models can be

achieved, it may become possible to simulate vine hydraulic failure

risk on a regional scale as a function of scion and rootstock,

provided that scion/rootstock interactions are known.

The application of such models, however, would have the

drawback that they do not yet integrate dynamic root traits nor

root system architectural traits sensu stricto. Frameworks such as

APSIM contain features that may allow for a dynamic simulation of

root growth. Additional knowledge can be gained from the

application of dynamic FSPMs, which are able to represent the

development of plant architecture in time and space. Generic root

FSPMs such as CRootBox (Schnepf et al., 2018a; Schnepf et al.,
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2018b; Zhou et al., 2020; Morandage et al., 2021), OpenSimRoot

(Postma et al., 2017) or DigR (Barczi et al., 2018) may be used to

predict the architecture of mature vines from young vine

phenotyping data and are thus ideally suited to transfer results

from limited greenhouse studies (e.g. in rhizoboxes) to the field.

Also, FSPMs have already successfully been applied to model

intercropping systems (Bourke et al., 2021 and references therein)

and will hence be ideally suited to simulate root development of

grapevines and cover crops, as well as their mutual interaction. For

the parametrization of FSPMs, data obtained by 3D-digitisation are

optimally suited (Schmidt et al., 2019; Schmidt et al., 2022). The

application of FSPMs would additionally require a rather detailed

representation of the spatial heterogeneity of soil water content due

to its influence on the direction of root growth (De Dorlodot et al.,

2007). The environments for in silico studies with grapevine FSPMs

can be generated by water balance models with high spatial

resolution. Ideally, such models could integrate a variety of

drought tolerance related traits of below- and aboveground parts,

but such models will be extremely complex and computationally

expensive. To simplify the complex interplay of soil water balance

and root architecture, Tron et al. (2015) linked a 1D-water balance

model to a 3D-dynamic root growth model (Leitner et al., 2010) by

downscaling 3D root data to a 1D sink term.

The high requirements on phenotyping and soil data may

explain that FSPMs have not yet been used to simulate grapevine

root growth so far. However, first above-ground FSPMs for

grapevine already exist (e.g. Zhu et al., 2018; Schmidt et al., 2019)

and are successfully applied to predict growth and plant water status

under varying environments, demonstrating the potential of FSPMs

as a powerful tool for grapevine rootstock research in the future.
6 Rootstock architectural models to
guide predictive breeding

Given the critical role of rootstocks for grapevine performance

under abiotic and biotic stresses, rootstock breeding is gaining an

increasing attention as a strategy to tackle the impacts of climate

change. Extending rootstock breeding pipelines to incorporate

physiological modelling could enable a more informed definition

of future breeding targets with the goal to deliver performance

improvement under forecasted climatic fluctuations. Developing

high-throughput phenotyping tools that enable population

screenings for key root traits used as model parameters will be

critical in order to integrate both physiological and genetic

modelling in future rootstock genetic improvement programs.

Modern breeding tools such as genomic selection that uses dense

genomic marker maps (Meuwissen et al., 2001), or phenomic

selection that uses non-destructive high-throughput phenotyping

data (e.g. from hyperspectral imaging, Rincent et al., 2018) to

predict the genotypic value of individuals for traits of interest are

particularly promising. With the broad range of modelling

approaches available, genomic and phenomic selection could be

directly coupled with spatio-temporal modelling of physiological
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processes in order to better capture impacts of G x E interaction on

crop performance (e.g. Cooper et al., 2014; Technow et al., 2015).

Such transdisciplinary approaches would enable a more targeted

exploration of the highly complex multi-dimensional G x E x M

space with the potential to identify workable breeding paths that

deliver novel solutions for performance improvement under climate

change (Cooper et al., 2021).
7 Conclusion

The choice of drought tolerant grapevine rootstocks presents a

viable means of adapting viticulture to relevant drought scenarios

prevailing in winegrowing regions. The current state of knowledge

allows us to simulate future drought stress scenarios of vineyards

with a high spatial resolution and to predict scion transpiration and

mortality risk as a function of water uptake by the roots. The

knowledge of rootstock traits, however, still impedes predicting the

role of rootstock genotypes in grapevine drought tolerance under

given growing conditions (i.e. drought scenario, soil properties,

management decisions). This gap of knowledge has so far hindered

the knowledge transfer into practical viticulture and rootstock

breeding, potentially explaining why the majority of the existing

variety of rootstocks are only scarcely used in practice.

Although our knowledge on the importance of individual or

sets of traits relevant for the drought tolerance of a grapevine

rootstock (or conferred by it) is far from comprehensive, a large

body of evidence points towards the high importance of root

architectural traits, such as rooting depth, root length density or

specific root length. Data on the spatio-temporal development of

root architecture are still extremely scarce, considering the large

variability of root growth brought about by differences in soil

structure, and hence the need for a relatively large database to

provide robust information. To increase available knowledge on

root structure and development, as well as to characterize root

growth modification by grapevine x cover crop interactions,

rhizoboxes, minirhizotrons, soil coring and excavation/

digitization are methods that have the potential to increase

throughput or spatial/temporal resolution. Data on the spatio-

temporal pattern of grapevine root development can be used as

model inputs to evaluate the effects of root architectural traits on

resource acquisition during root development in a given drought

stress scenario. FSPMs seem ideally suited for this task. An

integration of additional drought related traits as well as

aboveground plant growth and function into crop or plant

models may in the future provide for a comprehensive

understanding of drought related traits for rootstock and overall

grapevine performance and survival under water deficit. While

such knowledge would represent a milestone in grapevine drought

stress physiology, it would still need to be integrated into a highly

interdisciplinary network of experts involving agronomists, soil

scientists, climatologists, modelers, plant physiologists and plant

geneticists that provides decision support for the sustainable

climate change adaptation of viticulture.
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rootstocks to drought through altered root system architecture and root
transcriptomic regulations. Plant Physiol. Biochem. 127, 256–268. doi: 10.1016/
j.plaphy.2018.03.034

Zhang, L., Marguerit, E., Rossdeutsch, L., Ollat, N., and Gambetta, G. A. (2016). The
influence of grapevine rootstocks on scion growth and drought resistance. Theor. Exp.
Plant Physiol. 28 (2), 143–157. doi: 10.1007/s40626-016-0070-x

Zhou, X.-R., Schnepf, A., Vanderborght, J., Leitner, D., Lacointe, A., Vereecken, H.,
et al. (2020). CPlantBox, a whole-plant modelling framework for the simulation of
water- and carbon-related processes. silico Plants 2 (1), diaa001. doi: 10.1093/
insilicoplants/diaa001

Zhu, J., Dai, Z., Vivin, P., Gambetta, G. A., Henke, M., Peccoux, A., et al. (2018). A 3-
d functional–structural grapevine model that couples the dynamics of water transport
with leaf gas exchange. Ann. Bot. 121 (5), 833–848. doi: 10.1093/aob/mcx141

Zhu, J., Parker, A., Gou, F., Agnew, R., Yang, L., Greven, M., et al. (2021). Developing
perennial fruit crop models in APSIM next generation using grapevine as an example.
silico Plants 3 (2), diab021. doi: 10.1093/insilicoplants/diab021
frontiersin.org

https://ives-openscience.eu/wp-content/uploads/2021/03/Neethling-et-al_ITC2020_SO.pdf
https://ives-openscience.eu/wp-content/uploads/2021/03/Neethling-et-al_ITC2020_SO.pdf
https://doi.org/10.17660/ActaHortic.2016.1136.2
https://doi.org/10.17660/ActaHortic.2019.1248.68
https://doi.org/10.17660/ActaHortic.2017.1188.28
https://doi.org/10.17660/ActaHortic.2017.1188.28
https://doi.org/10.1111/ejss.13315
https://doi.org/10.1093/treephys/tpx153
https://doi.org/10.1016/j.scienta.2020.109283
https://doi.org/10.1071/BT12225
https://doi.org/10.17660/ActaHortic.2012.931.2
https://doi.org/10.17660/ActaHortic.2012.931.2
https://doi.org/10.1071/FP12049
https://doi.org/10.1111/nph.14641
https://doi.org/10.1002/9781118060728.ch3
https://doi.org/10.1002/9781118060728.ch3
https://doi.org/10.1534/g3.118.200760
https://doi.org/10.1016/j.copbio.2014.11.015
https://doi.org/10.1016/j.copbio.2014.11.015
https://doi.org/10.1016/j.agee.2018.05.009
https://doi.org/10.3390/agronomy9080426
https://doi.org/10.3390/plants11060801
https://doi.org/10.5073/VITIS.2021.60.21-27
https://doi.org/10.5073/VITIS.2021.60.21-27
https://doi.org/10.2136/vzj2017.12.0212
https://doi.org/10.1093/aob/mcx221
https://doi.org/10.1017/jwe.2015.31
https://doi.org/10.1017/jwe.2015.31
https://doi.org/10.20870/oeno-one.2016.0.0.1619
https://doi.org/10.3390/plants11172256
https://doi.org/10.20870/oeno-one.2016.0.0.1870
https://doi.org/10.5344/ajev.2006.57.1.89
https://doi.org/10.1111/j.1755-0238.2007.tb00066.x
https://doi.org/10.3389/fpls.2021.747142
https://doi.org/10.20870/oeno-one.2021.55.1.4494
https://doi.org/10.20870/oeno-one.2021.55.1.4494
https://doi.org/10.21548/10-1-2295
https://doi.org/10.21548/10-1-2295
https://doi.org/10.1111/j.1755-0238.2009.00090.x
https://doi.org/10.1111/j.1755-0238.2009.00090.x
https://doi.org/10.1007/s00122-017-3046-6
https://doi.org/10.1093/jxb/err269
https://doi.org/10.2136/vzj2017.05.0107
https://doi.org/10.2136/vzj2017.05.0107
https://doi.org/10.1371/journal.pone.0130855
https://doi.org/10.1016/j.ecolmodel.2015.05.028
https://doi.org/10.5897/IJPPB2013.0199
https://doi.org/10.5897/IJPPB2013.0199
https://doi.org/10.1002/wrcr.20123
https://doi.org/10.1093/jxb/ers111
https://doi.org/10.1093/jxb/ers111
https://doi.org/10.1093/aob/mct123
https://doi.org/10.3389/fmicb.2021.625752
https://doi.org/10.1016/j.plaphy.2018.03.034
https://doi.org/10.1016/j.plaphy.2018.03.034
https://doi.org/10.1007/s40626-016-0070-x
https://doi.org/10.1093/insilicoplants/diaa001
https://doi.org/10.1093/insilicoplants/diaa001
https://doi.org/10.1093/aob/mcx141
https://doi.org/10.1093/insilicoplants/diab021
https://doi.org/10.3389/fpls.2023.1162506
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Towards grapevine root architectural models to adapt viticulture to drought
	1 Introduction
	2 Simulating realistic environments for rootstocks
	3 Root architecture is a key determinant of grapevine performance under drought
	4 Phenotyping techniques to capture root system development
	5 Modeling root growth
	6 Rootstock architectural models to guide predictive breeding
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	References


