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The advances in genomics in recent years have increased the accuracy and

efficiency of breeding programs for many crops. Nevertheless, the adoption of

genomic enhancement for several other crops essential in developing countries

is still limited, especially for those that do not have a reference genome. These

crops are more often called orphans. This is the first report to show how the

results provided by different platforms, including the use of a simulated genome,

called the mock genome, can generate in population structure and genetic

diversity studies, especially when the intention is to use this information to

support the formation of heterotic groups, choice of testers, and genomic

prediction of single crosses. For that, we used a method to assemble a

reference genome to perform the single-nucleotide polymorphism (SNP)

calling without needing an external genome. Thus, we compared the analysis

results using the mock genome with the standard approaches (array and

genotyping-by-sequencing (GBS)). The results showed that the GBS-Mock

presented similar results to the standard methods of genetic diversity studies,

division of heterotic groups, the definition of testers, and genomic prediction.

These results showed that a mock genome constructed from the population’s

intrinsic polymorphisms to perform the SNP calling is an effective alternative for

conducting genomic studies of this nature in orphan crops, especially those that

do not have a reference genome.

KEYWORDS

genotyping-by-sequencing, SNP-array, formation of heterotic groups, genomic
prediction of single-crosses, minor crops, underused crops, simulated genome
1 Introduction

Molecular markers have been used to develop genomic tools to improve economically

important crops (Mammadov et al., 2012; Thomson, 2014). Currently, single-nucleotide

polymorphism (SNP) markers are the most used in genomic studies (Fritsche-Neto et al.,

2021), as they provide higher resolution due to their frequent occurrence and uniformity
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throughout the genome (Gupta et al., 2008). Rapid advances in

next-generation sequencing (NGS) technologies, combined with

high levels of diversity in SNP, have made it possible to develop

high-throughput genotyping platforms (Bachlava et al., 2012).

There are several genotyping platforms for obtaining SNPs

throughout the genome, which have provided an infinity of

sequencing information with remarkable improvements in

coverage, time, and costs, making it possible to genotype

thousands of samples with many markers (Bevan and Uauy,

2013), with SNP array and NGS platforms being the most

appropriate for this purpose (Rasheed et al., 2017). There are

many array-based genotyping platforms available in major crops

such as maize (Unterseer et al., 2014), wheat (Winfield et al., 2016),

rice (Singh et al., 2015), and soybean (Lee et al., 2015). These

platforms have many advantages, such as fast scans with high call

rates and density. However, they present an investigation bias when

the set of individuals does not faithfully represent the genetic

diversity explored in the study panel. Furthermore, it has a high

cost and is inaccessible to small breeding programs (Messing and

Dooner, 2006; Frascaroli et al., 2013), especially those of

unprofitable crops.

Beyond crop-specific SNP arrays, NGS-based platforms are

adaptable to various crops, regardless of prior knowledge of

genomics, genome size, organization, or ploidy (Rasheed et al.,

2017). Genotyping-by-sequencing (GBS) appears as an alternative

to overcome the verification bias since it is based on sequencing

and, therefore, allows the discovery of alleles in the diversity panel

analyzed, in addition to having a lower cost when compared to SNP

array. However, GBS generates many low-quality markers with a

high rate of lost data (Heslot et al., 2013). The advances in genomics

in recent years have increased the accuracy and efficiency of

breeding programs for many crops. However, adopting genomic

enhancement for several other staple crops essential in developing

countries is still limited, especially for traits under complex genetic

control, which are crucial to crop performance (Varshney et al.,

2012). This is because most studies use the array-based and GBS-

based SNP marker approach, which depends on a reference genome

for SNP discovery. Crops that do not have a reference genome

cannot take advantage of biotechnological tools to improve their

genetic gain and develop modern cultivars faster (Armstead

et al., 2009).

There are many crops of unique relevance to developing

countries, essential for the food, nutritional, and economic

security of these countries, which still do not have a reference

genome (Baldermann et al., 2016; Hendre et al., 2019). These crops

are more often called orphans. The term “orphan” is derived from

the condition of neglect and helplessness of these crops by the

scientific community, leading to the designation of such species as

underused, neglected, or minor crops (Tadele and Assefa, 2012).

GBS also appears as an option for genomic studies in these crops,

especially when they do not have a reference genome (Sabadin et al.,

2022). With these data, it is possible to build a mock reference to

perform the SNP calling, where the discovery of polymorphisms

will be intrinsic to the study population without using an external

genome (Melo et al., 2016). This pipeline has already been

successfully used in several genomic studies (Adhikari et al., 2018;
Frontiers in Plant Science 02
Holloway et al., 2018; Munjal et al., 2018; Matias et al., 2019;

Sabadin et al., 2022). Adopting this technology in poorly studied

crops has a tangible impact on the progress of the breeding process

(Ye and Fan, 2021).

Recent studies have compared the performance of genotyping

platforms and how this choice affects genomic studies regarding

genetic diversity studies (Elbasyoni et al., 2018; Darrier et al., 2019),

genome-wide association study (GWAS) (Negro et al., 2019), and

genomic prediction (Chu et al., 2020). Only one report compares

the performance of the mock reference pipeline with standard

genotyping approaches in genomic prediction studies (Sabadin

et al., 2022). However, this study used a relatively small

germplasm panel. It did not consider the effect of genotyping

platforms on population structure, the formation of heterotic

groups, and the choice of testers, which is fundamental for a

breeding program that wants to synthesize single crosses.

Although some reports are available, there still needs to be a

consensus on how different platforms provide the results. Thus, we

conducted a full study on this topic with a robust germplasm panel.

For this, we compared different genotyping scenarios from the

beginning of the breeding process with the approach of genetic

diversity and population structure, advancing to the formation of

heterotic groups and choice of testers to the synthesis and

prediction of single crosses. Thus, this information will be

valuable to leverage genomic studies and accelerate the

development of cultivars in minor crops without a reference

genome. Therefore, our goals were to verify whether the source of

SNP can influence the assessment of the population structure of

parental lines, to ascertain if the source of SNP can affect the

determination of heterotic groups and the prediction of single

crosses performance, and check if the GBS and the mock genome

efficiently performs the SNP calling in orphan crops (without

reference genome).
2 Materials and methods

To facilitate the understanding of the analysis carried out in this

study, a workflow is described in Figure 1. Each stage of the analysis

is detailed in the following sections.
2.1 Species model

We used maize as a model species in this study because it is

already well-established regarding SNP array, with several array

options available (Ganal et al., 2011; Unterseer et al., 2014; Xu et al.,

2017), and GBS protocols are also well-established for this species

(Crossa et al., 2013; Li et al., 2015; Wang et al., 2020). In addition,

maize has a diverse, complex, and dynamic genome (Schnable et al.,

2009), which is suitable for this study. We used a public panel of

tropical maize germplasm containing 360 parental lines (Yassue

et al., 2021a). The genomic and phenotypic information about

this panel is available on the Mendeley platform (https://

data.mendeley.com/datasets/5rtc89t7v5/1).
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2.2 Phenotypic data

The phenotypic dataset consists of 903 maize single crosses

(Fritsche-Neto et al., 2019) derived from a diallel cross between 49

parental lines to a public tropical maize diversity, selected based on

nitrogen use efficiency (Mendonça et al., 2017). Field trials were

carried out in Anhembi (22°50′51″S, 48°01′06″W) and Piracicaba

(22°42′23″S, 47°38′12″W), in the State of São Paulo, during the

second growing season, from January to June 2016 and 2017. Single

crosses were evaluated in an augmented block design, where each

block consisted of 16 single crosses and two checks (commercial

single crosses). In both locations and years, the single crosses were

evaluated under two nitrogen (N) conditions, low N with 30 kg N

ha−1 and ideal N with 100 kg N ha−1. Each location × year × N level

combination was defined as an environment.

Each plot consisted of 7 m rows spaced 0.50 m apart.

Conventional fertilization and weed and pest control were carried

out. The traits evaluated were grain yield (GY, mg ha−1), plant

height (PH, cm), and ear height (EH, cm). The plots were harvested

manually, and the grains were harvested with a moisture content of

approximately 18%. Subsequently, grain yield was corrected for

13% moisture, according to Mulvaney and Devkota (2020). More

details on the phenotypic dataset’s experimental design and
Frontiers in Plant Science 03
cultivation practices were previously reported by Fritsche-Neto

et al. (2018) and Galli et al. (2020).
2.3 Genetic-statistical model for
obtaining BLUEs

The joint analysis of each trait was performed to estimate the

means of the single crosses across the environments. Thus, an

equation was adjusted to obtain the Best Linear Unbiased Estimator

(BLUE) for each genotype, and later, the adjusted means of these

across the environments evaluated by the following mixed model

were estimated:

y=Ql+Sb+Tc+Ug+Vi+ϵ,

where y is the vector of phenotypic values of single crosses and
checks; l is the vector of fixed effects of the environment (site ×

year × N level combination); b is the vector of random effects of

block nested within environments, where b ~ N(0, Is2b); c is the
vector of fixed effects of checks; g is the vector of fixed effects of

single crosses; i is the vector of fixed effects of the interaction

checks × environments; e is the vector of random residual effects,

where ϵ ~ N(0, De). An unstructured covariance matrix across
FIGURE 1

The workflow of analysis performed in the study. The different colors represent different stages of the analysis. Genomic information from the three
SNP datasets was used in all analyses. SNP, single-nucleotide polymorphism.
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environments was assumed for the residual term (De) due to the

contrasting doses of N. Q, S, T, U, and V are the incidence matrices

for l, b, c, g, and i. The analysis was performed using the ASReml-R

(Butler et al., 2018).
2.4 Genotypic data and analysis

The 360 lines belonging to the public tropical maize diversity

mentioned above were genotyped using two SNP high-density

genotyping platforms: 1) Affymetrix® Axiom Maize Genotyping

Array (SNP array) and 2) GBS method following the protocol

described by Poland et al. (2012). In this last method, individual

samples of genomic DNA were digested by two restriction enzymes,

PstI and MseI, to reduce the genome complexity uniformly.

Subsequently, the samples were included in a sequencing plate,

performed on the Illumina NextSeq 500 platform (Illumina Inc.,

San Diego, CA, USA).

The raw GBS data were used for two purposes: the first was to

perform the SNP calling using the B73 line of temperate germplasm

as a reference genome. The second purpose was to build a simulated

reference genome (mock genome) according to the GBS-SNP-

CROP pipeline proposed by Melo et al. (2016) and use it to

perform the SNP calling. This pipeline aggregates custom analysis

and filtering procedures with bioinformatics tools on raw GBS

readings. The method employs a variant calling strategy based on

patterns of polymorphisms within the individual or cluster and

across populations or clusters to identify sequencing or PCR errors.

Finally, the pipeline uses a reading grouping strategy based on

similarity to generate representative sequences, that is, a simulated

reference of GBS fragments. Details of each stage of mock genome

building can be found in Melo et al. (2016).

Further analysis was performed considering three SNP datasets:

1) SNP array, 2) GBS with SNP call using B73 as the reference

genome (GBS-B73), and 3) GBS with the simulated genome being

used as the reference genome (GBS-Mock). For GBS datasets,

according to standard parameters, SNPs were scored from raw

data using the TASSEL 5.0 GBSv2 pipeline (Glaubitz et al., 2014).

With the use of the Burrows-Wheeler Alignment tool (BWA) (Li

and Durbin, 2009), the tags were aligned against the reference

genome (GBS-B73 and GBS-Mock).

As two genotyping platforms (SNP array and GBS) were

performed, the parental lines that showed a very contrasting

genotypic profile between the two platforms were removed from

the analysis to obtain a fair comparison. Thus, between sequencing

errors and divergences in genotypic profiles between platforms, 330

parental lines remained, among which 45 parental lines make up the

diallel, which generated 751 single crosses. The number of markers

concerning the raw data was 18,413 (SNP array), 131,350 (GBS-

B73), and 46,9126 (GBS-Mock). All SNP sets underwent quality

control, in which low call rates (<90%) and non-biallelic markers

were removed from the datasets. The remaining missing data were

imputed by the Beagle 5.0 algorithm (Browning et al., 2018).

Pairwise linkage disequilibrium was calculated as the correlation

of allele frequencies squared (r2), and values greater than 0.99 were

removed from the datasets using the SNPRelate package (Zheng
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et al., 2012), resulting in 12,704 (SNP array), 11,153 (GBS-B73, and

4,935 (GBS-Mock) SNP markers.

Subsequently, new quality control was performed, in which

heterozygous loci in at least one individual were removed. High-

quality polymorphic SNPs from the parental lines were combined

(in silico) to build an artificial single-cross genomic matrix. In

addition, duplicate markers between chromosomes were removed

to avoid overparameterization caused by multicollinearity. Finally,

markers with minor allele frequency (MAF)<0.05 were removed

from the single-cross genomic matrices, resulting in 11,884 (SNP

array), 10,361 (GBS-B73), and 4,801 (GBS-Mock) SNP markers to

perform the remaining analysis.
2.5 Analysis of population structure and
genetic diversity

The three SNP datasets (SNP array, GBS-B73, and GBS-Mock)

from the 330 parental lines were used to assess the population

structure of the panel. In these analyses, in particular, heterozygous

loci and rare variants (MAF< 0.05) were considered to capture all

diversity and variability to perform principal component analysis

(PCA) and determine the relatedness between parental lines.

K-means clustering was applied, using the total within-cluster

sum of square (WSS) method to determine the optimal number of

clusters so that the total intra-cluster variation is minimized

(Kassambara, 2017). The factoextra package (Kassambara and

Mundt, 2020) was used for this. Subsequently, Kendall’s method

determined the coincidence in forming clusters among the different

datasets (Kendall, 1938). Kendall’s tau correlation coefficient was

tested at a probability level of 0.01. PCA was performed, and biplots

were constructed to assess population structure.

The genetic distances between the parental lines were calculated

for each SNP dataset using the Rogers distance (Rogers, 1972).

Subsequently, to measure the correlation among the kinship

matrices, the Mantel correlation test (Mantel, 1967) was applied

to detect significance. The Mantel correlation test is non-parametric

and computes the significance of the correlation similarity measures

using 1,000 permutations of the rows and columns of one distance

matrix. The heatmaps of the genetic distance matrices were

obtained using the superheat R package (Barter and Yu, 2018).

Correlations were obtained using the vegan package (Oksanen et al.,

2019), and each analysis was performed for each SNP

dataset scenario.
2.6 Full diallel genomic analysis

To find out how diversity and population structure can

influence the formation of heterotic groups, it was necessary to

construct in silico genome of the 751 single crosses from parental

lines. Therefore, at this stage, we combined phenotypic and

genotypic information from these individuals to estimate general

(GCA) and specific combining abilities (SCA). For this, the

following diallel model was adjusted:
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y=ZPgP  + ZHh + ϵ,

where y is the adjusted phenotypic data vector of the single

crosses for the trait, gP is the random effects vector of the GCA

captured by the markers of the parental lines, and h is the random

effects vector of the SCA that denotes the interaction effects across

the parental lines. ZP and ZH are incidence matrices that relate y to

gP and h to gp ~ N (0, s2pGp) and h ~ N (0, s2HH), where s2P and
s2

H are variance components associated with GCA and SCA,

respectively. GP and H are relationship matrices for the parental

lines and single crosses, respectively. Finally, e ~ N (0, s2
eI), where

s2e is the variance associated with the residuals.

The GP relationship matrix was calculated using the SNP markers

according to (VanRaden, 2008), whereWP is the matrix of centered and

patternedmarkers. Therefore,GP =
WpW

0
p

p (Technow et al., 2014; Lopez-

Cruz et al., 2015), where p is the number of markers. This resulted in an

average diagonal Gp value of ~1; therefore, s2p was defined on the same

scale as s2e. The elements of the H matrix were obtained directly from

the GP (Bernardo, 2002; Technow et al., 2014). The matrix H for all

possible crosses was obtained with the Kronecker product between GP’s,

H = Gp ⊗ Gp (Covarrubias-Pazaran, 2016). A model was built with

their respective kernels for each SNP marker source. Analyses were

performed using the ASReml-R package (Butler et al., 2018).
2.7 Heterotic groups and testers

The determination of heterotic groups was performed based on

SCA estimates for each trait. These estimates corresponded to a

matrix of genetic distances. According to Falconer and Mackay

(1996), the genetic distance between parents positively affects

heterosis. This association depends on dominance effects or

differences in the frequency of the alleles that control the trait

considered (Falconer, 1960). Burstin et al. (1994) also found that

SCA variance is an indicator for predicting hybrid performance by

genetic distance between parents. According to this information, it

was assumed that the higher the SCA estimates, the greater the

distance between the parents and the more significant the heterosis.

From this, the 45 lines were divided into two heterotic groups.

The SCA estimates were submitted to a clustering algorithm, K-

means, which grouped them according to the SCA estimates. To

estimate the correlation between the heterotic groups formed for the

different genotyping methods, Pearson’s correlation was applied and

tested at a probability level of 0.01 by Student’s t-test. Subsequently, the

identification of the best tester in each group was performed according

to the GCA estimates. The best tester of a given group was the line that

showed the highest GCA with the other group. Based on this, the

coincidence of testers between the scenarios was evaluated.
2.8 Obtaining single-cross combinations
and genomic prediction

After the parental lines were divided into heterotic groups, only the

single crosses corresponding to interpopulation crosses via North

Carolina II (NCII) design were considered for the following analyses.
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The number of single crosses changed according to the configuration of

heterotic groups for each trait in the three SNP scenarios.

For the genomic prediction of the single crosses, an additive–

dominance genomic best linear unbiased prediction (GBLUP)

model was used, as described below:

ŷ =1µ+Za+Zd+ϵ,

where ŷ is the adjusted means vector of the single crosses for the

trait; μ is the mean (intercept); a is the vector of additive genetic effects

of individuals, where a ~ N (0, Gas2a); d is the vector of dominance

effects, where d ~ N (0, Gds2d); e is the random effects vector of the

residuals, where e ~ N (0, I s2e). Z is the incidence matrix for a and d.

s2a is the additive genomic variance, s2d is the dominance genomic

variance, and s2e is the residual variance. Ga and Gd are the additive

and dominance genomic relationship matrices, respectively, of the

single crosses, where Ga =
WAW

0
A

2on
i=1

pi(1−pi)
and Gd =

WDW
0
D

4on
i=1

(pi(1−pi))
2 , where

pi is the frequency of an allele at locus i and W is the matrix incidence

of markers (VanRaden, 2008). The WA matrix was encoded as 0 for

A1A1, 1 for A1A2 heterozygote, and 2 for A2A2 homozygote. For WD,

genotypes were coded as 0 for both homozygotes and 1 for the

heterozygote. The genomic relationship matrices were built using the

snpReady package (Granato et al., 2018). The genomic prediction

models were performed using the sommer package (Covarrubias-

Pazaran, 2016). It is worth noting that all three sets of markers were

used to build the kernels. The Mantel correlation test (Mantel, 1967)

was applied to detect the significance between the additive and

dominance genomic relationship matrices.

To evaluate the model performance, we used the CV-a cross-

validation with five folds and four replicates (Yassue et al., 2021b). The

predictive ability was estimated by Pearson’s correlation between

predicted genotypic and observed values from the validation set. The

prediction accuracy was estimated by the correlation between

predictive ability and heritability, according to Mrode (2014).

Correspondence between phenotypic and genotypic selection was

calculated for each set of markers through the percentage of

common genotypes selected by their adjusted means from the

phenotypic analysis and their genomic estimated breeding values

(GEBVs) from the genomic prediction model concerning different

intensities of selection (1%, 10%, 20%, 30%, and 40%). The heritability

in the broad-sense (H2) and the narrow-sense (h2) was also estimated

by the equations below:

H2 =
ŝ 2

a + ŝ    2
d

(ŝ 2
a + ŝ 2

d + ŝ 2
ϵ)
and h2 =

ŝ 2
a

(ŝ 2
a + ŝ 2

d + ŝ 2
ϵ)
,

where ŝ 2
a is the additive genetic variance, ŝ 2

d is the dominance

genetic variance, and ŝ 2
ϵ is the residual variance.
3 Results

3.1 Genetic diversity and
population structure

According to the WSS method, for all datasets, the optimal

number of clusters among the 330 parental lines that minimized
frontiersin.org
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within-group variance and maximized between-group variance was

six (Figure S1). Subsequently, the K-means clustering method

showed a remarkable similarity in the arrangement of clusters

among datasets (Figure 2). This similarity is confirmed by the

coincidence values in the clustering (Table S1), with correlation

coefficients above 0.95.

Concerning PCA, the SNP datasets showed similar

performances regarding the variance explained by the principal

components. The first principal components hold the highest

percentage of explained variance (Figure S2A). When considering

the first 10 main components, SNP array showed the highest value

of cumulative explained variance (27.3%). At the same time, GBS-

B73 and GBS-Mock presented discounts of 24.1% and 16.8%,

respectively (Figure S2B).

In general, PCA revealed that the first eigenvectors exhibited

similar patterns of variance in all combinations between datasets,

supported by the coefficient of determination (R2). However, the

other eigenvectors showed less similarity between the captured

variance patterns (Figure 3). The first four eigenvectors of SNP

array and GBS-B73 showed high values of R2 (Figure 3A). In

contrast, for SNP array and GBS-Mock, the highest values of R2

were concentrated in the first three eigenvectors (Figure 3B). For

GBS-B73 and GBS-Mock, all eigenvectors showed high magnitude

R2 , wi th the former being s l ight ly higher than the

others (Figure 3C).

Biplots were constructed to visualize the spatial distribution of

lines in all SNP datasets (Figure 4; S3, S4). For this, the first three

PCs were used, together with the information obtained by the K-

means clustering method (Figure 2). All datasets showed the same

pattern of dispersion among the lines, in agreement with the cluster

analysis, which suggests that the SNP datasets capture similar

patterns of variance (Figure 4).

Rogers distance matrices (GD) from all SNP datasets sampled

similar groups and subgroups, with slight differences between them
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(Figure S5). Regarding the Mantel correlations between the GDs,

high magnitude correlations (>0.83) were observed involving

different scenarios (Table 1).
3.2 Variance components,
genomic heritability, and genomic
relationship matrices

Broad- and narrow-sense heritabilities were higher for EH,

followed by PH and GY (Table S2). GY showed broad-sense

heritability for all SNP datasets, on average, 36% higher than

narrow-sense heritability. This difference is significantly smaller

for the other traits, 15% and 6%, for PH and EH, respectively. The

narrow-sense heritability for all SNP datasets was practically the

same for GY. As for PH, there was a slight difference in SNP array,

and GBS-Mock presented heritability slightly higher than that of

GBS-B73. For EH traits, narrow-sense heritability varied little

among SNP datasets, with GBS-Mock and SNP array showing the

highest heritabilities. The heritabilities in the broad-sense (H2)

followed the same tendency.

Regarding the additive genomic relationship matrices (Ga) across

the single-crosses, SNP array, GBS-B73, and GBS-Mock showed high

Mantel correlations (Table 1; Figures S6A-C). However, the genomic

dominance relationship matrices (Gd) showed lower correlations than

Ga. The correlations between the dominance relationship matrices

(Gd) were lower but still from medium to high. GBS-Mock stands out

with a correlation of 0.72 with GBS-B73.
3.3 Heterotic groups and testers

Based on SCA estimates, the 45 parental lines were divided into

heterotic groups as the genetic distance between them for the evaluated
B CA

FIGURE 2

K-means clustering method for dividing the 330 parental lines into subpopulations applied to all SNP datasets: (A) SNP array, (B) GBS-B73, and (C)
GBS-Mock. SNP, single-nucleotide polymorphism.
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traits, GY, PH, and EH. Accordingly, two heterotic groups were formed

for all SNP datasets (Figure 5). The formation of heterotic groups

among the SNP datasets was quite similar, with high correlations,

higher than 0.94 for GY and 0.87 for PH and EH (Table S3). There was,

at most, a change in the allocation of two parental lines between

heterotic groups in different SNP datasets. Likewise, the SCA

correlations of the parental lines among the SNP datasets were

higher than 0.96 (Table S4).

GCA estimates from each parental line, trait, and SNP dataset

were used to choose the best tester in each group (Table 2). Thus,

the testers matched among SNP datasets in the respective

heterotic groups for each trait. Based on GY, the tester chosen

for heterotic group one (HP1) was L023, and for heterotic group

two (HP2), it was L006. As for PH and EH, L001 was elected as the

HP1 tester and L003 as the HP2 tester. The correlations between

the GCAs confirm this result, with maximum correlations

(Table S4).
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3.4 Genomic prediction

The predictive ability estimated by the additive–dominance

model for all traits and following the same trend as the other

results did not vary significantly among SNP datasets. The mean

values of PA were 0.58 for GY, 0.64 for PH, and 0.83 for EH.

Prediction accuracy also did not vary significantly between SNP

datasets. It showed a high magnitude for all traits, with a mean value

of 76% for GY, 78% for PH, and 90% for EH (Figure 6). The

coincidence between selected individuals based on the adjusted

means of the phenotypic analysis and the GEBVs of the genomic

prediction model was generally satisfactory. It increased with rising

selection intensity (Figure 7). Although GY is considered the most

complex, the selection coincidence levels of this one were similar to

the other traits. SNP array showed slightly higher coincidence

values for almost all selection intensities. However, the different

datasets showed approximate coincident values.
B CA

FIGURE 4

Biplot among two first principal components using all datasets for 330 tropical parental lines: (A) SNP array, (B) GBS-B73, and (C) GBS-Mock.
Explained variance percentages of each principal component are in parentheses. Clusters were used to color-code parental lines. SNP, single-
nucleotide polymorphism.
B CA

FIGURE 3

Heatmap of the coefficient of determination (R2) of the 10 first eigenvectors built from the Rogers distance among all SNP datasets: (A) SNP array
and GBS-B73, (B) SNP array and GBS-Mock, and (C) GBS-B73 and GBS-Mock. SNP, single-nucleotide polymorphism.
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4 Discussion

Recent crop genetics and genomics advances have gained

remarkable attention and offered genotyping technologies

(Chakradhar et al., 2017). Various genotyping platforms are

available to meet the most diverse needs regarding costs per

sample and different marker densities (Thomson, 2014). GBS, in

particular, has emerged as a cost-effective strategy for genome-wide

SNP discovery and population genotyping due to the simple library

preparation and the robust approach to genome reduction (Elshire

et al., 2011).

All this progress is focused on a small group of crops (Tester

and Langridge, 2010) to the detriment of smaller agricultural

species, considered orphans, historically poorly researched (Mayes

et al., 2012), in that the large majority do not have a reference

genome. Sabadin et al. (2022) showed that using mock genomes

could be a worthy strategy that permits using SNP markers for

genomic selection in orphan crops. However, orphan crop breeding

programs focused on single-cross development must also determine

heterotic groups to maximize the heterosis. Our study aims to go

forward and verify the usefulness of mock genomes as a method to

permit reliable heterotic group clustering.
4.1 Influence of genotyping methods on
population structure and diversity

The study of the characterization of genetic diversity,

population structure, and genetic relationships among elite

germplasm parents, based on molecular markers, can accelerate

genetic gains in breeding programs (Romay et al., 2013; Adu et al.,

2019). This study helps understand how the germplasm is organized

in selecting parents that present effective contributions and in the

designation of heterotic groups (Wu et al., 2016). Thus, genomic

data not only allow the estimation of genetic diversity but also

combine them with phenotypic information to find new functional
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genes and build prediction models (Milner et al., 2019). However, in

this topic, the focus is on whether, with the simulated reference

genome, there is the discovery of the same polymorphisms and how

it reflects on the population structure of the lines.

The WSS method indicated the optimal number of clusters by

locating a curve on the plot, which is generally considered an

indicator of the optimal number of groups (Kassambara, 2017).

With this information and the results of the K-means clustering, the

parental lines were partitioned into subpopulations, where the SNP

datasets showed similar behavior (Figure S1; Figure 2; Table S1), in

agreement with the spatial distributions obtained in the biplot

graphs (Figure 4), in which all SNP datasets showed the same

dispersion pattern between lines. This suggests that the SNP

datasets capture similar patterns of variance, despite the

difference in the number of markers between them, where GBS-

Mock has a lower number and the difference in the genotyping

platform itself (array and GBS). Thus, SNP array, GBS-B73, and

GBS-Mock revealed similar performances concerning genetic

diversity and the population structure of parental lines. Darrier

et al. (2019) compared the performance of SNP array and GBS to

investigate the extent and pattern of genetic variance in barley and

observed that the two methodologies selectively access the

informative polymorphism in different portions of the genome.

Despite this, their results showed a strong positive correlation

between the matrices of both genotyping approaches, supporting

their similarity and validity.

PCA shows that these variance patterns captured by the SNP

datasets are more similar concerning the first eigenvectors

(Figure 3). However, the captured variance is more consistent

when comparing GBS-B73 and GBS-Mock (Figure 3C). This can

be explained by the verification bias existing in SNP array since this

bias arises when the markers are not obtained from a random

sample of the polymorphisms of the population of interest since the

matrix is constructed using temperate maize lines (Frascaroli et al.,

2013; Heslot et al., 2013; Unterseer et al., 2014), and the lines in the

study are from tropical germplasm.

The matrices of genetic distances among the parental lines revealed

similar patterns, showing the formation of subpopulations between the

lines (Figure S5). When using wheat as a model species to test for

verification bias and investigate its impact on genetic diversity

estimates, Chu et al. (2020) observed a tendency for SNP array,

leading to an underestimation of molecular diversity within the

population. These results agree with a previous study on wheat lines

(Elbasyoni et al., 2018) and maize lines (Frascaroli et al., 2013). Despite

the verification bias mentioned above and the difference between the

reference genome used, the temperate B73 genome, or the mock

genome, the population structure between the lines did not show a

significant difference, as the correlations between the matrices of

genetic distances were of high magnitude. Even though GBS-Mock

uses a different reference genome from SNP array and GBS-B73, their

correlation was high (Table 1). Elbasyoni et al. (2018), investigating the

influence of SNPs from different genotyping platforms on genomic

prediction, observed a high correlation (r = 0.77) between SNP array

and GBS genetic distance matrices. These high-magnitude correlations

suggest that the broad sampling of diversity is well represented by the

approaches used in the study. This is supported by the GWAS by
TABLE 1 Mantel correlation of Rogers genetic distance (GD) matrices for
330 parental lines and of additive genomic relationship (Ga) and
dominance genomic relationship (Gd) matrices for 751 maize single
crosses estimated from SNP array, GBS-B73, and GBS-Mock markers.

GBS-B73 GBS-Mock

GD
SNP array 0.91** 0.83**

GBS-B73 – 0.91**

Ga

SNP array 0.97** 0.96**

GBS-B73 – 0.99**

Gd

SNP array 0.78** 0.58**

GBS-B73 – 0.72**
Rogers genetic distance (GD) matrices were computed with markers from 330 parental lines
data. Ga and Gd matrices were computed with markers from 751 maize singles-crosses.
SNP array, Affymetrix® Axiom Maize Genotyping array; GBS-B73, genotyping-by-sequence
with SNP calling using B73 as reference genome; GBS-Mock, genotyping-by-sequence with
SNP calling using the mock reference built with all parental lines.
SNP, single-nucleotide polymorphism.
**Empirical significance level from permutations.
The symbol "-" means that the correlation of a value with itself is maximum, that is "1".
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Darrier et al. (2019). They indicated that SNP array and GBS methods

could detect markers closely associated with genes that control key

phenotypic traits.
4.2 Influence of genotyping methods in the
determination of heterotic groups in the
choice of testers

Heterosis is a fundamental phenomenon in obtaining superior

single crosses. Establishing heterotic groups to exploit them
Frontiers in Plant Science 09
effectively throughout the breeding cycles is necessary. These, in

turn, are made up of genetically related parental lines, which

generate little or no heterosis when crossed with each other.

Crossing with lines from another heterotic group tends to result

in vigorous single crosses (Lee, 1995). Therefore, genetic diversity

among heterotic groups tends to increase the level of heterosis

detected in hybrid combinations (Falconer and Mackay, 1996; Fu

et al., 2014). Badu-Apraku et al. (2011) reported in their diallel

study between maize lines that their genetic diversity was small, and

because of this, distinct heterotic groups could not be identified.

Significant genetic diversity was found in a similar study with other
B C

D E F

G H I

A

FIGURE 5

Heterotic groups among the 45 tropical parental lines for all traits: (A) SNP array (GY), (B) GBS-B73 (GY), (C) GBS-Mock (GY), (D) SNP array (PH), (E)
GBS-B73 (PH), (F) GBS-Mock (PH), (G) SNP array (EH), (H) GBS-B73 (EH), and (I) GBS-Mock (EH). GY, grain yield; PH, plant height: EH, ear height;
SNP, single-nucleotide polymorphism.
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FIGURE 6

Predictive ability via additive–dominance GBLUP model estimated by Pearson’s correlation between predicted and observed genotypic values of
the validation set for all SNP datasets (SNP array, GBS-B73, and GBS-Mock). GBLUP, genomic best linear unbiased prediction; SNP, single-
nucleotide polymorphism. Equal letters indicate no significant differences between groups (Tukey's post hoc test, P < 0.05).
FIGURE 7

Coincidence between phenotypic and genotypic selection for each set of markers from the genomic prediction model concerning different
selection intensities. The coincidence of selection percentage (y-axis) under a series of continuous selection intensities (1%–40%) (x-axis).
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maize lines, and two clear heterotic groups were identified. The type

of predominant gene action in the parents under investigation is

another factor that affects heterotic clustering. When additive and

non-additive effects are significant, and there is a predominance of

additive gene action over non-additive gene action, heterotic groups

are easily identified (Badu-Apraku et al., 2015; Badu-Apraku et al.,

2016a; Badu-Apraku et al., 2016b).

The PH and EH traits showed higher proportions of additive

variance captured by the Gamatrices than GY (Table S2). Although

these traits have polygenic inheritance, GY is the most complex trait

and most influenced by dominance deviations (Fischer et al., 2008;

Hallauer et al., 2010). According to Hallauer et al. (2010), most of

the loci involved with GY in maize are due to the occurrence of

dominance. This is reflected in a greater difference between H2 and

h2 for GY than for the other traits, confirming the greater influence

of dominance deviations on this trait. The additive genomic

relationship matrices of the single crosses (Ga) showed high

correlations among SNP array, GBS-B73, and GBS-Mock,

indicating that these approaches capture similar additive variance

patterns. GBS-Mock captures additive relationships in single

crosses similar to standard procedures, SNP array, and GBS-B73

(Table 1; Figures S6A–C). However, the correlations between the

dominance relationship matrices (Gd) were lower but still from

medium to high. In both Ga and Gd, the correlations between SNP

array and GBS-Mock were lower, which can be explained by the fact

that these SNP datasets use different reference genomes to perform

SNP calling.

SCA reflects the action of non-additive gene effects, indicating

intra-allelic interactions, is one of the most important parameters in

identifying superior single crosses, and is an indicator of genetic

distance between parents (Sprague and Tatum, 1942; Carvalho,

1993). Thus, using the SCA estimates as the genetic distance

between the lines to identify the panel structure, two heterotic

groups were formed, in which the distance between them is

maximized. The correlations between the SCA estimates were

almost perfect (Table S4). In other words, SNP array, GBS-B73,

and GBS-Mock presented equivalent SCA estimates. Thus, the

composition of heterotic groups practically did not change from

one SNP dataset to another. Therefore, the determination of

heterotic groups was similar regardless of the platform used

(Figure 5; Table S3).

In addition to presenting distinct heterotic groups, a well-

established breeding program also offers good testers. When

crossed with parental lines, these provide information about the

genetic value of the lines when evaluating the ability to combine

between them since it is associated with the additive effects of alleles

and additive-type epistatic actions (Cruz and Vencovsky, 1989;

Albrecht et al., 2014). The correct choice of a tester can have great

significance in the expectation of a successful selection process

(Miranda Filho, 2018). According to Hallauer and Martinson

(1975), a good tester presents simplicity in use, information that

correctly classifies the relative merit of the lines, and the potential

for maximizing genetic gain. Thus, based on the GCA estimates

between the lines, testers were elected for each heterotic group

based on the evaluated traits and the SNP datasets. As expected,

there were no differences in tester choice between SNP datasets, as
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the correlations between GCA estimates across rows were perfect

(Table 2; Table S5).

The genotyping approaches produced very similar results but

not the same as previous results regarding the study of the

population structure of parental lines; it was expected that this

would somehow influence the formation of heterotic groups and the

choice of testers. However, given the results, the genotyping

platform and, more specifically, the approach that uses the

simulated genome as a strategy, the GBS-Mock, produced similar

results to the standard procedures.
4.3 Influence of genotyping methods on
genomic prediction of single crosses

Assessing the performance of all single-cross combinations of

parental lines that excel in a breeding program is impractical in

most cases, given that the number of combinations grows

exponentially as the number of elite parents increases. Thus,

obtaining estimates of the genetic values of single crosses not

evaluated became viable with the increased availability of

molecular markers and genomic prediction models (Hallauer

et al., 2010). Therefore, to accelerate genetic gain with limited

resources, the prediction of single-cross performance is highly

important in modern breeding programs (Basnet et al., 2019).

However, few studies still address how genotyping platforms

influence single crosses’ prediction and, more specifically, regarding

the mock genome as a tool for more sophisticated analyses, such as

genomic prediction. Only one recent study shows the mock
TABLE 2 Choice of the best tester according to the SNP datasets (SNP
array, GBS-B73, and GBS-Mock), evaluated traits (GY, PH, and EH), and
heterotic groups (HP1 and HP2).

Testers

HP 1 HP 2

GY SNP
array L023 L006

GBS-B73 L023 L006

GBS-
Mock L023 L006

SNP
array L001 L003

PH GBS-B73 L001 L003

GBS-
Mock L001 L003

EH SNP
array L001 L003

GBS-B73 L001 L003

GBS-
Mock L001 L003
SNP array: Affymetrix® Axiom Maize Genotyping array: GBS-B73, genotyping-by-sequence
with SNP calling using B73 as reference genome; GBS-Mock, genotyping-by-sequence with
SNP calling using the mock reference built with all parental lines.
SNP, single-nucleotide polymorphism.
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genome’s efficiency in predicting maize single crosses, which may

be an alternative for crops that do not yet have a reference genome

(Sabadin et al., 2022). However, our study is more complete and

more representative because obtaining approaches from the

population structure phase is crucial for the intended use of

germplasm through the division of heterotic groups, the

definition of testers, and, finally, the genomic prediction of

single crosses.

Predictive ability and prediction accuracy are closely related

measures. Therefore, we will only discuss it based on predictive

ability. GY showed the lowest predictive abilities in all SNP datasets,

and EH has the highest in the additive–dominance GBLUP

prediction model (Figure 6, Table S2). Combs and Bernardo

(2013) suggested that genomic predictions are more accurate for

traits with higher heritability. In the results of Hayes et al. (2010),

complex traits controlled by many small effect loci, such as GY,

showed lower predictive abilities than less complex traits. Although

GBS-Mock has a lower number of markers, this approach presented

a similar performance to the other SNP datasets for all traits,

corroborating the hypothesis that it is possible to substantially

reduce the number of markers and maintain a high predictive

ability (Tayeh et al., 2015; Ma et al., 2016; Sousa et al., 2019), except

for long-term breeding cycles without updating the training

population that would demand high marker densities (DoVale

et al., 2022). In addition, the genetic distance estimates between

the SNP datasets were very similar (Figure S5).

Selection intensity must be chosen thoughtfully, as genetic

variability can be drastically reduced with high selection pressure.

The choice of appropriate selection intensities depends on the size

of the population and the duration of the breeding program,

whether short-term or long-term. In general, selection intensities

ranging from 10% to 40% are used in plant breeding, the highest

being applied at the beginning of a breeding program (Hallauer

et al., 2010). For the coincidence of individuals by phenotypic

selection and genomic selection, the SNP datasets showed similar

behavior as the selection intensity was increased, being more

pronounced from 1% to 10% of selection intensity. From then on,

observing the coincidence of selection gains smaller increments

(Figure 7). Our results for predictive ability and coincidence of

selection agree with the results of Sabadin et al. (2022). It is valid to

consider that those different intensities modify the response rates.

Thus, this coincidence between phenotypic and genomic selections

is expected to reach a plateau and subsequently decrease.

Despite the apparent differences between SNP datasets, the

general message is that these approaches perform comparably in

the analyses performed in this study, even accessing different types of

genomic sequences. While SNP array is derived from exome capture

and therefore focused on coding sequence variation, the GBS data

represent a wider diversity survey in genomic regions associated with

low levels of DNA methylation, which may also include many genes

and gene regulatory regions (Darrier et al., 2019; Negro et al., 2019).

However, the physical distribution of markers reveals higher

frequencies of SNPs at the gene-rich telomeric ends of each of the

chromosomes for both approaches, with this frequency being more

pronounced in SNP array (Bayer et al., 2017). The platforms probably

capture nearby markers in linkage disequilibrium with quantitative
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trait loci (QTLs). In this sense, using different platforms can be

advantageous, as it allows the identification of additional QTLs.
4.4 Possible applications of the mock
genome in plant breeding

Until recently, only the main commercial crops benefited from

state-of-the-art technologies. However, the development of the GBS

platform emerged as an alternative for using such technologies to be

viable for orphan crops. Approaches like this can convert orphan

crops into crops rich in genomic resources and substantially reduce

the breeding process (Varshney et al., 2009; Varshney and May,

2012; Varshney et al., 2012).

Previously, this process was much slower than nowadays. Rice, for

example, took almost 20 years to stop being an orphan crop and

become a basic model for cereals (Varshney et al., 2009). Introducing

these crops into the genomic era also accelerates the identification of

genes underlying important agronomic traits and improves our

understanding of the evolution of these species (Ye and Fan, 2021).

However, manyminor crops are becoming rich in genetic resources as a

result of investments from various public and private initiatives, such as

the African Orphan Crops Consortium (AOCC) (Hendre et al., 2019),

which is a global partnership that is generating resources genomics for

101 African orphans. One of the objectives of this Consortium is to

create reference genomes for these cultures. Although some efforts are

being made to pay greater attention to these crops (Chiurugwi et al.,

2019; Gregory et al., 2019; Jamnadass et al., 2020), the ideal is still far

from being achieved with a view to several species relevant to local diets

around the world that are understudied.

Despite initiatives and investments, not all crops will benefit, so they

cannot take advantage of modern breeding tools. While these advances

are being consolidated, mock genomes can be an alternative, where the

absence of a reference genome presents a barrier to the efficient use of

GBS data (Melo et al., 2017; Hale et al., 2018). In the meantime, the

present study has shown that using a population-tailored mock

reference to perform SNP discovery is a valid alternative. With this

approach, it was possible to carry out investigations to outline a breeding

program, from studies of diversity and population to genomic

prediction studies. However, it is important to emphasize that a

population with maximum representativeness must be considered

when building a mock reference to capture all the population

polymorphisms (Sabadin et al., 2022).

These advantages of using a mock genome in genomic studies

must consider some caveats; for example, diploid crops with smaller

genomes are preferred over cross-pollinated or polyploid orphan

crops, as they have genomes that are too complex to be sequenced.

However, genome size will become less of a barrier with advances in

sequencing technologies and bioinformatics tools (Armstead et al.,

2009). Another challenge is in the SNP calling due to the limitations

of GBS, which can lead to incorrect identification of homozygotes

and heterozygotes because of the low coverage of NGS reads, in

addition to a large number of lost and low-quality data (Heslot et al.,

2013). According to Sabadin et al. (2022), the mock genomes do not

present the physical position of the markers in a constant reference,

which hinders studies such as GWAS and candidate gene discovery.
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Negro et al. (2019) stated that SNP array and GBS are

complementary to detect QTLs tagging different haplotypes in

association studies. In this sense, using other platforms can be

advantageous, as it allows the identification of additional QTLs.

However, no studies still demonstrate the performance of mock

genomes for these purposes. When looking for these larger effect

marks, the results will probably differ from those obtained with SNP

array due to changes in coverage between platforms.

Given what has been shown, it is possible to infer and

recommend that a mock genome constructed from the

population’s polymorphisms to perform the SNP calling is an

excellent strategy to support plant breeders in studies of diversity,

population structure, the definition of heterotic groups, choice of

testers, and genomic prediction in species that still do not have a

reference genome available, which is an alternative for the rapid

advancement of orphan crop improvement. This approach will play

a key role in improving the genetic potential of orphan crops and

helping develop sustainable food systems.
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