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In recent years, rice seedling raising factories have gradually been promoted in

China. The seedlings bred in the factory need to be selected manually and then

transplanted to the field. Growth-related traits such as height and biomass are

important indicators for quantifying the growth of rice seedlings. Nowadays, the

development of image-based plant phenotyping has received increasing

attention, however, there is still room for improvement in plant phenotyping

methods to meet the demand for rapid, robust and low-cost extraction of

phenotypic measurements from images in environmentally-controlled plant

factories. In this study, a method based on convolutional neural networks

(CNNs) and digital images was applied to estimate the growth of rice seedlings

in a controlled environment. Specifically, an end-to-end framework consisting of

hybrid CNNs took color images, scaling factor and image acquisition distance as

input and directly predicted the shoot height (SH) and shoot fresh weight (SFW)

after image segmentation. The results on the rice seedlings dataset collected by

different optical sensors demonstrated that the proposed model outperformed

compared random forest (RF) and regression CNN models (RCNN). The model

achieved R2 values of 0.980 and 0.717, and normalized root mean square error

(NRMSE) values of 2.64% and 17.23%, respectively. The hybrid CNNs method can

learn the relationship between digital images and seedling growth traits,

promising to provide a convenient and flexible estimation tool for the non-

destructive monitoring of seedling growth in controlled environments.
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1 Introduction

Plant factories achieve stable and efficient growing of plants by

controlling the growing environment (Ares et al., 2021;

McClements et al., 2021). Various plant factories have been

promoted in China to cope with the shortage of cultivated lands

for vegetable production. In recent years, industrial rice seedlings

have attracted attention because of good economic benefits (Ma

et al., 2014). At present, the rice seedlings bred in the factory need to

be selected manually and then transplanted into the field. Plant

growth is a response to environmental parameters (Chen et al.,

2016). Plant phenotype is the character of plants under the

interact ion between intr ins ic genotype and external

environmental conditions (Furbank and Tester, 2011). Phenotypic

morphological traits such as height, leaf area and biomass, can be

obtained by measurement and weighing, which is helpful for

quantifying plant growth (Watt et al., 2020). The traditional

methods of manual trait measurement are simple and accurate,

but they are difficult to meet the demand of high-throughput trait

acquisition in large quantities, and usually require destructive

sampling, which is time-consuming and laborious (Hüther et al.,

2020). The estimation of plant growth is a non-negligible element in

the intelligent development of plant factories; thus it is of great

practical significance to develop rapid, accurate and automatic

methods for obtaining plant growth-related traits to replace some

tedious manual measurements.

The development of computer vision provides a good

opportunity for image-based automatic measurement and

acquisition of plant phenotype data. Mortensen et al. (2018)

proposed a method for segmenting lettuce in 3D point clouds

and estimating their yield. Reyes-Yanes et al. (2020) used MASK-

RCNN to segment the lettuce from the background and used the

geometric features extracted from the segmented data to build a

fresh weight regression model. Nowadays, RGB images can be

obtained at a low cost by using sensors such as digital cameras

and smartphones, which are affordable and easy to operate.

Computer vision algorithms are then used to extract image-based

phenotypic data and apply them to downstream tasks. For example,

Yu et al. (2013) proposed a crop segmentation method and used the

skeleton endpoint to characterize the leaf of the seedling to

recognize the growth stage of the seedling. Borianne et al. (2018)

developed software for automatic cereal root system measurements

from digital images. These works show that images are promising to

provide a non-destructive and convenient access to obtain plant

growth information, and the key is to construct appropriate feature

extraction methods.

In recent years, convolutional neural networks (CNNs), an

advanced deep learning method, have been widely applied to

visual tasks in the field of agriculture, such as plant detection

(Quan et al., 2019), classification (Perugachi-Diaz et al., 2021),

segmentation (Gong et al., 2021) and counting (Osco et al., 2020; He

et al., 2022). Benefiting from the ability of automatic feature

learning and hierarchical feature extraction, CNNs originally

designed for classification tasks can also perform well for

regression tasks. Some studies have used regression CNNs for
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plant growth trait estimation in controlled environments, and

most of them target lettuce (Chen et al., 2016; Zhang et al., 2020;

Buxbaum et al., 2022; Lin et al., 2022) and Arabidopsis thaliana

(Ubbens and Stavness, 2017). Existing studies illustrate that

regression CNNs can model the relationship between images and

growth traits of leafy vegetables well. Meanwhile, there is a great

demand for automatic measurement of growth-related traits in rice

seedlings (Lu et al., 2017; Mekawy et al., 2018; Zhang et al., 2019).

However, applying existing regression CNNs for the growth

monitoring of grain crops such as rice still needs to be further

validation, as morphological differences between monocot and dicot

plants exist from the seedling stage, which challenges the estimation

of rice seedling growth traits directly from digital images.

The objective of this study was to accurately estimate growth-

related traits of rice seedlings in controlled environment agriculture.

A CNN-based framework including image preprocessing, image

augmentation, semantic segmentation network and regression

network, was used to segment RGB images of rice seedlings and

model the relationship between the images and the corresponding

growth-related traits (height and fresh weight). This study explored

the potential of using CNNs with digital images to estimate growth-

related traits of rice seedlings in vertical planting modules to

establish a feasible and robust seedling growth monitoring method.
2 Material and methods

2.1 Image collection and preprocessing

The rice cultivar ZY-18 (Zheyou 18, hybrid indica) was selected

for experiments. ZY-18 was bred by the Zhejiang Academy of

Agricultural Sciences (ZAAS) and has been widely planted in

Zhejiang and surrounding provinces in China. The seeds used in

this study were obtained from the market. The rice seedlings used

in this work were grown in a vertical growth unit in a laboratory in

Binjiang, Hangzhou (N30°11′, E120°12′). After surface disinfection,
rice seeds were germinated in dark for two days and then sowed into

substrate trays. Rice seedlings were grown under controlled climate

conditions, with day/night temperatures of 26-28°C/18-20°C and

average relative humidity of 75%. During the seedling growth

period, full spectrum led grow lights were used for illumination at

a light intensity of 400 μmol·m-2·s-1 and 14 to 16 hours during the

day. The experiment was performed from November 20, 2021, to

December 16, 2021.

A Nikon Z5 camera and a smartphone (iPhone 12) were used

for image acquisition, in which the Nikon camera shot 10 seedlings

at a time and the iPhone shot one seedling at a time. During the

image collection, the sensors were placed on the top of a

photography light box (60×60×60 cm) to capture digital images.

According to the difference in the sensor size, the resolution of the

original digital image is 4016×6016 (Nikon Z5) and 3024×4032

(iPhone), respectively. All digital images are stored in PNG format.

Finally, two datasets were constructed, a digital image dataset

containing 92 images captured by a digital camera, and a digital

image dataset containing 76 images captured by a smartphone.
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For the digital images of seedlings in both datasets, binarized

labels consistent with the original image size were generated by

manual annotation. The rectangle enclosing a single seedling was

generated using binarized labels, and the original images were

cropped using these rectangles. A total of 984 rice seedling images

were obtained as the new dataset.

Referring to the previous study, the image dataset was randomly

divided into a training set and a test set in a ratio of 8:2, which were

used to construct and evaluate the model, respectively. Further, 20%

of the training dataset was randomly selected as the validation set

during training. To prevent overfitting, data augmentation was

performed on the fly when training all models, which consisted of

horizontal flipping, horizontal shift and random rotation.
2.2 Measurement of traits

Manual measurements were taken at the same time as image

collection. Ten seedlings were randomly sampled from each

planting tray. After washing and drying the seedlings, the plant

height and fresh weight were measured using a ruler and a digital

balance with a resolution of 0.1 cm and 0.0001 g, respectively. These

measurements were conducted on days 10 (December 3), 17

(December 10) and 22(December 15) after seeding. Finally, a

regression dataset with 504 samples was obtained, in which each

sample had measurements of seedling height and shoot fresh weight

after root removal. Meanwhile, each seedling sample had its

corresponding binarized label in the segmentation dataset above.
2.3 Construction of the
network architecture

The whole process is shown in Figure 1. In the first stage, the RGB

image of rice seedlings with the size of 512×512×3 was input into the
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U-Net (Ronneberger et al., 2015) segmentation model to output the

probability map of rice seedlings. In the second stage, based on the pre-

experiment, a modified ResNet50 (He et al., 2016) was used as the

backbone of the regression network to predict growth-related traits.

Specifically, the RGB image of rice seedlings and segmentation

predictions above were concatenated as the input of the feature

extraction network. Besides, a branch fully connected layer was

introduced to receive a geometric vector including the input scaling

factor and image acquisition distance as the input. The fully connected

layers of the two paths were fused into a feature vector of 576×1 at the

depths of the network. And this feature vector was passed to the

regression head, which consisted of two fully connected layers. Finally,

the regression network output two values, which represented the

prediction results of seedling height and fresh weight.

In the training phase, the Adam optimizer was used to optimize the

parameters of the two networks in stages. In the beginning, only the

parameters of the segmentation network were updated. After 30

epochs, the segmentation model reached convergence and the

parameters were frozen. Subsequently, the parameters of

the regression network were updated until the model converged. The

initial learning rate was set to 0.001, batch size was set to 4, and the

training period was set to 300 epochs. The loss function of

segmentation and regression were cross entropy loss and smooth L1

loss, respectively. The “ReduceLROnPlateau” scheduler and “Early

Stopping” strategy was adopted to adjust the learning rate and

control the training process: If the validation loss did not improve

within 50 epochs, the learning rate will decrease by 0.1 times. If the

validation loss still did not improve within 100 epochs, the training will

be terminated.
2.4 Performance evaluation

To evaluate the proposed model, overall accuracy (OA), F1-

score and Intersection-over-Union (IoU) metrics were used as the
FIGURE 1

Overall structure of the hybrid CNN framework.
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criteria for segmentation. Mean absolute error (MAE), normalized

root mean square error (NRMSE) and coefficient of determination

(R2) were calculated to evaluate the estimation performance. These

metrics are defined as follows:

OA =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
,  Recall =

TP
TP + FN

(2)

F1 = 2� Precision� Recall
Precision + Recall

(3)

IoU =
TP

FP + TP + FN
(4)

where TP is the number of correctly classified seedling pixels,

FP is the number of pixels misclassified as seedlings, FN is the

number of pixels misclassified as background, TN is the number of

correctly classified background pixels.

MAE =
1
no

n

i=1
yi − fij j (5)

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(yi − fi)
2

q

�y
(6)

R2 = 1 −o
n
i=1(yi − fi)

2

on
i=1(yi − �y)2

(7)

where n is the number of samples, fi is the i-th predicted trait, yi
is the i-th ground truth trait, �yis the average of ground truth.
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To further evaluate the estimation performance of the proposed

model, the classical machine learning classifier RF (Breiman, 2001) and

a regression CNNmodel (RCNN) were adopted to estimate the growth

traits of rice seedlings. RF has shown good performance in the

estimation of growth traits of crops and fishes (Saberioon and Cıśar,̌

2018; Zhang et al., 2020), while RCNN has been reported in estimating

the fresh weight of lettuce directly from the input images (Zhang et al.,

2020). To build RF classifier, feature extraction was conducted from

digital images of rice seedlings. According to the characteristics of

seedlings, low-level image features including color features,

morphological features and texture features were extracted. Table 1

lists all the features used to build the RF model. Because the RF model

itself can evaluate the importance of features, all low-level features were

used to fit the RF model in the experiment.
2.5 K-fold cross validation for regression

The regression dataset comprises 504 images, which is a relatively

small dataset in the deep learning community. As mentioned in the

part of data preprocessing above, 80% of the samples were randomly

selected for modeling, and the remaining 20% were used for evaluation.

To prevent overfitting, K-fold cross-validation (K=5) was used to build

the model on the training set (Stone, 1974). The average of metrics on

the test set was taken as the evaluation standard.
3 Results

3.1 Segmentation results of the model

As demonstrated by the accuracy evaluation of the proposed

method on the rice seedling segmentation task, the segmentation
TABLE 1 List of image features of rice seedlings.

No. Feature Description Symbols and formulas

1 Average The average of each color component in five color spaces (RGB, HLS, HSV, CIELab, YCbCr) Ave

2 Standard deviation The standard deviation of each color component in 5 color spaces (RGB, HLS, HSV, CIELab, YCbCr) s

3 Area The number of pixels in the seedling area A

4 Perimeter The number of pixels of the seedling boundary P

5 Aspect ratio Ratio of length to width of minimum rectangle of seedling Ar = L
W=

6 Ellipse ratio Ratio of the major axis to the minor axis of the seedling equivalent ellipse Er = aellipse
bellipse

.

7 Compactness Ratio of the diameter of the minimum enclosing circle to the length of the minimum rectangle Cpa = 2r
L=

8 Arc Ratio of the seedling area to the area of the minimum enclosing circle Arc = A
pr2=

9 Extent Ratio of the seedling area to the area of the minimum rectangle Ex = A
L�W=

10 Complexity Ratio of the square of the seeding perimeter to the seedling area Cpl=P2

A=

11 Contrast Contrast of the gray level co-occurrence matrix in seedling region

12 Correlation Correlation of the gray level co-occurrence matrix in seedling region

13 Energy Energy of the gray level co-occurrence matrix in seedling region

14 Homogeneity Homogeneity of the gray level co-occurrence matrix in seedling region
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submodel achieved an OA of 0.997, an F1 accuracy of 0.956 and the

IoU accuracy of 0.916 (Table 2). Visual interpretation on the test set

indicated that the proposed method can distinguish seedling pixels

from background pixels well (Figure 2). In conclusion, the model

can recognize complete rice seedlings with high accuracy.
3.2 Estimation results of the model

The results of growth-related traits estimation based on the

proposed method are shown in Figures 3 and 4, where the figures

depict the prediction results in the five-fold cross-validation.

Table 3 showed the performance of the proposed model on the

test sets for estimating growth-related traits of rice seedlings. The

results indicate a strong correlation between the actual measured

values of rice seedling growth-related traits and the CNN-based

model estimates. In terms of height traits, the regression submodel

had a good estimation performance with an average R2 of 0.980 and

an average NRMSE of 2.64%. The results of seedling shoot biomass

estimation were slightly worse, with an average R2 of 0.717 and an

average NRMSE of 17.23%.
3.3 Comparison of the results with the
conventional estimation methods

The random forest (RF) model was constructed based on the

features selected above (Table 1), and the number of trees in the

RF model was set as 1000 by grid search. The estimation results of

RF classifier were shown in Table 4, Figures 5 and 6. The average

R2 of RF for height estimation results was 0.819, with an average

NRMSE of 7.93%. Similar to the results of the CNN model, the

estimation performance of biomass traits was lower than that of

height traits, with an average R2 of 0.634 and an average NRMSE

of 19.41%.

The estimation results of the RCNN model were shown in

Figures 7 and 8. For the two traits of SH and SFW (Table 5), the

RCNN model had average R2 values of 0.688 and 0.492,

respectively, and the average NRMSE values were 10.81%, and

23.27%, respectively. The results showed that this regression CNN

model struggled in estimating seedling growth-related traits.
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4 Discussion

4.1 Comparative analysis of
different models

A hybrid segmentation and regression network was built in this

study. Compared with existing methods that combine threshold

segmentation with deep regression networks, this work adopts a

two-stage model to solve segmentation and estimation tasks in an

end-to-end manner. In the segmentation stage, a deep segmentation

network was used instead of the classic image segmentation

algorithms (such as threshold segmentation) mainly for the

consideration of computational efficiency. Since the seedling

images used in this research were acquired by different sensors,

using a data-driven deep segmentation network can automatically

learn effective features from images, reducing the difficulty of

handcrafted feature design and expert knowledge. In the

regression stage, image segmentation prediction is taken as

explicit input to help the regression network focus on the seedling

pixel region rather than the redundant background pixels. This

makes the whole model easier to be optimized on a small dataset.

Furthermore, the proposed method is flexible for varying image

acquisition distance since the acquisition distance and image scaling

factor are taken as inputs to the regression network branches when

constructing the model. Meanwhile, the model has good scalability

and it can be adapted from the dual task of image segmentation and

regression to only perform the segmentation or image-based growth

character estimation.

In comparison with the classical machine learning methods, the

estimation accuracy of the proposed CNNmodel for growth-related

traits was higher than that of the RF estimator, as shown in Tables 3

and 4. The estimation accuracy of the former was 0.083 higher in R2

for biomass traits and 0.161 higher in R2 for height traits, and the

estimation results of the CNN model also had lower NRMSE. The

results demonstrate the advantages of the CNN model in

automatically learning complex features from image data.

However, the results of RCNN were somewhat counterintuitive.

As can be seen from the tables above, the performance of RCNN for

seedling traits estimation was lower than that of the proposed model

and RF model. This finding indicates the features extracted by the

RCNN are not robust enough to estimate rice seedling traits, which
TABLE 2 Confusion matrix of segmentation test set.

Prediction

Ground truth Rice Background

Rice 3,428,953 165,599

Background 146,830 98,088,319

OA 0.997

F1 0.956

IoU 0.916
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may be due to the capacity limitation of the five-layer network

model. Another possible reason is that the dataset in this paper

contains digital images collected by two sensors at different

distances, which increases the difficulty of directly estimating

growth traits from images.

According to the experimental results, including the proposed

method and the other two comparison methods, the performance of

seedling height estimation is better than that of biomass estimation.

This may be because the information extracted from the plane
Frontiers in Plant Science 06
digital images of a single perspective of rice seedlings can better

reflect the characteristics of height traits. However, seedling images

from a single perspective still had partial occlusion or hiding, which

made the features learned by the model not comprehensive enough

for estimating shoot biomass, affecting the estimation accuracy.

Therefore, the estimation of height trait by the proposed model is

better than that of biomass trait. In our opinion, more training

sample s may he lp to improve the per fo rmance o f

biomass estimation.
FIGURE 3

Estimation results of shoot height (SH) based on the proposed model (A–E) shows the results in the five-fold cross-validation.
FIGURE 2

Example of results on the segmentation test set (A, C) shows the original image taken with a digital camera and a smartphone, respectively, and
(B, D) shows the corresponding segmentation results.
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Nowadays, many reports have introduced image-based

approaches to extract phenotypic traits from crop images, with

results listed in Table 6. Different from previous works, this study

focuses on the growth of rice seedlings in a controlled environment.

Specifically, this study explores how CNN-based deep learning

techniques can better cope with RGB images acquired under

varying acquisition conditions (sensor and acquisition distance).

Therefore, acquisition condition-related geometric vectors are

considered as branch inputs of the regression network. In

addition, unlike some methods that segment images and then

extract geometric features, this study integrates image

segmentation and image regression into a unified end-to-end

framework, prompting the network to automatically learn the

implicit representations in segmented images. The experimental
Frontiers in Plant Science 07
results show that the presented approach in this paper is competent

for the estimation of growth traits of rice seedlings.
4.2 Parameter analysis of FC layers

In this study, the image acquisition distance and scale factor

were taken as the input geometric vector of the branch of the

regression CNN, so that the regression network could adapt to the

digital images acquired at different shooting distances. In order to

explore the effects of the number of neurons in the fully connected

layer of regression network, we conducted further comparative

experiments. Concretely, the number of neurons in the fully

connected layer after the fusion of two paths (denoted as C1) was
TABLE 3 Regression error statistics of the proposed method for growth-related traits.

Number of experiments
SH SFW

MAE(g)↓ NRMSE(%)↓ R2 ↑ MAE(g)↓ NRMSE(%)↓ R2 ↑

1 0.338 2.52 0.984 0.020 19.51 0.704

2 0.394 2.92 0.975 0.018 17.05 0.694

3 0.346 2.83 0.980 0.018 16.06 0.749

4 0.323 2.55 0.975 0.017 16.08 0.737

5 0.290 2.35 0.984 0.019 17.44 0.702

Average 0.338 2.64 0.980 0.018 17.23 0.717
frontier
FIGURE 4

Estimation results of shoot fresh weight (SFW) based on the proposed model (A–E) shows the results in the five-fold cross-validation.
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tested, as well as the number of neurons in the fully connected layer

adjacent to the branch input (denoted as C2).

Experimental results are used to analyze the value of

parameters. From Table 7, it can be seen that the estimation

accuracy reaches an optimal level with increasing number of

neurons but fluctuates. However, when the number of neurons in

the fully connected layer increases to 1024, the estimation accuracy

drops due to the excessive number of parameters. Higher values for

the number of neurons were not tested due to computing resources

limitations. Table 8 shows the experimental results for various

settings of C2. Although different values of C2 have different

effects on the R2 of height and fresh weight, the R2 of both traits

outperforms other results by setting C2 = 64. In conclusion, the

experimental results prove that 512 and 64 are better choices for

parameters C1 and C2, respectively.
Frontiers in Plant Science 08
4.3 Limitations and future work

Although the results on the test set have proved that the

proposed method is accurate and efficient in the seedlings image

segmentation and growth traits estimation, the developed

framework could still be improved potentially. First, the accuracy

of plant height regression is higher than that of fresh weight

regression because the images are captured from a single-side

view of the rice seedling sample, which requires further mining

the information provided by the lateral view to estimate the latter.

Moreover, the input of the proposed framework is digital images of

monocot plant seedlings, and its applicability to dicotyledonous

plant seedlings needs to be further verified.

Future research will continue to collect more seedling images to

expand the dataset, and not be limited to a single rice variety. To
FIGURE 5

Estimation results of shoot height (SH) based on RF model (A–E) shows the results in the five-fold cross-validation.
TABLE 4 Regression error statistics of the RF method for growth-related traits (n=1000).

Number of experiments
SH SFW

MAE(g)↓ NRMSE(%)↓ R2 ↑ MAE(g)↓ NRMSE(%)↓ R2 ↑

1 1.289 9.48 0.774 0.023 22.42 0.613

2 0.913 6.81 0.876 0.020 19.15 0.600

3 1.116 8.09 0.820 0.017 16.43 0.736

4 0.963 7.45 0.797 0.018 18.26 0.657

5 1.063 7.83 0.828 0.022 20.79 0.564

Average 1.069 7.93 0.819 0.020 19.41 0.634
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further improve the regression prediction accuracy of shoot fresh

weight, images from multiple perspectives will be explored as input

for the regression model. In addition, it is necessary to develop an

automatic acquisition process of multi-view digital images of
Frontiers in Plant Science 09
seedlings in the rice seedling factory, and the method in this

study will be improved to adapt to the detection and non-

destructive growth monitoring of single rice seedlings in complex

backgrounds. Last but not least, the hybrid network is mainly
FIGURE 7

Estimation results of shoot height (SH) based on the RCNN model (A–E) shows the results in the five-fold cross-validation.
FIGURE 6

Estimation results of shoot fresh weight (SFW) based on RF model (A–E) shows the results in the five-fold cross-validation.
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composed of UNet and Resnet50, which can be easily deployed on

edge computing devices or mobile phones. This means that the

presented method is expected to be used for stationary automated

phenotyping equipment in plant factories, as well as handheld

mobile phenotyping equipment. When combined with mobile

devices or integrated with an edge computing platform into

vertical seedling factory facilities, this method has great

application potential.
5 Conclusion

Rapid acquisition of morphological traits of rice seedlings can

help to understand the growth status of rice seedlings, which is the

key basis for intelligently controlling the environment of industrial
Frontiers in Plant Science 10
seedlings and making lighting strategies. In this study, a semantic

segmentation and growth-related traits estimation method for rice

seedlings in a plant factory based on CNN and digital images was

proposed, which could facilitate rice seedling growth monitoring.

This method supports multiple intelligent terminals such as digital

cameras or mobile phones as image acquisition devices and does

not need to fix the image acquisition distance, so it is feasible in

practical applications. The method was experimentally verified on

the rice seedling dataset. The segmentation accuracy of rice seedling

achieved an OA of 0.997, an F1 accuracy of 0.95 and an IoU

accuracy of 0.91, and the estimated growth-related traits, such as

plant height and shoot fresh weight, were also in good agreement

with the measured values, with R2 values of plant height reaching

0.980 and NRMSE reaching 2.64%, R2 values of shoot fresh weight

reaching 0.717 and NRMSE reaching 17.23%. The experimental
TABLE 5 Regression error statistics of the RCNN method for growth-related traits.

Number of experiments
SH SFW

MAE(g)↓ NRMSE(%)↓ R2 ↑ MAE(g)↓ NRMSE(%)↓ R2 ↑

1 1.559 10.83 0.704 0.025 24.22 0.537

2 1.442 10.93 0.692 0.023 22.22 0.451

3 1.508 11.01 0.655 0.024 22.60 0.493

4 1.455 10.45 0.724 0.026 23.17 0.541

5 1.419 10.84 0.666 0.025 24.16 0.436

Average 1.477 10.81 0.688 0.025 23.27 0.492
frontier
FIGURE 8

Estimation results of shoot fresh weight (SFW) based on the RCNN model (A–E) shows the results in the five-fold cross-validation.
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results showed that the proposed method can accurately estimate

the growth-related traits of rice seedlings using low-cost and easily

accessible RGB digital images.

It can be concluded that the proposed method is a reliable

estimation tool for growth-related traits at seedling stage of rice,

which has good application potential in seedling growth monitoring.

The accurate regression of growth-related traits can further provide

support for scientific planting management and selection of varieties at

seedling stage. In addition, because the proposed method is based on

the common morphological characteristics of crops at seedling stage, it

is promising to be used to realize the estimation of growth-related traits

of other crops at seedling stage.
Frontiers in Plant Science 11
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128 0.644 5.36 0.928 0.024 21.04 0.621

256 0.733 5.49 0.925 0.024 21.21 0.615
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TABLE 8 Regression error statistics of the proposed method for different C2 settings.

Parameter setting SH SFW

C2 MAE(g)↓ NRMSE(%)↓ R2 ↑ MAE(g)↓ NRMSE(%)↓ R2 ↑

32 0.525 4.00 0.953 0.020 18.75 0.650

64 0.338 2.64 0.980 0.018 17.23 0.717

128 0.431 3.15 0.975 0.024 21.21 0.614

256 0.346 2.76 0.981 0.022 21.11 0.618
TABLE 6 An overview of existing image-based methods for plant growth traits estimation.

Ref. Plants Input data
types

Methods Descriptions

(Chen et al.,
2016)

Lettuce RGB Image segmentation
+ Linear regression

Fresh weight regression by geometric features extracted from a stereo-vision system.

(Zhang et al.,
2020)

Lettuce RGB CNN regression Multi-objective regression (Fresh weight, dry weight and area) by a five-layer CNN model.

(Lin et al.,
2022)

Lettuce RGB-D CNN segmentation +
CNN regression

Fresh weight regression by a ResNet34 model, fusing RGB-D features and geometric
features extracted from segmented images.

(Buxbaum
et al., 2022)

Lettuce RGB-D CNN regression Fresh weight regression by a ResNet50 model, fusing RGB-D image features

(Ubbens and
Stavness, 2017)

Arabidopsis
thaliana

RGB CNN regression Age regression by a five-layer CNN model

(Quan et al.,
2021)

Weed RGB-D CNN regression Fresh weight regression by a DenseNet201 model, fusing RGB-D image features

This work Rice
seedling

RGB from
different
sensors

CNN segmentation +
CNN regression

Multi-objective regression (Fresh weight and height) by a hybrid CNN framework (UNet +
ResNet50), fusing RGB features, segmented images and geometric elements.
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