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Genome-wide association
mapping of genomic regions
associated with drought stress
tolerance at seedling and
reproductive stages in
bread wheat
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Sandeep Sharma1*, Vinod Kumar Mishra1*

and Arun Kumar Joshi3,4

1Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu
University, Varanasi, India, 2Department of Plant Breeding and Genetics, Punjab Agricultural University,
Ludhiana, Punjab, India, 3Borlaug Institute of South Asia (BISA), NASC Complex, DPS Marg, New
Delhi, India, 4CIMMYT, NASC Complex, DPS Marg, New Delhi, India
Understanding the genetic architecture of drought stress tolerance in bread

wheat at seedling and reproductive stages is crucial for developing drought-

tolerant varieties. In the present study, 192 diverse wheat genotypes, a subset

from the Wheat Associated Mapping Initiative (WAMI) panel, were evaluated at

the seedling stage in a hydroponics system for chlorophyll content (CL), shoot

length (SLT), shoot weight (SWT), root length (RLT), and root weight (RWT) under

both drought and optimum conditions. Following that, a genome-wide

association study (GWAS) was carried out using the phenotypic data recorded

during the hydroponics experiment as well as data available from previously

conducted multi-location field trials under optimal and drought stress

conditions. The panel had previously been genotyped using the Infinium

iSelect 90K SNP array with 26,814 polymorphic markers. Using single as well as

multi-locus models, GWAS identified 94 significant marker-trait associations

(MTAs) or SNPs associated with traits recorded at the seedling stage and 451

for traits recorded at the reproductive stage. The significant SNPs included

several novel, significant, and promising MTAs for different traits. The average

LD decay distance for the whole genome was approximately 0.48 Mbp, ranging

from 0.07 Mbp (chromosome 6D) to 4.14 Mbp (chromosome 2A). Furthermore,

several promising SNPs revealed significant differences among haplotypes for

traits such as RLT, RWT, SLT, SWT, and GY under drought stress. Functional

annotation and in silico expression analysis revealed important putative

candidate genes underlying the identified stable genomic regions such as

protein kinases, O-methyltransferases, GroES-like superfamily proteins, NAD-

dependent dehydratases, etc. The findings of the present study may be useful for

improving yield potential, and stability under drought stress conditions.
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Introduction

Drought stress is defined as a lack of water that causes dramatic

morphological, physiological, biochemical, and molecular changes

in plants (Sallam et al., 2019) that restrict plant growth,

development, and production. The global warming and climate

change are expected to increase the frequency of droughts, resulting

in reduced crop production (Sallam et al., 2019). Wheat (Triticum

aestivum L.) is an important staple food crop that supplies more

protein (approximately 23%) than all animal sources and accounts

for more than 20% of human calorific intake (http://www.fao.org/

faostat/en/#data/QC; Pal et al., 2022). In the past 50 years, global

wheat production increased from 343 million tonnes in 1972 to 770

million tonnes in 2021 (https://knoema.com/atlas/World/topics/

Agriculture/Crops-Production-Quantity-tonnes/Wheat-

production). During the previous century, there was annual

progress of 0.3% to 1.0% in the genetic improvement of wheat’s

grain yield (Graybosch and Peterson, 2010; Pal et al., 2022).

Nevertheless, it has decreased recently, largely as a result of the

limited genetic diversity in the breeding populations, climate

change associated abiotic and biotic stresses (Tanin et al., 2022),

and lack of novel breeding techniques in many programs. Notably,

with the unusual constraints posed by climate change, there is a

need to increase wheat yield to feed the growing human population.

Wheat crop is sensitive to heat and drought stresses (Li et al.,

2011), particularly during the flowering and grain development

stages and both yield and grain quality gets impacted (Sallam et al.,

2018). According to an estimate, drought and heat stress accounted

for 40% of annual production variability in major wheat producing

countries (Zampieri et al., 2017). Several studies have demonstrated

drought to be a potential threat to wheat production in a populous

country like India (Joshi et al., 2007), South Asia and other similar

global ecologies (Singh et al., 2007). Wheat demand is expected to

increase by 60% by 2050, but production may decrease by 29% due

to climate change-induced environmental stresses (Manickavelu

et al., 2012; Kulkarni et al., 2017). These forecasts suggest that

understanding wheat adaptation to drought and developing

drought-tolerant varieties is crucial for maintaining and

increasing global wheat production.

Under drought stress, wheat plants have a restricted ability to

absorb nutrients and have low photosynthetic efficiency (Praba

et al., 2009). It can also decrease organ size (leaf, spikes, etc.) and

growth period of various developmental stages (tillering, booting,

heading, anthesis, grain filling, maturity, etc.) (Hossain and

Teixeira, 2013; Ihsan et al., 2016). Sensitivity of wheat to drought

stress results in interrupted metabolic processes and a shorter life

cycle which ultimately reduces plant biomass and grain yield (Itam

et al., 2020). Drought tolerance is a complex quantitative trait

governed by many genes, some of which have minor effects while

others have major effects (Kumar et al., 2012). Further, it has low

heritability owing to its polygenic inheritance and significant

genotype by environment interaction (Sukumaran et al., 2018; El

Gataa et al., 2022; Rabieyan et al., 2022). Drought tolerance can be

improved genetically by identifying sources of stress-tolerant traits

and/or genotypes, and introgressing and mobilizing the genomic

regions controlling these traits into locally adapted cultivars
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(Shelake et al., 2022). The difficulty in utilizing this approach in

breeding programs is the absence of proper knowledge about the

most relevant traits for different stress scenarios and their detection

in a quick, efficient and cost-effective manner. Our knowledge of the

genetic underpinnings and molecular basis of complex traits like

drought tolerance has increased as a result of recent developments

in high-throughput genotyping (Saini et al., 2022) and phenotyping

techniques (Gill T. et al., 2022; Xiao et al., 2022).

Bi-parental mapping is an efficient method for dissecting the

genetic architecture of different complex traits in wheat (Singh et al.,

2022; http://www.wheatqtldb.net/). However, it generally produces

low-resolution maps and mostly uses few polymorphic markers

with less genome coverage, which results in a non-significant

association of the identified markers with the target traits,

creating ambiguity in selecting for marker assisted selection

programs. As a result, current genomic mapping attempts are

shifting from conventional bi-parental mapping to linkage

disequilibrium (LD) based mapping including GWAS which

offers two unique advantages- (i) it eliminates the costs and time

associated with population development, and (ii) it effectively

utilizes the numerous historical crossover events that occurred in

the diverse association panel used, and as a result, provides high

mapping resolution (Saini et al., 2022; Xiao et al., 2022).

Several earlier GWAS studies have detected the genomic regions

associated with traits contributing to drought stress tolerance in

wheat either at seedling (e.g., Maulana et al., 2020; Danakumara

et al., 2021; Sallam et al., 2022) or at reproductive stage (e.g., Gataa

et al., 2021; El Gataa et al., 2022), however, only a few studies

identified genomic regions for traits recorded on both seedlings and

reproductive stages (e.g., Rufo et al., 2020). The establishment of

seedlings is believed to have significant effects on crop stand and

therefore crop yield. It has been suggested that early vegetative

stages, such as the seedling stage of wheat, have greater stress

avoidance and resilience (Sallam et al., 2018). Early generation

screening and selection using hydroponics was found successful

because it is feasible and practical to perform mass phenotyping and

high-throughput characterization of shoot and root related traits

during the seedling stage (Ayalew et al., 2015; Islam et al., 2015).

These findings necessitated further research into the relationship

between drought tolerance performances at various stages of wheat

development. Further, as mentioned above, there is a paucity of

information on the common genetic determinants conferring

tolerance to drought at both seedlings and reproductive stages.

Given this, the current study aimed to identify and compare

significant genomic regions that were responsible for drought

tolerance at the seedling and adult plant stages, which could be

used in wheat breeding to increase resilience to drought stress.

The objective of the study was to identify the significant marker-

trait associations (MTAs) for drought tolerance at seedling (in

hydroponics: PEG 8000 induced drought) and at the reproductive

stage (in field conditions) and to find important haplotypes

associated with drought stress tolerance at the both developmental

stages. GWAS was performed for different seedling traits, including

chlorophyll content (CL), shoot length (SLT), root length (RLT),

shoot weight (SWT) and root weight (RWT) and several adult plant

traits, such as days to heading (DTH), days to maturity (DTM), plant
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height (PHT), thousand kernel weight (TKW), grain yield (GY),

normalized difference vegetative indices at heading (NDVIH), grain

filling (NDVIGF), and maturity (NDVIM) stages, and canopy

temperature depression at heading (CTDH), grain filling (CTDGF)

and maturity (CTDM) stages recorded under both optimum and

drought stress conditions.
Materials and methods

Plant material

We evaluated 294 diverse wheat genotypes, a subset from the

Wheat Associated Mapping Initiative (WAMI) Panel under field

conditions. This WAMI panel was obtained from CIMMYT

international nurseries, which are distributed globally each year

(Lopes et al., 2015). The genotypes with similar heading dates

(within one week) were screened and a subset of 192 genotypes

was chosen for the subsequent experiments. The experiment was

carried out under hydroponics conditions to assess the responses of

genotypes to drought stress at seedling stage.
The layout of the experiments and
drought treatment

The genotypes were evaluated in a controlled hydroponic

system at the Department of Genetics and Plant Breeding,

Institute of Agricultural Sciences, Banaras Hindu University,

Varanasi, during the year 2020-21. The plants were grown in

half-strength Hoagland solution and the experiment was set up in

a completely randomized design (Hoagland and Arnon, 1950) (DC

and DI, 1950) (Hoagland and Arnon, 1950). Hoagland solution is a

hydroponic nutrient solution and one of the best nutrient

compounds for plant growth. Hoagland solution contains all of

the nutrients required for plant growth and is appropriate for the

growth of many different plant species. Seeds were initially sterilized

with sodium hypo chloride solution (1% for 5 min) and rinsed with

distilled water for times. The overnight soaked seeds were placed in

a petri plate lined with Whatman filter paper. Petri plates were

watered for three consecutive days to promote seed germination.

The germinated seeds were then put in sterile polystyrene tubes
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fitted with thermacol and holes, floated on three litres of half

strength Hoagland solution, and placed in rectangular plastic

trays with a four-litre capacity. The light intensity of 250µmolm-

2s-1 with 10/14hrs dark and light duration was maintained using

fluorescent tubes (Ayalew et al., 2015). Drought treatment was

imposed on 14 days old seedlings by dissolving 20% PEG-8000

(Poly Ethylene Glycol) in Hoagland solution. The treatment was

extended for seven days and then replaced with only Hoagland

solution, with readings taken after three days of stress recovery.

While under control conditions, seedlings were grown by replacing

the growing solution with only fresh Hoagland solution every week

for 24 days. The data was recorded on CL (using SPAD-502Plus,

Konica Minolta, Inc. made in Japan), SLT, RLT, SWT and RWT

under both control and stress conditions.

The data available on different morpho-physiological traits

recorded during field trials conducted at three locations in India

(Varanasi, Pune, and Jabalpur) during the cropping season 2021-22

was also considered for the current study. These morpho-

physiological traits included the following: DTH, DTM, PHT,

TKW, GY, NDVIH, NDVIGF, NDVIM, CTDH, CTDGF and

CTDM (the details on observations recorded and the phenotypic

data for the field experiments are provided in one of our earlier

study (Reddy et al., 2023).
Statistical analysis

Following the testing of the data for normal distribution, the

analysis of variance (ANOVA) was performed. All descriptive

statistics were calculated using Microsoft Excel 2016, and

ANOVAs were performed using Genstat 18th edition (32 bit).

Further, stress indices were estimated for all the traits at the

seedling stage. Stress indices and correlation was calculated using

OriginPro 2022 (https://www.originlab.com/). Details on different

stress indices calculated are provided in Table 1.
SNP genotyping and population structure

The WAMI panel was previously genotyped using a high-

density illumina 90K infinium SNP array which led to the

identification of a total of 26,814 polymorphic SNPs. The missing
TABLE 1 Details on different stress indices.

S. No. Stress indices Formula Reference

1. Drought resistance index (DI) (Ys×(Ys/Yp)/�Y s (Lan, 1998)

2. Geometric mean productivity (GMP) √(Ys × Yp) (Fernandez, 1992)

3. Mean productivity index (MPI) (Ys + Yp)/2 (Rosielle and Hamblin, 1981)

4. Relative drought index (RDI) (Ys/Yp)/(�Y s/�Y p) (Fischer and Maurer, 1978)

5. Stress tolerance index (STI) (Ys×Yp)/(�Y p)ˆ2 (Fernandez, 1992)

6. Stress index (SI) Ys/Yp (Bouslama and Schapaugh, 1984)
Where Ys and �Y s is the trait value and mean of the trait under drought treatment, respectively and Yp and �Y p is the value for the same trait and mean value under the control condition,
respectively.
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data points in the genotypic data file were imputed using LD-KNN

imputation algorithm available in TASSEL. Only 20,713 SNPs were

considered for the analysis out of the 26,814 SNPs that had physical

positions available from the Wheat URGI database (https://wheat-

urgi.versailles.inra.fr/) based on IWGSC ref seq v1.1.

Principal component analysis (PCA) of the imputed genotypic

data was then performed in R to examine population structure

using the Genomic Association and Prediction Integrated Tool

(GAPIT) version 3.0 (Wang and Zhang, 2021). Population structure

was also analyzed using STRUCTURE version 2.3.4, a bayesian

model-based clustering program that assumes an admixture model

(Pritchard et al., 2000) and utilized ten subgroups (K = 1-10), each

with five independent runs, with a burn-in period of 10,000

iterations followed by 10,000 Monte-Carlo iterations. To infer the

most likely number of subpopulations, an ad hoc statistic (DeltaK)

was used, which utilized the rate of alterations in the log probability

between runs utilizing successive K-values (Evanno et al., 2005)

with STRUCTURE HARVESTER (Earl and Bridgett, 2012). Then,

GWAS analysis was performed using the 20,713 high-quality

physically anchored SNPs and BLUE (best linear unbiased

estimates) values estimated using the data available from three

individual environments (Varanasi, Jabalpur, and Pune) for all the

traits (recorded under both optimum and drought stress

conditions). The BLUE values were computed utilizing META-R

which uses LME4 R-package for linear mixed model analysis (Bates

et al., 2015).
Linkage disequilibrium (LD) analysis

LD analysis was performed using TASSEL v5.0 software for the

whole genome and individual chromosomes by estimating r2 values

for all pairwise marker comparisons with a sliding window size of

50 SNPs. The LD decay over genetic distance was calculated by

fitting a nonlinear model with the modified Hill and Weir approach

(Hill and Weir, 1988), with the r2 threshold set at 0.2 and r2

equalling half the decay distance. Using R, the LD decay distance for

each chromosome and the whole genome was shown (R Core

Team, 2013).
Genome-wide association
mapping, assessment of the effects
of different alleles of MTAs on traits
and haplotype analysis

For GWAS analysis of each trait, two methods were used: Single

locus mixed linear model and multi-locus mixed model. The mixed

linear model (MLM) was used in the single-locus method to

account for population stratification (K-PC model) (Yu et al.,

2006), whereas the multi-locus mixed model employed the

Bayesian-information and Linkage-disequilibrium Iteratively

Nested Keyway (BLINK) and Fixed and random model

Circulating Probability Unification (FarmCPU) methods.

All three models (viz., MLM, BLINK, and FarmCPU) were

implemented in the R environment using the GAPIT version 3.0
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compensate for population structure, as determined by evaluation

of the scree plot and the DeltaK statistic obtained from

STRUCTURE analysis (Wang and Zhang, 2021). The Bonferroni-

corrected threshold of P<0.1 was calculated as -log10(P) = 5.61, but

it turns out that this threshold is too strict because it takes into

account all SNPs in the dataset instead of independent tests.

Therefore, for the present study, we employed an exploratory

threshold [-log10(P) = 3.00] based on independent tests to

consider any SNP as significant in individual environments, as

reported in some previous studies (Halder et al., 2019; Pang et al.,

2020). Nonetheless, only those MTAs that exceeded this threshold

and were detected for the same trait in at least two locations were

reported as stable MTAs and those controlling at least two different

traits were termed as pleiotropic MTAs.

Alleles of some significant SNPs identified post-GWAS analysis

were utilized to evaluate their effects on the traits of interest. For

each selected stable MTA, trait values for two groups of alleles

(favourable versus unfavourable) were analyzed and visualized

using a R package ‘ggstatsplot’ (Patil, 2021) which utilizes its in

built parameters to test the statistical significance of the effect sizes.

In addition, some significant and stable SNPs for selected traits were

utilized for haplotype analysis. Haploview version 4.2. software

(Barrett et al., 2005) was used to generate and display the LD-based

haplotypes for a few selected regions. The wheat genotypes from the

WAMI panel were grouped based on detected haplotypes, and trait

data for each haplotype was subjected to analysis using the same R

package ‘ggstatsplot’ (Patil, 2021).
Identification of candidate genes and
expression analysis

The gene models available in the overlapping region and/or

within 1 Mb upstream and downstream of some of the selected

stable MTAs were extracted using BioMart tool of EnsemblPlants

database (http://plants.ensembl.org/index.html; Bolser et al., 2017).

Based on the domains in the corresponding protein sequences,

which were obtained using the InterPro database (https://

www.ebi.ac.uk/interpro/; Hunter et al., 2009), functional

annotations of the genes were performed.

In silico gene expression analysis was performed utilizing

expVIP-powered wheat expression browser (http://www.wheat-

expression.com; Ramıŕez-González et al., 2018). For this purpose,

the appropriate expression datasets containing expression data

related to drought stress were utilized (Liu et al., 2015; http://

www.wheat-expression.com). The first RNA-seq dataset consisted

of data on differential gene expression in a drought and heat-

tolerant wheat cv. TAM107 was grown under drought and drought

+ heat stress conditions, with leaf samples collected separately at 1

and 6 hours after treatments (Liu et al., 2015). Expression data from

the plants grown in normal growth conditions were used as the

control (Liu et al., 2015). Another RNA-seq dataset (available at

http://www.wheat-expression.com) consisted of differential

expression of genes available from the plants treated with PEG,

with leaf samples collected separately at 2 and 12 h after treatment.
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The IDs of different genes available from the significant

genomic regions associated with the target traits were uploaded as

input to the expVIP-powered wheat expression browser and

relevant datasets (as discussed above) were chosen for the

expression analysis. Following analysis, expression data for each

gene recorded under stress and control conditions [available as

TPM (transcripts per million) values] were downloaded and further

used to calculate the fold change in gene expression by dividing the

TPM values obtained under drought stress by the TPM values

obtained under control conditions. Only genes with a fold change

(FC ≥ 2 or FC ≤− 2) compared to the control were considered

differentially expressed. ClustVis (https://biit.cs.ut.ee/clustvis/;

Metsalu and Vilo, 2015) was used to create heat maps of the

expression patterns of the genes. The role of the identified genes

in the regulation of different drought stress responsive traits was

also ascertained using the published literature.
Results

Phenotypic evaluation

Analysis of variance (ANOVA) reported highly significant

differences among the wheat genotypes for all the studied seedling

traits under drought stress (Table 2). The percent decline under

drought was maximum for SW (54.7%) followed by RW (46.7%),

RL (45.6%), SL (33.3%) and CHL (20.4%) (Table 3 and

Supplementary Figure 1). Heritability values for different traits

r ang ed f r om 0 . 5 (CL (C ) ) t o 0 . 7 3 (RLT (C ) ) unde r

hydroponics (Table 3).
Correlation study of stress tolerance index
with different seedling traits

Different patterns of correlation were observed between the traits

(recorded under drought stress and control conditions) and stress

indices. For instance, chlorophyll SPAD readings(CL) recorded under

water stress showed positive and significant correlations with all

stress indices, including DI (r2 = 0.96), GMP (r2 = 0.90), MPI

(r2 = 0.85), RDI (r2 = 0.83), STI (r2 = 0.90), and YSI (r2 = 0.83),

whereas it showed positive correlations with some indices, including

DI (r2 = 0.02), GMP (r2 = 0.64), MPI (r2 = 0.72), and STI (r2 = 0.64),

and negative correlations with others such as RDI (r2=-0.31), YSI

(r2=-0.31)] under control conditions (Figures 1A–E). Furthermore,

these stress indices having a high significant correlation for all the
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studied traits under water stress aided in the categorization of

genotypes as drought-tolerant or susceptible. The details on

drought-tolerant and susceptible genotypes are presented in the

Supplementary Table 1.
Comparison of genotypes classified based
on stress tolerance indices at seedling and
adult plant stage

Under both hydroponic and field (BHU, Varanasi) conditions,

six genotypes were found to be drought-tolerant, while three were

reported to be drought susceptible. In contrast, five genotypes were

found to be tolerant under hydroponic conditions but susceptible in

the field, while six genotypes were susceptible under hydroponic

conditions but tolerant in the field (BHU, Varanasi) (Supplementary

Figure 2A). Similarly, eight genotypes were found to be drought-

tolerant, while two appeared drought susceptible under both

hydroponic and field conditions (ARI, Pune). Six genotypes were

found to be tolerant under hydroponic conditions but susceptible

under ARI, Pune field conditions. Likewise, five were susceptible

under hydroponic conditions but tolerant under field conditions

(ARI, Pune) (Supplementary Figure 2B). Under both hydroponic and

field conditions, seven genotypes were found to be tolerant, while

three genotypes were susceptible (BISA, Jabalpur). Three genotypes

were found to be tolerant under hydroponic conditions but

susceptible in the BISA, Jabalpur field, while seven genotypes were

susceptible under hydroponic conditions but tolerant in the field

(BISA, Jabalpur) (Supplementary Figure 2C).

Interestingly, four genotypes were found to be tolerant in

hydroponic as well as all three field experiments. However, no

genotype demonstrated consistent susceptibility to drought in

hydroponic and the three field experiments. In contrast, two

genotypes were found to be tolerant under hydroponic conditions

but susceptible under all three field conditions, and four genotypes

were susceptible under hydroponic conditions but tolerant under all

three field conditions (Supplementary Figure 2D).
Genotypic analysis, linkage disequilibrium
(LD) and population structure

Among 20,713 high-quality physically anchored SNPs, the A

and B sub-genomes had six times the number of SNPs as the D sub-

genome, with the B sub-genome having the most (10,120; 48.85%)

and the D sub-genome having the fewest (2,736; 13.2%). The
TABLE 2 ANOVA for the seedling traits recorded under water stress conditions in hydroponics experiment.

Sources of variation Df MS_CL MS_SLT MS_SWT MS_RLT MS_RWT

Genotype 191 32.249** 6.272** 0.035** 11.787** 0.009**

Error 192 5.833** 1.303** 0.006** 1.975** 0.002**

Total 383
fr
CL chlorophyll length, SLT shoot length, SWT shoot weight, RLT root length, RWT root weight. **P ≤ 0.01.
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highest number of SNPs (1,841) were found on chromosome 5B,

and the lowest number were found on chromosome 4D (149 SNPs)

(Figure 2). Principal component analysis revealed significant

genotype admixture, with the first two principal components

accounting for most of the variance. The DeltaK statistic from the

STRUCTURE analysis revealed a single peak at K = 2, indicating the

presence of two subgroups in the panel (Figure 3A). The LD decay

distance for individual chromosomes varied from 0.07 Mb (6D) to

4.14 Mb (2A). Whereas, for the whole genome, the average LD

decay distance was around 0.48 Mbp (Figure 3B).
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Marker trait associations identified under
hydroponic condition

GWAS using phenotypic data from seedlings grown in a

hydroponic condition identified 95 MTAs (with MLM; including

57 MTAs for traits measured under control condition and 38 for

traits recorded under stress condition), 212 (with FarmCPU;

including 108 for traits measured under control condition and

104 for traits recorded under stress condition), and 212 (with

BLINK; including 108 for traits measured under control
B C

D E

A

FIGURE 1

Correlation between stress indices for different traits phenotyped under hydroponics conditions: (A) chlorophyll SPAD readings (CL), (B) shoot length
(SLT), (C) root length (RLT), (D) shoot weight (SWT) and (E) root weight (RWT). C, control; S, stress; DI, drought tolerance index; GMP, geometric
mean productivity; MPI, mean productivity index; RDI, relative drought index; STI, stress tolerance index; and YSI, yield stability index. *P ≤ 0.05.
TABLE 3 Descriptive statistics and broad-sense heritability estimates for seedling traits (hydroponic experiment).

Trait Unit Mean Min. Max. CD@95% SD CV Heritability %PD

CL(C) SPAD units 36.02 24.73 46.55 3.91 2.79 7.74 0.5 21.1

CL(S) SPAD units 28.41 17 39.5 4.85 4.37 15.38 0.69

SLT(C) cm 16.24 11.5 22.75 2.12 1.66 10.22 0.58 32.8

SLT(S) cm 10.92 6.13 17 2.29 1.94 17.76 0.64

RLT(C) cm 11.3 4.75 23.2 4.56 4.45 39.38 0.73 46.7

RLT(S) cm 6.02 2 15 2.77 2.62 43.52 0.72

SWT(C) g 0.86 0.14 2.64 0.41 0.34 39.53 0.66 62.8

SWT(S) g 0.32 0.06 0.88 0.15 0.14 43.75 0.7

RWT(C) g 0.32 0.03 0.99 0.16 0.15 46.87 0.71 50

RWT(S) g 0.16 0.02 0.43 0.09 0.08 50 0.63
frontie
CL, chlorophyll content; SLT, shoot length; RLT, root length; SWT, shoot weight; RWT, root weight; (C) under control and (S) under drought.
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condition and 104 for traits recorded under stress condition) based

on the exploratory threshold of -log10(P) = 3.0 (Supplementary

Figures 3A–D, Supplementary Table 2). Among these, as many as

94 MTAs were identified using all the three models (Supplementary

Table 2). These MTAs involved 55 MTAs (located on chromosomes

1A, 3A, 3B, 4A, 4B, 5B, 5D, 7A, 7B, 7D) identified under control

condition which included the following- 4 MTA for RLT, 8 for CL, 9

for RWT, 16 for SWT, and 18 for SLT and 38 MTAs (located on

chromosomes 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 5D, 7A) identified

under stress condition which included the following- 1 MTA for

CL, 2 for SLT, 8 for RLT, 12 for RWT, and 15 for SWT

traits (Table 4).

GWAS using MLM model identified three SNPs, including

BS00021943_51 associated with RLT, Kukri_c12563_52 and

wsnp_Ex_c12812_20324622 associated with SLT under both

control and stress conditions. It also detected four pleiotropic

SNPs including (i) BS00021943_51 associated with RLT (C), RLT

(S), and SLT (C), (ii) BS00022072_51 associated with RLT (S) and

SLT (C), (iii) Excalibur_c46878_419 associated with RWT (C) and

SWT (C), and (iv) wsnp_Ex_c12812_20324622 associated with RLT

(C), SLT (C), and SLT (S) (Table 5). Similarly, GWAS using
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FarmCPU and BLINK models identified four SNPs, including

BS00021943_51and BS00022072_51 associated with RLT,

Kukri_c12563_52 and wsnp_Ex_c12812_20324622 associated

with SLT under both control and stress condit ions

(Supplementary Table 2). It also detected six pleiotropic SNPs

located on chromosomes 3B, 4A, 4B, and 7A, which involved the

following- BS00021943_51 and BS00022072_51 associated with

RLT (C), RLT (S), SLT (C), Excalibur_c46878_419 associated

with RWT (C) and SWT (C), Kukri_c19696_60 associated with

RLT (C) and RWT (C), RAC875_c1817_950 associated with RLT

(S) and SLT (S), and wsnp_Ex_c12812_20324622 associated with

SLT (C), SLT (S), and RLT (C) (Supplementary Table 2).
Marker trait associations identified under
field conditions

GWAS using phenotypic data collected from the field

experiments conducted at three different locations during 2021-22

identified several significant MTAs based on the exploratory

threshold of -log10(P) = 3.0. Among these, 585 MTAs (146 MTAs

with MLM, 209 with FarmCPU, and 230 with BLINK) were

detected using BHU field data (Supplementary Table 3), 879

MTAs (286 MTAs with MLM, 318 with FarmCPU, and 275 with

BLINK) using BISA field data (Supplementary Table 4), and 1075

MTAs (283 MTAs with MLM, 418 with FarmCPU, and 374 with

BLINK) using the ARI field data (Supplementary Table 5 and

Supplementary Figures 4A–F). Among these MTAs, 451 MTAs

were identified at different locations using all three models; trait-

wise distribution of these MTAs is as follows- 48 for CTDGF(C), 20

for CTDGF(S), 15 for CTDH(C), 5 for CTDH(S), 7 for CTDM(C),

17 for CTDM(S), 35 for DH(C), 5 for DH(S), 24 for DM(C), 40 for

DM(S), 37 for GY(C), 24 for GY(S), 52 for NDVIGF(C), 20 for

NDVIGF(S), 13 for NDVIH(C), 7 for NDVIH(S), 19 for NDVIM

(C), 8 for NDVIM(S), 34 for PH(C), 32 for PH(S), 21 for TKW(C),

and 7 for TKW(S). Among these, 168 MTAs were associated with

different traits recorded under stress conditions (Supplementary
BA

FIGURE 3

(A) Evanno plot of Delta-K statistic revealing the number of sub-populations in the panel, (B) Linkage disequilibrium (LD) in the panel for the whole
genome.
FIGURE 2

Distribution of the SNPs on different wheat chromosomes. Low-to-
high SNP densities are represented by green to red.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1166439
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Reddy et al. 10.3389/fpls.2023.1166439
TABLE 4 Details on significant MTAs associated with seedling traits identified in hydroponics experiment conducted under water deficit conditions
(detected with all three models).

Trait Significant SNP Chromosome Position -log10 (p) SNP hits

CL (S) Tdurum_contig49841_618 5B 38166746 3.80-4.96 exon

RLT (S) Excalibur_c12980_2621 2A 7545148 3.08-3.27 exon

RLT (S) RAC875_c57889_55 2A 10587192 3.38-3.62 exon

RLT (S) Excalibur_c21051_515 3A 624831881 3.50-3.66 exon

RLT (S) BS00021943_51 3B 69352897 3.87-4.03 exon

RLT (S) BS00022072_51 3B 69359638 3.29-3.37 exon

RLT (S) Ku_c61_917 4A 734000492 3.33-3.60 exon

RLT (S) RAC875_c1817_950 7A 316021164 3.45-3.67 exon

RLT (S) BobWhite_c1215_240 7A 664471856 3.02-3.08 exon

RWT (S) wsnp_Ex_c34303_42642389 2B 777514133 3.49-3.94 exon

RWT (S) Excalibur_c18318_701 4B 12528874 3.04-3.39 exon

RWT (S) BobWhite_c162_145 4B 13977166 3.37-3.78 exon

RWT (S) Excalibur_c8030_2139 5A 567526679 4.62-3.36 exon

RWT (S) Tdurum_contig60421_74 5A 567526989 4.40-5.07 exon

RWT (S) RAC875_rep_c107228_92 5A 567691316 4.42-5.10 exon

RWT (S) Kukri_c38748_174 5A 569452729 3.27-3.67 exon

RWT (S) BS00109396_51 5A 569456404 3.26-3.67 exon

RWT (S) Jagger_c8122_139 5A 569463780 3.47-3.91 exon

RWT (S) BS00022644_51 5A 569464087 3.32-3.72 exon

RWT (S) BS00002799_51 5A 569469674 3.41-3.92 exon

RWT (S) Kukri_c96249_58 5D 569285729 3.32-3.73 exon

SLT (S) wsnp_Ex_c12812_20324622 4A 605731006 3.13-3.37 exon

SLT (S) Kukri_c12563_52 4A 605732894 3.87-4.23 exon

SWT (S) Excalibur_c42248_663 2B 6715740 3.09-3.28 exon

SWT (S) Excalibur_c1140_1044 2B 584250260 3.38-3.63 exon

SWT (S) IAAV3067 2B 699173434 3.06-3.27 exon

SWT (S) wsnp_Ex_c942_1806632 2B 700207481 3.47-3.73 exon

SWT (S) RAC875_c10132_462 2B 700208672 3.13-3.36 exon

SWT (S) wsnp_Ex_c9025_15039930 2B 700208672 3.48-3.73 exon

SWT (S) Ku_c12447_2002 2B 703976259 4.28-4.68 exon

SWT (S) IACX5941 2B 712600539 2.99-3.26 exon

SWT (S) Excalibur_c80601_278 2B 713676010 3.95-4.32 exon

SWT (S) Excalibur_c27629_473 2B 714132936 3.87-4.22 exon

SWT (S) IAAV3100 2B 715028611 3.23-3.48 exon

SWT (S) wsnp_Ex_c28627_37743031 2B 715029293 3.17-3.41 exon

SWT (S) wsnp_Ex_c24135_33382521 2B 715030098 3.23-3.48 exon

SWT (S) Ra_c13298_783 2B 732344504 3.24-3.58 exon

SWT (S) BS00022805_51 2B 745719282 3.12-3.27 exon
F
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Table 6). Fourteen of the 451 MTAs were found to be associated

with the same traits under both control and stress conditions

(Supplementary Tables 3-5). For instance, Excalibur_c34189_122,

wsnp_Ex_c6142_10746442, and wsnp_Ra_c2063_4012957 (all

located on 7A) were associated with GY under both optimum

and stress condit ions, whereas BobWhite_c5654_231,

BS00110124_51, BS00110642_51 (all located on 7D) were

associated with PHT under both optimum and stress conditions

at different locations (Supplementary Tables 3-5).

Furthermore, the 451MTAs detected using all three models also

included as many as 29 MTAs, each associated with at least two

traits, either at the same or different locations (Table 6). These 29

MTAs were located on chromosomes 1B, 1D, 2D, 3A, 3D, 4B, 4D,

5A, 6B, 7A and 7B. For instance, BS00022299_51 (5A) was

associated with NDVIGF(S), NDVIM(S), NDVIGF(C), and

NDVIM(C); Excalibur_c1205_188 (7B) was associated with DH

(C), DM(C), and CTDH(C); Excalibur_rep_c106790_155 (4D) was

associated with DH(C), PH (S), and DM(C); IAAV4799 (5A) was

associated with NDVIM(S), NDVIM(C), CTDGF(S), and CTDM

(S); wsnp_Ex_c12223_19533198 (2D) was associated with NDVIH

(C) , NDVIGF(C) , NDVIM(C) , and NDVIH(S ) and

wsnp_Ex_c12850_20377830 (3A) was associated with PH(C), GY

(C), and DM(S).
Evaluation of allelic effects for some
selected SNPs

Among the MTAs available for various seedling traits recorded

under stress conditions, two highly significant MTAs (detected with

all three models) for each of the following traits-RLT

( B S 0 0 0 2 1 9 4 3 _ 5 1 a n d RAC8 7 5 _ c 1 8 1 7 _ 9 5 0 ) , RWT

(RAC875_rep_c107228_92 and Tdurum_contig60421_74), SLT

(Kukri_c12563_52 and wsnp_Ex_c12812_20324622), and SWT

(Excalibur_c80601_278 and Ku_c12447_2002), and one highly

significant MTA (Tdurum_contig49841_618) associated with CL

(detected with two models) were selected to evaluate the effects

of their alleles on respective traits under stress conditions

(Supplementary Table 7). The results revealed significant

differences between the allelic effects for all the studied traits. For

instance, significant differences (P= 2.72e-04) between the alleles of

Tdurum_contig49841_618 associated with CL were observed,

where favorable allele improved average CL by the value of 4.94

(Supplementary Figure 5A). Similarly, significant differences (P=

4.15e-04) between the alleles of BS00021943_51 associated with

RLT were observed, where favorable allele improved average RLT
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by 2.71 cm (Supplementary Figure 5B). In the same way, significant

differences (P= 7.98e-04 and 6.26e-04) between the alleles of

RAC875_rep_c107228_92 and Tdurum_contig60421_74

associated with RWT were observed, where favorable alleles

improved average RWT by the values of 0.06 and 0.05 (g),

respectively (Supplementary Figures 5C, D).

Similarly, among the MTAs available for some traits recorded

under stress conditions in different field experiments, some stable

and significant SNPs including wsnp_Ex_c48789_53586502,

Tdurum_contig42858_1256, Tdurum_contig42858_1352,

w s n p _E x _ c 4 8 7 8 9 _ 5 3 5 8 6 4 0 6 , RAC8 7 5 _ c 2 9 4 5 5 _ 7 9 ,

tplb0035a03_368, RAC875_c8721_212, and Ra_c11721_631

associated with DM(S); Kukri_c6274_1283, BS00009565_51,

wsnp_Ex_c9618_15912364, and RAC875_c5834_235 associated

with PH(S); Excalibur_c3286_103, wsnp_Ex_c6142_10746442,

wsnp_Ra_c7112_12318340, wsnp_Ex_c53387_56641291,

BobWhite_c25527_313, wsnp_Ra_c2063_4012957, and

Excalibur_c34189_122 associated with GY(S) were selected to

evaluate the effects of their alleles on respective traits (combined

BLUEs) under stress conditions (Supplementary Table 7). The

analysis revealed significant differences between the allelic effects

of different SNPs for all the studied traits. For instance, significant

differences (P= 2.08E-03) between the alleles of RAC875_c8721_212

associated with DM(S) were observed, where one allele reduced the

average DM(S) by 2.53 days (Supplementary Figure 6A). Similarly,

significant differences (6.45E-03 and 8.41E-03) were reported

between the alleles of Kukri_c6274_1283 and BS00009565_51

associated with PH(S), with favorable alleles reducing the average

PH(S) by 2.32 and 2.49 cm, respectively. In the same way,

significant differences (with P value ranging from 2.69E-04 to

7.17E-04) between the alleles of Excalibur_c3286_103,

wsnp_Ex_c6142_10746442, wsnp_Ra_c7112_12318340

(Supplementary Figures 6B–D), wsnp_Ex_c53387_56641291,

BobWhite_c25527_313, wsnp_Ra_c2063_4012957, and

Excalibur_c34189_122 (Supplementary Figures 7A–D) associated

with GY(S) were observed, where favorable alleles improved

average GY(S) by the values ranging from 41.83 to 54.56 g/plot.
Haplotypes associated with different
seedling traits

Some MTAs (as selected above; Supplementary Table 7)

associated with different seedling traits (1 MTA for CL and 2

MTAs for RLT, RWT, SLT, and SWT each) under stress

condition were utilized for the haplotype analysis. Based on the
TABLE 5 Details on pleiotropic MTAs identified in hydroponics experiment (detected with all three models).

Trait Significant SNP Chromosome Position -log10(P)

RLT(C), RLT(S), SLT(C) BS00021943_51 3B 69352897 3.08-4.23

RLT(S), SLT(C) BS00022072_51 3B 69359638 3.29-3.84

RWT(C), SWT(C) Excalibur_c46878_419 4B 1782490 3.03-3.59

RLT(C), SLT(S), SLT(C) wsnp_Ex_c12812_20324622 4A 605731006 3.05-3.94
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allelic distribution of the SNPs in the WAMI panel, for RLT under

hydroponic stress conditions, we identified three haplotypes (Hap1,

Hap2, and Hap3; involving a total of 4 SNPs) with a frequency of

0.92, 0.05, and 0.02, respectively. Only first two haplotypes were

compared for variations in trait means becauseHap3 had a very low

frequency. The analysis revealed significant differences (P = 6.26e–

04) between two haplotypes (Hap1 andHap2) for RLT, where Hap2

(8.31g) had higher average RLT compared to Hap1(5.83g)

(Figures 4A, B). Similarly, we identified three haplotypes (Hap1,

Hap2, and Hap3; involving a total of 3 SNPs) for RWT with a

frequency of 0.13, 0.84, and 0.01, respectively. Similarly, only first

two haplotypes were compared for variations in trait means because

Hap3 had a very low frequency. The analysis revealed significant
Frontiers in Plant Science 10
differences (P = 7.26e–04) between two haplotypes (Hap1 and

Hap2) for RWT, where Hap1 (0.21g) had a higher average RWT

compared to Hap2(0.15g) (Figures 4C, D). In the same way, we

identified three haplotypes (Hap1, Hap2, and Hap3; involving a

total of 5 SNPs) for SWT with a frequency of 0.04, 0.63, and 0.29,

respectively. The analysis revealed significant differences (P = 8.65e-

03) between the Hap2 and Hap3 for SWT, where Hap2 (0.36g) had

higher average SWT compared to Hap3(0.29g) (Figures 4E, F).

There was no significant variation among the SLT haplotypes for

the trait means, whereas, no haplotype was detected for the SNPs

associated with CL.

Similarly, seven stable and significant SNPs (Excalibur_c3286_103,

wsnp_Ex_c6142_10746442, wsnp_Ra_c7112_12318340,
TABLE 6 Details on pleiotropic MTAs identified in field experiments (detected with all 3 models).

Trait Location Significant SNP Chromosome Position -log10(P)

NDVIGF (C), NDVIM(C) Pune BobWhite_c28409_271 6B 635175572 3.25-4.32

NDVIGF (C), NDVIM(C) Pune BobWhite_c3194_125 6B 637024384 3.11-4.03

DM(C), CTDM(C) Jabalpur BobWhite_c34030_310 4B 547332570 3.01-3.45

NDVIGF(S), NDVIM(S), NDVIGF(C), NDVIM(C) Jabalpur BS00022299_51 5A 679740028 3.37-7.79

NDVIGF(S), NDVIH(S) Jabalpur BS00067117_51 3D 596675272 3.03-3.13

NDVIH(C), NDVIM(C) Jabalpur BS00071424_51 7A 636898819 3.79-9.77

NDVIGF(C), TKW(C) Jabalpur, Pune BS00093325_51 1D 2219936 3.63-5.52

DH(C), DM(C), CTDH(C) Jabalpur, BHU Excalibur_c1205_188 7B 709522057 3.00-3.24

NDVIGF(C), NDVIM(C) Pune Excalibur_c17905_126 6B 639148172 3.11-4.03

NDVIGF(C), NDVIM(C) Pune Excalibur_c6260_536 6B 420958180 3.47-4.69

DH(C), PH (S), DM(C) Jabalpur Excalibur_rep_c106790_155 4D 113155391 3.13-3.62

NDVIGF(C), NDVIM(C) Pune GENE-3807_45 6B 634331938 3.27-4.50

NDVIM(S), NDVIM(C), CTDGF(S), CTDM(S) BHU, Pune IAAV4799 5A 598666287 3.02-3.78

NDVIGF(C), NDVIM(C) Pune Kukri_c1836_1167 6B 420958866 3.06-4.31

NDVIGF(C), NDVIM(C) Pune Kukri_c25082_328 6B 635172419 3.11-4.02

NDVIGF(C), NDVIM(C) Pune Kukri_c6128_373 6B 634333618 3.27-4.50

NDVIGF(C), NDVIM(C) Pune Kukri_rep_c104521_117 6B 634333465 3.27-4.50

NDVIGF(C), NDVIM(C) Pune Kukri_rep_c104521_601 6B 634332420 3.27-4.50

NDVIGF(C), NDVIM(C) Pune Kukri_rep_c104521_727 6B 420958929 3.47-4.69

DH(C), NDVIGF(S) Jabalpur Ra_c9938_1299 5A 486750039 3.24-4.41

DH(C), NDVIGF(S) Jabalpur Ra_c9938_1734 5A 486750616 3.24-4.41

DH(C), DM(C) Jabalpur RAC875_c10372_671 7B 532167768 3.16-3.49

NDVIGF(C), NDVIM(C) Pune RAC875_c1349_270 6B 634334367 3.27-4.50

NDVIGF(C), NDVIM(C) Pune RAC875_c7965_80 6B 634333384 3.33-4.55

NDVIH(C), NDVIM(C) Jabalpur Tdurum_contig94450_255 1B 671199303 3.85-9.17

NDVIH(C), NDVIGF(C), NDVIM(C), NDVIH(S) BHU wsnp_Ex_c12223_19533198 2D 742814954 3.02-4.42

PH(C), GY(C), DM(S) Pune, Jabalpur wsnp_Ex_c12850_20377830 3A 507766112 3.06-3.94

NDVIH(S), NDVIM(C) Pune and Jabalpur wsnp_Ex_c20250_29303152 3A 696243396 3.58-3.74

GY(C), PH(C) Pune and Jabalpur wsnp_JG_c2509_1153697 3A 131458607 3.02-3.56
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wsnp_Ex_c53387_56641291 , BobWhi t e_c25527_313 ,

wsnp_Ra_c2063_4012957, and Excalibur_c34189_122) on

chromosome 7A associated with GY under stress condition reported

in the field experiments were utilized for the haplotype analysis. Based on

the allelic distribution of these SNPs in the WAMI panel, we identified

two sets of haplotypes for GY under stress conditions in field

experiments. In the first group, we identified six haplotypes (Hap1,

Hap2,Hap3,Hap4,Hap5, andHap6; involving a total of six SNPs) with a

frequency of 0.32, 0.35, 0.31, 0.02, 0.01, and 0.01, respectively. Only first

three haplotypes were compared for variations in trait means because the

last three haplotypes (viz., Hap4, Hap5, and Hap6) had very low

frequencies (Figures 5A, B). The analysis revealed significant

differences between haplotypes Hap1 and Hap3 (P=0.03) and between

haplotypes Hap2 and Hap3 (P=1.27E-03) for GY(S). Among these three

haplotypes,Hap3 (mean = 361.16 g/plot) hadmaximumGY followed by

Hap1 (mean =310.47 g/plot) andHap2 (mean GY(S) =300.42 g/plot). In

the second group, we identified five haplotypes (Hap1, Hap2, Hap3,

Hap4, and Hap5; involving a total of six SNPs) with a frequency of 0.29,

0.36, 0.27, 0.04, and 0.005, respectively. Among these five haplotypes, first

four haplotypes were compared for variations in trait means because the

last haplotype (viz.,Hap5) had a very low frequency (Figures 5C, D). The

analysis revealed significant differences between haplotypes Hap2 and

Hap3 (P=6.01E-03) and between haplotypes Hap3 and Hap4 (P=7.96E-
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03) for GY(S). Among these four haplotypes, Hap3 (mean = 360.75 g/

plot) had maximumGY followed byHap1 (mean =317.49 g/plot),Hap2

(mean =305.29 g/plot), and Hap4 (mean =262.16 g/plot).
Candidate genes and expression analysis

Gene annotation and in silico expression analysis revealed as

many as 102 non-redundant important candidate genes (CGs)

underlying the nine stable genomic regions (as selected above)

detected under stress conditions in hydroponic conditions. These

genes encode several important proteins such as F-box-like

protein, ABC transporter-like protein, GDSL lipase/esterase,

glycosyltransferase, AP2/ERF TF, protein kinase, calcineurin-like

phosphodiesterase, GroES-like superfamily protein, WD40 repeat

and others (Supplementary Table 8). The above candidate genes

were also subjected to an in silico expression analysis utilizing RNA-

seq data available from a public database. As many as 23 CGs from

different MTAs exhibited differential expression, and these

differentially expressed CGs (DECGs) were divided into up-

regulating (FC ≥ 2) and down-regulating (FC ≤ − 2) CGs

(Supplementary Figure 8 and Supplementary Table 10). These 23

genes primarily encoded for the following proteins: protein kinases,
B

C D

E F

A

FIGURE 4

Haplotype analysis for traits recorded under stress conditions during the hydroponics experiment, (A) LD block for the 252 kb region harboring MTA
for RLT and two allelic haplotypes identified in the panel based on four SNPs present in the LD block along with frequencies for each haplotype; (B)
Differences in RLT between two haplotypes; (C) LD block for the 164 kb region harboring MTA for RWT and two allelic haplotypes identified in the
panel based on three SNPs present in the LD block along with frequencies for each haplotype; (D) Differences in RWT between two haplotypes; (E)
LD block for the 457 kb region harboring MTA for SWT and three allelic haplotypes identified in the panel based on five SNPs present in the LD block
along with frequencies for each haplotype; (F) Differences in SWT among three haplotypes.
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GroES-like superfamily proteins, OTU domain containing proteins,

KIX domain superfamily proteins, NAD-dependent epimerase/

dehydratase, etc. A few genes (e.g., TraesCS2B02G519900 and

TraesCS5B02G035700) with unknown protein products also

showed significant differential expression under control and stress

conditions. A representative heat map of these DECGs is

represented in Supplementary Figure 8.

Similarly, gene annotation and in silico expression analysis

revealed as many as 43 non-redundant important candidate genes

under ly ing the 10 stable genomic regions including

RAC875_c8721_212 (6A) , Kukr i_c6274_1283 (4A) ,

B S 0 0 0 0 9 5 6 5 _ 5 1 ( 4A ) , a n d E x c a l i b u r _ c 3 2 8 6 _ 1 0 3 ,

wsnp_Ex_c6142_10746442, wsnp_Ra_c7112_12318340,

wsnp_Ex_c53387_56641291 , BobWhi t e_c25527_313 ,

wsnp_Ra_c2063_4012957, and Excalibur_c34189_122 (each

located on 7A and associated with GY) detected under stress

conditions in field experiments (Supplementary Table 9). The

above CGs were also subjected to an in silico expression analysis

utilizing RNA-seq data available from a public database. Up to

seven CGs exhibited differential expression, and these DECGs were

divided into up-regulating (FC ≥ 2) and down-regulating (FC ≤ − 2)

CGs (Supplementary Figure 8 and Supplementary Table 10). These

genes are known to encode several important proteins such as

protein kinases, Bromodomain, Armadillo, Cyanobacterial

aminoacyl-tRNA synthetase, O-methyltransferase domain

containing proteins, etc.
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Discussion

Breeding for drought tolerance deserves much higher attention

and investment to sustain wheat production under the current

climate change scenario. Wheat is affected by drought stress at all

growth stages. Even though most earlier studies focused on

aboveground adult plant traits (El Gataa et al., 2022), seedling

traits are equally important since the seedling stage is the most

vulnerable stage in warm and dry regions, and their trait values may

differ significantly from those of adult plants (Harrison and

Laforgia, 2019). This study evaluated a bread wheat panel

systematically assembled from the CIMMYT gene bank for

seedling traits (viz., CL, SLT, RLT, SWT, and RWT) under

hydroponics conditions. The interaction between water

treatments and genotypes was highly significant for all the traits

studied, indicating substantial genotypic variation in response to

water treatments. Significant differences between water treatments

and wheat genotypes have been reported in earlier studies (e.g., El

Gataa et al., 2022; Sallam et al., 2022).

All the traits evaluated during hydroponics and field

experiments reduced significantly but variably under drought

stress, indicating the variation in the phenotypic plasticity of the

studied traits. Phenotypic plasticity is one of the major mechanisms

of adaptation to abiotic stresses through modifications in critical

developmental stages (Fatiukha et al., 2021). Various genotypes that

exhibited drought tolerance either at the seedling or adult plant
B

C D

A

FIGURE 5

Haplotype analysis for traits recorded under stress conditions during the field experiments, (A) LD block for the 53 kb region harboring MTA for GY
and three allelic haplotypes identified in the panel based on six SNPs present in the LD block along with frequencies for each haplotype;
(B) Differences in GY among three haplotypes; (C) LD block for the 167 kb region harboring MTA for GY and four allelic haplotypes identified in the
panel based on six SNPs present in the LD block along with frequencies for each haplotype; (D) Differences in GY among four haplotypes.
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stages could be deployed in the breeding programs to achieve

tolerance at the desired stage. A few genotypes that demonstrated

drought tolerance at both stages appear to be a better choice for use

as parents in the breeding program targeting drought stress

tolerance. We observed moderate to high heritability estimates for

different traits in the hydroponics experiment as obtained in some

of the earlier studies conducted under control and water stress

conditions (Maulana et al., 2020; Danakumara et al., 2021).

Moderate to high broad-sense heritability for most of the traits

implies that it may be useful to employ these traits for a better

comprehension of the genetics underlying the yield potential of

wheat under drought stress conditions.

GWAS is a popular technique for dissecting the genetic

architecture of complex traits in wheat (Sidhu et al., 2020;

AlTameemi et al., 2021; Saini et al., 2022; Zhang et al., 2022) and

other crops, but this strategy is prone to the identification of false

positives owing to confounding population structure, cryptic

relatedness of the individuals in the population or the effect of

phenology traits. In this study, we used one single locus model (i.e.,

MLM) and two multi-locus models (viz., FarmCPU and BLINK),

which have been known to provide the most reliable results

(reviewed in Saini et al., 2022). Further, we used the genotypes

with similar heading dates for GWAS therefore, minimizing the

effect of phenology on the GWAS results. In addition, the Infinium

iSelect 90K assay is known to detect polymorphism in allo-

hexaploid wheat populations by analyzing over 81,000 gene-

associated SNPs (Wang et al., 2014). This SNP array is known for

providing greater genome coverage and resolution during the

dissection of different complex traits in wheat (Muhu-Din Zhu

et al., 2019; Ahmed et al., 2020; Muhammad et al., 2020; Zhang

et al., 2021). Unlike several previous studies (Ahmed et al., 2020;

Muhammad et al., 2020; Zhang et al., 2021), we considered the

physical positions of the SNPs for GWAS analysis, which is

consistent with a few previous studies (Zhu et al., 2019; Safdar

et al., 2020) using the 90K Infinium iSelect assay for GWAS.

Further, it is essential to establish the p-value threshold. A

threshold that is too lenient will flag a false-positive association (a

type I error), while one that is too strict will likely miss a true

association (a type II error). In this study, we employed an

exploratory threshold [-log10(P) = 3.00] based on independent

tests to consider any SNP as significant in individual environments,

as reported in some previous studies (Halder et al., 2019; Kumar

et al., 2021; Gill H. S. et al., 2022).

Most previous studies have identified the genomic regions

associated to drought stress tolerance in wheat either at seedling

(Maulana et al., 2020; Danakumara et al., 2021; Sallam et al., 2022)

or at the reproductive stage (Gataa et al., 2021; El Gataa et al., 2022).

However, a few studies conducted GWAS for traits on both

seedlings and adult plant stages (e.g., Rufo et al., 2020). The

WAMI panel used in this study has previously been studied to

screen for drought tolerance under rainfed conditions (Gahlaut

et al., 2019; Gahlaut et al., 2021). However, our study is unique in

that we imposed drought treatment specifically at the flowering

stage, during which soil moisture levels reached approximately 45%.

In addition to the field trials, we also conducted hydroponic
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experiments to identify genomic regions associated with drought

tolerance at the seedling stage.

In this study, 94 MTAs associated with various seedling traits

were identified using all three models under either normal or stress

or both conditions. Two of these MTAs were previously detected to

be associated with different seedling traits on chromosomes 3A and

7D (Maulana et al., 2020). The remaining MTAs identified on

chromosomes 1A, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 5D, 7A, 7B, and

7D have not been previously reported and they can be considered

novel. In addition, several significant SNPs were reported to be

associated with seedling traits under both normal and stress

conditions. For instance, BS00021943_51 and BS00022072_51

(RLT), Kukri_c12563_52 and wsnp_Ex_c12812_20324622 (SLT).

Some significant SNPs each associated with at least two different

seedling traits were also detected, for instance, BS00021943_51 and

BS00022072_51 associated with RLT (C), RLT (S), SLT (C),

Kukri_c19696_60 associated with RLT (C) and RWT (C), and

wsnp_Ex_c12812_20324622 associated with SLT (C), SLT (S),

and RLT (C). Earlier studies have also reported a significant

association between root and shoot traits (Figueroa-bustos et al.,

2018) and shared genetic control of these traits (Danakumara

et al., 2021).

Similarly, 451 MTAs associated with different adult plant traits

were identified at different locations under normal or stress

conditions. Seventy-one of these MTAs were previously detected

to be associated with different adult plant traits recorded under

normal and drought stress conditions on all 21 chromosomes

except 1D, 4B, 4D, and 6B (Mwadzingeni et al., 2017; Bhatta

et al., 2018; Sukumaran et al., 2018; Afzal et al., 2019; Gahlaut

et al., 2019; Li et al., 2019; Mathew et al., 2019; Qaseem et al., 2019;

Ahmed et al., 2020; Shokat et al., 2020; Abou-Elwafa and Shehzad,

2021; Amalova et al., 2021; Rabbi et al., 2021). The remaining MTAs

have not been reported and therefore, can be considered novel.

Further, several significant SNPs were reported to be associated

with adult plant traits under both normal and stress conditions at

different locations. Similar results have also been reported in some

earlier studies (Maulana et al., 2020; Danakumara et al., 2021; Gataa

et al., 2021; Sallam et al., 2022).

As many as 19 significant SNPs each associated with at least two

different adult plant traits were also detected, for instance,

BS00022299_51 was reported to be associated with NDVIGF

(C&S) and NDVIM(C&S); Excalibur_rep_c106790_155 was

reported to be associated with DH(C), PH(S), and DM(C);

IAAV4799 was found to be associated with NDVIM(C&S),

CTDGF(S), and CTDM(S); wsnp_Ex_c12223_19533198 was

reported to be associated with NDVIH(C&S), NDVIGF(C), and

NDVIM(C), and wsnp_Ex_c12850_20377830 was found to be

associated with PH(C), GY(C), and DM(S). A significant positive

correlation between NDVIGF and NDVIM has been reported

(Sultana et al., 2014). Additionally, Hassan et al., 2019 described

that NDVI measured at the grain filling stage may be a useful tool

for predicting wheat yield. Stay-green, calculated as NDVI at

physiological maturity showed a positive correlation with yield in

heat and heat combined with drought environments (Lopes and

Reynolds, 2012). There was a significant positive linear relationship
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between CTDGF and CTDM, as well as between CTDGF and GY.

Further, a cooler plant canopy during mid-grain filling in wheat

appeared to be an important indicator of greater drought tolerance

and yield under dryland conditions (Thapa et al., 2018).

Overall, there were significant differences in the distribution of

MTAs associated with the seedling and adult plant traits on

different chromosomes, with 45.50% of MTAs identified on the A

sub-genome, 37.79% in the B sub-genome, and only 16.69% in the

D sub-genome. These findings align with the previous findings of

lower genetic diversity and occurrence of higher LD in the D

genome (Mwadzingeni et al., 2017; Bhatta et al., 2018; Sukumaran

et al., 2018; Abou-Elwafa and Shehzad, 2021; El Gataa et al., 2022;

Rabieyan et al., 2022). Furthermore, among the MTAs detected

using all three models, as many as 19 significant SNPs associated

with adult plant traits at different locations were found to be

overlapped with as many as 13 significant SNPs associated with

different seedling traits. Relationships between seedling and adult

plant traits under drought stress have also previously been reported

(Dodig et al., 2015; Rufo et al., 2020).

As many as 13 significant SNPs identified using the data from

field experiments on chromosomes 3A, 4A, 4B, 5A, 6B, 7A, 7B, and

7D were found to be overlapping with several major genes known to

be associated with various yield component traits under either

optimum or stress conditions; these genes included the following-

TaGS5-3A (Ma et al., 2016), TaTGW6-A1 (Hanif et al., 2016), 6-

SFT-A2 (Yue et al., 2015), TaSnRK2.10-4B (Zhang Z. et al., 2017),

TaSnRK2.9-5A (Rehman et al., 2019), TaGL3-5A (Yang et al., 2019),

TaPRR1-6B (Sun et al., 2020), WAPO-A1 (Kuzay et al., 2019),

TaSPL20-7B (Zhang B. et al., 2017), and TaGS-D1 (Zhang et al.,

2014).These observations indirectly validated the findings of the

present study.

Functional annotation and gene expression analysis of genes

available from significant genomic regions associated with different

seedling traits identified 23 important genes with differential

expression under control and stress conditions. These genes

encoded a variety of important proteins, which are known to play

significant roles during drought stress conditions, such as protein

kinases (Lim et al., 2020), GroES-like superfamily proteins (Wang

et al., 2004), OTU domain-containing proteins (Zang et al., 2020),

KIX domain superfamily proteins (Han et al., 2006), NAD-

dependent epimerase/dehydratase (Chaichi et al., 2019), etc. Some

genes encoding unpredicted or uncharacterized proteins also

showed significant expressions in different plant tissues which

may also be utilized for future research. Similarly, functional

annotation and gene expression analysis identified seven

important genes associated with adult plant traits that had

differential expression under control and stress conditions. These

genes also encoded a number of important proteins, such as protein

kinases (Lim et al., 2020), bromodomain (Duque and Chua, 2003),

armadillo (Sharma et al., 2014), cyanobacterial aminoacyl-tRNA

synthetase (Shahinnia et al., 2021), O-methyltransferase domain

containing proteins (Chun et al., 2021), etc., which are known to

play critical roles during drought stress conditions.
Frontiers in Plant Science 14
Conclusions

The WAMI association panel used in this study showed

significant variations for different traits to drought stress

recorded at the seedling stage under hydroponic conditions,

including CL, SLT, RLT, SWT, and RWT, as well as traits

recorded in field experiments, including DTH, DTM, PHT,

NDVIH, NDVIGF, NDVIM, CTDH, CTDGF, CTDM, TKW,

and GY. This demonstrates that germplasm selection based on

these traits may benefit breeding for drought-tolerant wheat

genotypes. Contrasting genotypes identified in this study could

be used to develop mapping populations for further genetic

dissection of the trait(s), while agronomically superior drought-

tolerant genotypes could be used as donors in a breeding program.

The construction of breeder-friendly Kompetitive allele-specific

PCR (KASP) markers for the significant and stable MTAs

identified may facilitate the deployment of these genomic

regions through marker-assisted selection in the early stages of

the wheat breeding process. In addition, the significant MTAs

identified during the current study can be integrated into genomic

prediction models to evaluate their potential for selection under

drought stress conditions. Desirable haplotypes can be used for

haplotype-based breeding in wheat to improve yield stability,

potential, and performance under drought stress. The identified

important genes may also be validated using functional genomics

techniques and CG-based association mapping.
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