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Comparative analysis of 17
complete chloroplast genomes
reveals intraspecific variation
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Pseudostellaria heterophylla
(Miq.) Pax populations
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Yunqing Zhao1 and Yingzhen Huang1

1Institute of Agricultural Bioresources, Fujian Academy of Agricultural Sciences, Fuzhou, China, 2Hebei
Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University,
Chengde, China
Pseudostellaria heterophylla (Miq.) Pax is a well-known medicinal and

ecologically important plant. Effectively distinguishing its different genetic

resources is essential for its breeding. Plant chloroplast genomes can provide

much more information than traditional molecular markers and provide higher-

resolution genetic analyses to distinguish closely related plantingmaterials. Here,

seventeen P. heterophylla samples from Anhui, Fujian, Guizhou, Hebei, Hunan,

Jiangsu, and Shandong provinces were collected, and a genome skimming

strategy was employed to obtain their chloroplast genomes. The P.

heterophylla chloroplast genomes ranged from 149,356 bp to 149,592 bp in

length, and a total of 111 unique genes were annotated, including 77 protein-

coding genes, 30 tRNA genes, and four rRNA genes. Codon usage analysis

showed that leucine had the highest frequency, while UUU (encoding

phenylalanine) and UGC (encoding cysteine) were identified as the most and

least frequently used codons, respectively. A total of 75–84 SSRs, 16–21 short

tandem repeats, and 27–32 long repeat structures were identified in these

chloroplast genomes. Then, four primer pairs were revealed for identifying SSR

polymorphisms. Palindromes are the dominant type, accounting for an average

of 47.86% of all long repeat sequences. Gene orders were highly collinear, and IR

regions were highly conserved. Genome alignment indicated that there were

four intergenic regions (psaI-ycf4, ycf3-trnS, ndhC-trnV, and ndhI-ndhG) and

three coding genes (ndhJ, ycf1, and rpl20) that were highly variable among

different P. heterophylla samples. Moreover, 10 SNP/MNP sites with high

polymorphism were selected for further study. Phylogenetic analysis showed

that populations of Chinese were clustered into a monophyletic group, in which

the non-flowering variety formed a separate subclade with high statistical

support. In this study, the comparative analysis of complete chloroplast
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genomes revealed intraspecific variations in P. heterophylla and further

supported the idea that chloroplast genomes could elucidate relatedness

among closely related cultivation materials.
KEYWORDS

Pseudostellaria heterophylla, chloroplast genome, comparative analysis, intraspecific
variation, phylogenetic relationship
Introduction

Pseudostellaria heterophylla (Miq.) Pax (tai-zi-shen or hai-er-

shen) is a well-known traditional medicinal plant of the

Caryophyllaceae family. It is commonly used for the treatment

of fatigue, spleen asthenia, anorexia, asthenia after severe illness,

and cough due to lung dryness either in China (Commission,

2015) or in Korea (Liu et al., 2017). Recent pharmacologic

research has indicated that P. heterophylla has anti-diabetes

(Liu et al., 2017), immune enhancement (Yang et al., 2020),

and anti-oxidant properties (Ng et al., 2004) due to its

composition containing numerous active compounds such as

cyclic peptides (pseudostellarin), polysaccharides, amino acids,

saponins, and sapogenins (Wang et al., 2013). P. heterophylla is

mainly distributed in the Fujian, Guizhou, Shandong, Anhui, and

Jiangsu provinces of China (Kang et al., 2016), Japan, Korea, and

the Russian Far East (Choi and Pak, 2000). P. heterophylla has

been cultivated in China for over 100 years with abundant

germplasm resources (Xiao et al., 2015), represented by

significant variability in leaf length, leaf width, number of main

stems, total biomass, and number of above-ground stem nodes.

Currently, the breeding of P. heterophylla is progressing slowly

since the introduction of varieties is not standardized and the

genetic background of the cultivated populations cannot be

traced. Moreover, there are few sexually reproduced varieties.

However, long-term clonal reproduction is the main means of

propagation in various regions, which leads to the erosion of the

species genetic variability and restricts the development of

utilization and applications (Wu et al., 2016). Therefore,

finding a method that can distinguish different germplasm

resources in P. heterophylla is urgent.

Previously, the chloroplast genome rbcL and matK regions,

the Internal Transcribed Spacers (ITS) of the nuclear ribosomal

DNA, sequence-related amplified polymorphism (SRAP), inter

simple sequence repeat (ISSR), and expressed sequence tag-

simple sequence repeat (ESR-SSR) have been used to

characterize the genetic diversity of P. heterophylla germplasm

(Yi et al., 2013; Xiao et al., 2014; Xu et al., 2023). Yi et al. (2013)

found that the ITS sequences of different P. heterophylla varieties

had several specific single nucleotide mutation sites and could be

used to identify and distinguish samples from nine different

producing areas. Xiao et al. (2014) used ISSR to analyze the
02
diversity of 12 P. heterophylla cultivars. A total of 73 polymorphic

bands were identified, accounting for 89.02% of the total

amplified bands, which revealed the clustering of these 12

cultivars into three clades.

With the development of high-throughput sequencing

technologies and the decrease in sequencing costs, complete

chloroplast genomes assembled from shotgun genomic DNA

sequencing provide a more convenient and higher -resolution

means to study the relationship among plant cultivated varieties

(Straub et al., 2012). The chloroplast genome length is usually

between 115 kb and 165 kb, and the length differences are mostly

due to inverted repeat (IR) expansion/contraction (Zhu et al.,

2016) or gene losses (Lei et al., 2016). As the second-largest plant

genome, the chloroplast genome contains rich genetic

information for species identification, phylogenetic analysis,

and population genetic studies (Palmer, 1991). Dong et al.

(2014) employed a chloroplast genomic strategy to design

taxon-specific DNA mini-barcodes and applied them to species

identification in the ginsengs. Liu et al. (2022) obtained

chloroplast genome sequences of 24 plant samples in the

genus Atractylodes and provided a new understanding of

their phylogenetic relationship. Utilizing massively parallel

sequencing technology for chloroplast genome sequencing in

plants can facilitate a better understanding and discrimination

of low-level systematic relationships among different taxa in

plant classification (Parks et al., 2009). The first P. heterophylla

chloroplast genome sequence distributed in Korea was

reported and indicated that the P. heterophylla chloroplast

genome has a double-stranded, circular, typically four-

segment structure (Kim et al., 2019). However, there is still a

lack of population genetic analyses in P. heterophylla using

chloroplast genomes.

Here, we collected 17 P. heterophylla plant samples with

remarkable phenotypic characteristics and obtained their

chloroplast genome sequences using next-generation sequencing.

This study aimed to (1) elucidate the conservation and diversity of

P. heterophylla chloroplast genomes through comparative genomic

approaches; (2) identify the most variable chloroplast genome

regions to utilize them as markers for further germplasm

conservation and genetic improvement; and (3) determine the

relationships between genotypes using the chloroplast genome

sequence data.
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Materials and methods

Sample collection

In this study, 17 samples of P. heterophylla were collected

from seven provinces and represented dominant cultivars in

China (Table 1). Zheshen No. 1 has an erect growth habit, is

unbranched and short, and its leaves are ovate. Its flowers are white,

and its roots are spindle -shaped. It is moderately susceptible to leaf

spot disease. Zheshen No. 2 has four to six upright branches (more

than the Zheshen No. 1), ovate-lanceolate thick leaves, carrot-

shaped root tubers, and moderate resistance to leaf spot disease.

It does not flower. Zheshen No. 3 is a tetraploid P. heterophylla

genotype induced by Zheshen No. 1. Zheshen No. 3 has oval, large,

thick, dark green leaves, a low seed setting rate, and high-yielding

roots. The Minxuan No. 6 and Minxuan No. 7 biotypes have long,

oval, and thick leaves, flowering, large root tubers, and are more

resistant to viral diseases. The Zherong Datiao was introduced from

Guizhou and has characteristically large root tubers. Shitai No. 1 is a

variety obtained using a mixed breeding approach. Its plants are

upright, tall, and flowering, with round to long oval leaves and long

spindle roots. The Guizhou cultivar plants are upright and tall, with

oblong-ovate leaves and long spindle roots. The Jurong cultivar is a

native cultivated variety with oval and thick leaves and high-

yielding roots. The Hunan cultivar plants are upright, tall, and

flowering, with long, ovate leaves and fusiform root tubers. The

Xuancheng cultivar plants are upright and multi-branched and

have tall plants with oblong-ovate leaves and large root tubers. The

Shandong cultivar has been domesticated from a wild population.
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Its plants are tall with branches, and its leaves are oval-lanceolate

and thin. The root tuber of the Shandong cultivar is long, spindle-

shaped, and thin, and yields for this cultivar are high. The Hebei

cultivar was introduced from Shandong and has morphological

characteristics like the Shandong cultivar. These samples were

identified by Prof. Jingying Chen from the Fujian Academy of

Agricultural Sciences.
DNA extraction, library preparation, and
high-throughput sequencing

The total genomic DNA from P. heterophylla leaf tissues was

extracted using a modified CTAB method. DNA quantity and

quality were determined using Qubit4.0 (Thermo Fisher Scientific

Inc., USA). Subsequently, the genomic DNA was purified and

fragmented to construct sequencing libraries (350 bp) using the

TruSeq DNA PCR-Free High Throughput Library Prep Kit

(Illumina, San Diego, CA). High-throughput sequencing (2 × 150

bp) was performed with the NovaSeq 6000 sequencer (Illumina, San

Diego, CA).
Assembly, annotation, and visualization of
P. heterophylla chloroplast genomes

The PCR-free sequencing data were used to assemble the

chloroplast genome sequences of P. heterophylla using the

GetOrganelle pipeline (Jin et al., 2020). Gene annotation of the
TABLE 1 Collection information of 17 P. heterophylla samples.

Sample ID Cultivar name Locality

TZ-1 Zheshen No. 1 Yingshan Town, Zherong County, Fujian Province

TZ-2 Zheshen No. 2 Fuxi town, Zherong County, Fujian Province

TZ-3 Zheshen No. 2 Fankeng Town, Fu ‘an City, Fujian Province

TZ-4 Zheshen No. 2 Shangbaishi Town, Fu ‘an City, Fujian Province

TZ-5 Zheshen No. 3 Yingshan Town, Zherong County, Fujian Province

TZ-6 Minxuan No. 6 Yingshan Town, Zherong County, Fujian Province

TZ-7 Minxuan No. 7 Chuping Town, Zherong County, Fujian Province

TZ-8 Zherong Datiao Fuxi town, Zherong County, Fujian Province

TZ-9 Shitai No. 1 Niudachang town, Shibing County, Guizhou Province

TZ-10 Guizhou cultivar Niudachang town, Shibing County, Guizhou Province

TZ-11 Jurong cultivar Qianxu village, Jurong City, Jiangsu Province

TZ-12 Xuancheng cultivar Zhongjianshan village, Guangde City, Anhui Province

TZ-13 Xuancheng cultivar Jinshan Village, Guangde City, Anhui Province

TZ-15 Xuancheng cultivar Sanhe Village, Xuanzhou District, Anhui Province

TZ-16 Hunan cultivar Xiaoshajiang Town, Longhui County, Hunan Province

TZ-17 Hebei cultivar Nanliu Town, Wuji County, Hebei Province

TZ-18 Shandong cultivar Yushan Town, Linmu County, Shandong Province
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chloroplast genome sequences was performed using CpGAVAS2

(Shi et al., 2019) and then manually evaluated and corrected.

Graphical maps of P. heterophylla chloroplast genome sequences

were drawn using OrganellarGenomeDRAW (OGDRAW) (Greiner

et al., 2019).
Characterization and comparative analysis
of P. heterophylla chloroplast genomes

The REPuter (Kurtz et al., 2001) software was used to recognize

four types of sequence repeats, including forward (F), reverse (R),

complementary (C), and palindromic (P). The minimum repeat size

of oligonucleotide repeats was set at 30 bp, and the Hamming

distance was set at 3. Tandem repeats were analyzed using the

Tandem Repeats Finder (TRF) software (Benson, 1999) with default

parameters. Simple sequence repeats (SSRs) were detected using the

MIcroSAtellite identification tool (MISA) (Beier et al., 2017). The

minimum repeat thresholds of mono-, di-, tri-, tetra-, penta-, and

hexanucleotide SSRs were set as 10, 6, 5, 5, 5, and 5, respectively.

Primers for SSRs were designed with Primer 3.0 software

(Untergasser et al., 2012).

The mVISTA program with the Shuffle-Lagan model (Frazer

et al., 2004) was employed to compare the chloroplast genome

sequences of P. heterophylla. IRscope (Amiryousefi et al., 2018) was

used to visualize the contraction and extension of IR boundaries

between the four parts of the genome (LSC/IRb/SSC/IRa). Gene

rearrangements were observed using the co-linear blocks obtained

by the Mauve alignment algorithm (Darling et al., 2004).

ParaAT2.0 software (Zhang et al., 2012) was used to align

protein sequences derived from specific protein-encoded DNA

sequences extracted from 17 P. heterophylla chloroplast genomes.

The nucleic acid alignment corresponding to the codon was

translated back according to the protein alignment result.

KaKs_Calculator 3.0 software (Zhang, 2022) was then used to

calculate synonymous (Ks), nonsynonymous (Ka), and Ka/Ks

ratios after homologous sequence alignment.

The concatenated protein-coding gene sequences of the 17

Pseudostellaria chloroplast genomes were used for phylogenetic

analysis, with Cerastium arvense, Gymnocarpos przewalskii, and

Dianthus caryophyllus as outgroup species. A maximum likelihood

(ML) phylogenetic tree of 1,000 bootstrap replications was

constructed using RAxML v8.2.12 (Stamatakis, 2014).
Results

Characterization of P. heterophylla
chloroplast genomes

The P. heterophylla chloroplast genome sequence length ranged

from 149,356 bp to 149,592 bp, with a variation of 236 bp among

the different samples. Each chloroplast genome had the typical

quadripartite structure, with a large single copy (LSC) region

(80,994–81,144 bp), a small single copy (SSC) region (16,860 to

17,154 bp), and a pair of IR regions (IRa and IRb) (25,650 to 25,732
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bp). The chloroplast genome GC content in all samples ranged from

36.50% to 36.52%, and the GC content in the IR region

(approximately 42%) was significantly higher compared to the

LSC region and SSC region (approximately 34% and 29%). A

total of 111 unique genes were annotated in the P. heterophylla

chloroplast genomes sequenced, including 77 protein-coding genes,

30 tRNA genes, and four rRNA genes (rrn23S, rrn16S, rrn5S, and

rrn4.5S). Among these genes, 46 were related to photosynthesis, and

58 were involved in chloroplast transcription and translation

activities. Fifteen genes were in the IR region with two copies,

including four protein-coding genes, seven tRNA genes, and four

rRNA genes. Seventeen genes contained introns, of which 14 genes

(eight protein-coding genes and six tRNA genes) contained one

intron, and three genes (rps12, ycf3, and clpP) contained two

introns. Small exons were also identified in the petB, petD, and

rpl16 genes, with lengths of 6 bp, 8 bp, and 9 bp, respectively. In

addition, rps12 was identified as a trans-splicing gene. Further

detailed chloroplast genome information is presented in Tables 2,

S1 and Figure 1.
Codon usage in P. heterophylla
chloroplast genomes

The amino acid frequencies, the number of codons, and the

relative synonymous codon usage (RSCU) in P. heterophylla

chloroplast genomes are shown in Table S2. The average RSCU

value was 63.97, and the number of codons ranged from 22,012

(TZ-3) to 22,017 (TZ-5). Among the codons, leucine was the

amino acid with the most abundant codons. UUU (encoding

phenylalanine) and UGC (encoding cysteine) were the most and

least used codons, respectively. Almost all amino acids had more

than one synonymous codon, except for methionine and

tryptophan. Four start codon types were identified in the 77

protein-coding genes. Among them, 73 genes possessed ATG as

their start codon, while two genes (ndhD and psbL) had ACG, one

gene (rps19) had GTG, and one gene (ycf1) had TTG as their start

codon. All the samples had the same three stop codon types (TAA,

TAG, and TGA). The most used stop codon was TAA (60.98%),

followed by TGA (21.95%) and TAG (17.07%).
SSRs, repeat structures, and IRs of
P. heterophylla chloroplast genomes

For the SSR analysis, 75–84 SSR loci were detected in the P.

heterophylla chloroplast genomes (Figure 2), among which

polyadenine (poly-A) (54.78%, 41–47) and polythymine (poly-T)

(38.75%, 29–32) represented the most abundant simple sequence

repeats. SSRs and their 500 bp upstream and downstream sequences

were extracted, and 69 primer pairs were designed using Primer 3.0

software. After electronic amplification evaluation allowing for two

mismatches, four pairs of SSR primers targeting highly polymorphic

SSR regions were obtained (Table S3). Sixteen to 21 short tandem

repeats were found in the P. heterophylla chloroplast genomes

(Table S4), ranging in length from 11 to 32 bp, with most located
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in the intergenic space (IGS) regions. Twenty-seven to 32 long

repeat structures were identified in the P. heterophylla chloroplast

genomes, including forward, palindromic, reverse, and complement

repeats (Table S5). Palindromic was the most common repeat

sequence type, accounting for an average of 47.86% of all repeat
Frontiers in Plant Science 05
sequences, followed by forward (40.12%), reverse (11.21%), and

complement (0.81%).

The P. heterophylla chloroplast genome exhibits four

boundaries between the IRs and LSC/SSC regions: LSC-IRb, IRb-

SSC, SSC-IRa, and IRa-LSC (Figure S1). The LSC-IRb, IRb-SSC,

SSC-IRa, and IRa-LSC boundaries in all samples were located at

rps19, ycf1, ndhF, and rpl2-trnH, respectively. The P. heterophylla

chloroplast genomes from the Chinese populations were highly

conserved. The nucleotide lengths of rps19 and ycf1 located in the

IRb region were 195 bp and 105 bp, of ndhF located in the IRa

region was 56 bp, and of trnH from the IRa-LSC boundary was

29 bp.
Candidate markers and Ka/Ks substitution
of P. heterophylla chloroplast genomes

According to the comparative analysis of the whole chloroplast

genome of P. heterophylla using the LAGAN program, several

regions were variable and were able to distinguish different

populations (Figure S2). In terms of genes, the most variable

coding genes were ndhJ, ycf1, and rpl20, and the most variable

intergenic regions were psaI-ycf4, ycf3-trnS, ndhC-trnV, and ndhI-

ndhG (Figure 3). Among these genes and intergenic regions, ycf1

and ndhI-ndhG contained a higher number of SNP and MNP

polymorphic loci. Particularly, 10 highly polymorphic SNP/MNP

loci were identified, which could be used as candidate SNP/MNP

markers to distinguish different populations (Table 3). Then, the

Mauve algorithm was used to identify the local collinear blocks

(LCBs) of the P. heterophylla chloroplast genomes, with

NC_044183 selected as the reference genome (Figure S3). Among

all the chloroplast genomes of the samples, the collinear blocks,

including the LSC, SSC, and IR regions, showed relatively high

levels of conservation and no gene rearrangements. Thirty-two

protein-coding genes with polymorphic sites were used to analyze

the synonymous (Ks) and non-synonymous (Ka) substitution rates

(Table S6). The average Ka value of the 15 genes was higher than

0.001 (Figure S4), with rps15, rpoC2, and rpl20 exhibiting the

highest Ka values. Meanwhile, the average Ks value of 17 genes,

such as rps19, rps18, and rpl14, was higher than 0.001. The Ka/Ks

ratio of all these 32 protein-coding genes ranged from 0.001 to

49.884, with an average value of 19.244. The Ka/Ks ratio of 15 genes

was higher than 1, and the gene with the highest Ka/Ks ratio was

rps15 (49.88).
Phylogenetic analysis of P. heterophylla
chloroplast genomes

To explore the relationships among P. heterophylla cultivars, a

maximum likelihood (ML) phylogenetic tree was constructed, and

C. arvense, G. przewalskii, and D. caryophyllus were selected as out

group species (Figure 4). The samples belonging to the Korean

P. heterophylla population formed a separate cluster from the

samples from the Chinese population. In terms of the Chinese

P. heterophylla population samples, TZ-1, TZ-8, TZ-10–TZ-13,
TABLE 2 Genes in the chloroplast genome of P. heterophylla.

Category Group Genes

Miscellaneous
group

Acetyl-CoA
carboxylase

accD

Cytochrome c
biogenesis

ccsA

Maturase matK

Photosynthetic
genes

Subunits of ATP
synthase

atpA, atpB, atpE, atpF*, atpH, atpI

Chloroplast
envelope
membrane protein

cemA

ATP-
dependentprotease
subumitP

clpP**

Subunits of NADH
dehydrogenase

ndhA*, ndhB*, ndhC, ndhD, ndhE,
ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Subumits of
cytochrome

petA, petB*, petD*, petG, petL, petN

Subunits of
photosystem I

psaA, psaB, psaC, psaI, psaJ

Subunits of
photosystem II

psbA, psbB, psbC, psbD, psbE, psbF,
psbH, psbI, psbJ, psbK, psbL, psbM,
psbN, psbT, psbZ

The large subunit
of Rubisco

rbcL

Transcription
and
translation-
elated genes

Large subunit of
ribosome

rpl14, rpl16*, rpl2, rpl20, rpl22, rpl32,
rpl33, rpl36

Small subunit of
the ribosome

rps11, rps12**, rps14, rps15, rps16*,
rps18, rps19, rps2, rps3, rps4, rps7, rps8

Protein
synthesis and
DNA
replication

RNA polymerase rpoA, rpoB, rpoC1*, rpoC2

RNA genes Ribosomal RNA
genes

rrn16, rrn23, rrn4.5, rrn5

Transfer RNA
genes

trnA-UGC*, trnC-GCA, trnD-GUC,
trnE-UUC, trnF-GAA, trnG-GCC,
trnG-UCC*, trnH-GUG, trnI-CAU,
trnI-GAU*, trnK-UUU*, trnL-CAA,
trnL-UAA*, trnL-UAG, trnM-CAU,
trnN-GUU, trnP-UGG, trnQ-UUG,
trnR-ACG, trnR-UCU, trnS-GCU,
trnS-GGA, trnS-UGA, trnT-GGU,
trnT-UGU, trnV-GAC, trnV-UAC*,
trnW-CCA, trnY-GUA, trnfM-CAU

unknown
function

Hypothetical
chloroplast reading
frames(ycf)

ycf1, ycf2, ycf3**, ycf4
*Contains one intron; **Contains two introns.
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TZ-15, and TZ-16 were clustered into a big branch, which may be

due to the mutual introduction of P. heterophylla from Fujian,

Jiangsu, Anhui, Hunan, Guizhou, and other locations, resulting in a

high similarity of the germplasm resources. TZ-17, TZ-18, and

TZ-7 were clustered into a smaller branch that is related to

Shandong P. heterophylla sources. Three samples of Zheshen No.

2 (TZ-2, TZ-3, and TZ-4) from different places were clustered into a

separate branch. TZ-5, TZ-6, and TZ-9 were in separate branches

that were located towards the edges of the phylogenetic tree. TZ-6

was selected for its virus resistance. The above results indicated that

chloroplast genome sequence analyses could provide useful

information for assessing the genetic background of a species.
Frontiers in Plant Science 06
They could be used to assist breeding and provide a molecular –

biological basis for cultivar identification.
Discussion

Distinguishing germplasm resources is essential for plant

breeding. Traditional breeding efforts in P. heterophylla have

usually used plant morphological characteristics, such as leaf size,

shape, and thickness; rhizome length, diameter, and texture; plant

height; and the number offlowers, to distinguish varieties. However,

phenotypes are easily affected by cultivation methods and

environmental factors and require long-term observation (Chen

et al., 2010). In addition, the irregular introduction of P.

heterophylla has also impacted the distribution of P. heterophylla

genetic resources, which affected the uniform collection,

classification, and identification of germplasm resources (Xu

et al., 2023). P. heterophylla cultivation has a history of more than

180 years, and at its earliest stage of cultivation, P. heterophylla

germplasm resources were mainly derived from wild populations.

Since the 1960s, Fujian has successively introduced resources from

Jiangsu, Anhui, Zhejiang, Shandong, and other places that formed

novel germplasm resources, such as Zheshen No. 1 and Zheshen

No. 2. Guizhou Province has no wild P. heterophylla populations,

and P. heterophylla was introduced from Fujian for cultivation in

the 1990s. Wild resources of P. heterophylla are highly abundant in
FIGURE 2

Simple sequence repeats (SSRs) in the chloroplast genome
of P. heterophylla.
FIGURE 1

Circular chloroplast genome map of P. heterophylla. Genes drawn outside the circle are transcribed clockwise, and those inside are
counterclockwise. Genes belonging to different functional groups are color-coded. The dark gray area in the inner circle denotes GC content. LSC,
large single copy; SSC, small single copy; and IR, inverted repeat.
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Jiangsu Province, where there are rarely germplasm introductions

from other locations. Due to the use of seeds to raise seedlings, P.

heterophylla in Jiansu Province is less affected by viral diseases and

achieves a higher yield. Interestingly, phylogenetic analysis in this

study has provided clues to trace the breeding history of these

resources and further verified that the chloroplast genome can

provide useful information for analyzing the genetic background of

this species. The Korean population was located on the outermost

part of the phylogenetic tree as an outgroup. Previous studies

reported that P. heterophylla is distributed throughout the

mountains of Korea, and the morphological characteristics of the

Korean population are different from those distributed in China
Frontiers in Plant Science 07
(Choi and Pak, 2000). Therefore, it is possible to obtain new genetic

resources or special breeding materials by hybridizing the Korean

population with Chinese populations based on the theory of

distant hybridization.

Molecular markers derived from the chloroplast genome, such

as rbcL,matK, and psbA-trnH, are effective for species identification

and phylogenetic resolution (Shi et al., 2011; Liu et al., 2014), and

several DNA barcode libraries have been established (Liu et al.,

2017). However, species or biotype identification with molecular

markers still faces many challenges, especially for closely related

species and different populations within species. Previous studies

demonstrated that the identification efficiency of DNA barcode
TABLE 3 Candidate polymorphic DNA markers from the chloroplast genome of P. heterophylla.

No. Position* Polymorphic
Type Variant Location

1 743–876 SNP A/T, G/T, T/G matK

2 1,184–2,050 SNP G/A, T/A, A/T, G/A, G/A ndhF

3 420–900 SNP A/T, G/C, G/T ndhH

4 2,778–4,100 SNP A/T, A/G, A/G, A/C rpoC2

5 213–3,605 SNP/MNP
A/G, G/T, A/T, A/C, A/T, A/C, AA/CT, A/T, T/A, T/A, T/A, T/A, T/A, A/T, C/A, A/G, A/T, C/A,

G/A, C/T, A/T, A/C
ycf1

6 67–247 SNP/MNP T/A, CAAAATTT/ATTGTAGG, A/T, AA/TT, A/T, T/G ndhI_ndhG

7 21–627 SNP G/A, A/T, A/T, A/T, A/C, A/T, G/G rps16_trnQ-UUG

8 13–299 SNP C/T, A/T, A/T
trnE-UUC_trnT-

GGU

9 7–340 SNP G/T, C/A, T/A, T/G trnL-UAG_rpl32

10 111–162 SNP G/A, G/T, C/A trnT-GGU_psbC
*Position is based on the gene and gene spacer alignment data. SNP, single nucleotide polymorphism; MNP, multiple nucleotide polymorphism.
A

B

FIGURE 3

The nucleotide diversity of genes and intergenic regions in the P. heterophylla chloroplast genomes. (A) Coding region; (B) Noncoding region.
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markers in specific regions for closely related species was only about

80% (Chen et al., 2014). Several highly informative DNA barcode

markers for specific taxa have been developed using comparative

analyses of c hloroplast genomes (Zhou et al., 2022). After a

comparative analysis of the Rheum palmatum, R. tanguticum,

and R. officinale chloroplast genomes, five hypervariable regions

(rps16-trnQ, psaA-ycf3, psbE-petL, ndhF-rpl32, and trnT-trnL) were

identified and used as specific DNA barcodes for the identification

of 42 samples among R. tanguticum, R. officinale, and R. palmatum

(Li et al., 2022). The trnl-GAU intron region was detected to be

highly variable and will be useful for future evolutionary studies,

although the data from four widely distributed varieties were highly

conserved (Wang et al., 2018). The chloroplast genome comparison

of Gentiana species revealed that the six most InDel-variable loci

could be selected as regions for DNA barcode genotyping,

confirming that chloroplast genomes could improve the

discriminatory capacity for species identification (Zhou et al.,

2018). Seven regions (rpl32-ccsA, rpl20-clpP, trnC-rpoB, ycf1b,

accD-ycf4, ycf1a, and psbK-accD) were identified from the

Pterocarpus chloroplast genome by quantifying nucleotide

diversity and had remarkably higher variability compared to the

plant universal barcodes (rbcL, matK, and trnH-psbA) (Jiao et al.,

2019). The comparison of the rose chloroplast genome revealed that

15 cpSSRs and 150 flanking single nucleotide variations (SNVs)

exhibited higher divergence and stronger power for the genotyping

of rose varieties (Li et al., 2020). Moreover, the chloroplast genome

can also be used as a super-barcode for phylogenetic and closely

related taxon identification studies (Chen et al., 2018).
Conclusion

Using high-throughput sequencing approaches, we obtained

the complete chloroplast genome sequences of seventeen P.

heterophylla varieties. The gene contents and gene orders of the
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chloroplast genomes were highly conserved. Among these cultivars,

75–84 SSRs, 16–21 short tandem repeats, and 27–32 long repeat

structures were detected. Four primer pairs were designed to target

highly polymorphic SSR loci. Gene orders were collinear, and IR

regions were conserved. Four intergenic regions and three coding

genes were found to be highly variable, and ten SNP/MNP sites with

polymorphisms were identified and selected for further study.

Phylogenetic analysis showed that Chinese populations were

clustered into a monophyletic group, in which the non-flowering

varieties formed a separate subclade. This study verified that

chloroplast genomes could elucidate the relationship among

closely related cultivated materials and provide useful information

for developing new, highly polymorphic, and informative

molecular makers.
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