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Rice production is crucial to the food security of all human beings, and how rice

pests and diseases can be effectively prevented in and timely detected is a

hotspot issue in the field of smart agriculture. Deep learning has become the

preferred method for rice pest identification due to its excellent performance,

especially in the aspect of autonomous learning of image features. However, in

the natural environment, the dataset is too small and vulnerable to the complex

background, which easily leads to problems such as overfitting, and too difficult

to extract the fine features during the process of training. To solve the above

problems, a Multi-Scale Dual-branch structural rice pest identification model

based on a generative adversarial network and improved ResNet was proposed.

Based on the ResNet model, the ConvNeXt residual block was introduced to

optimize the calculation ratio of the residual blocks, and the double-branch

structure was constructed to extract disease features of different sizes in the

input disease images, which it adjusts the size of the convolution kernel of each

branch. In the complex natural environment, data pre-processing methods such

as random brightness and motion blur, and data enhancement methods such as

mirroring, cropping, and scaling were used to allow the dataset of 5,932 rice

disease images captured from the natural environment to be expanded to

20,000 by the dataset in this paper. The new model was trained on the new

dataset to identify four common rice diseases. The experimental results showed

that the recognition accuracy of the new rice pest recognition model, which was

proposed for the first time, improved by 2.66% compared with the original

ResNet model. Under the same experimental conditions, the new model had the

best performance when compared with classical networks such as AlexNet, VGG,

DenseNet, ResNet, and Transformer, and its recognition accuracy could be as

high as 99.34%. The model has good generalization ability and excellent

robustness, which solves the current problems in rice pest identification, such

as the data set is too small and easy to lead to overfitting, and the picture

background is difficult to extract disease features, and greatly improves the

recognition accuracy of the model by using a multi-scale double branch

structure. It provides a superior solution for crop pest and disease identification.
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1 Introduction

The world’s total population is projected to exceed 8.5 billion by

2030. The global available arable land area has been shrinking, with

the ever-changing climate and dramatic urban expansion. With

crop pest and disease problems climbing as a result of climate

change, food security has certainly become an urgent issue facing

the world today. According to a report on the China Crop Pest and

Disease Monitoring website, the vast grain-producing areas in the

Yangtze River basin saw a 26.6% year-on-year increase in crop pests

and disease occurrence in 2017 (Jiang et al., 2020). In 2020 alone,

the cumulative area of major crop pests and diseases in China is as

high as 300 million hectares (Dhaka et al., 2021), and pests and

diseases not only affect grain production but may also bring

economic losses (Hasan et al., 2020).

However, there are still shortcomings in the deep learning-

based crop pest recognition methods. Most of the current crop pest

data sets are taken under laboratory conditions. However, in

practical applications, the training samples in natural

environments are images with complex backgrounds, and the

models are easily affected by the complex backgrounds during the

training process. The deep learning models are prone to learn

irrelevant features in complex backgrounds and neglect the

extraction of minor diseases in training. (Fan et al., 2021).

Moreover, under natural environmental conditions, the crop

leaves in the field are often under strong light and swaying

motion, which affects the extraction of disease features by the

model (Zhang et al., 2019). At the same time, the sample size of

the data set taken from the actual scene is too small, which is prone

to overfitting during training and can lead to a sharp decrease in

recognition accuracy during model validation.

To address the above problems, this study proposes a Multi-

Scale Dual-branch structure rice pest recognition model based on

Generative Adversarial Network and improved ResNet. Firstly, data

pre-processing methods such as random brightness and motion

blur are used to simulate the state of crop leaves in complex

environments, so that the deep learning model can train such

complex sample images in advance of the training process and

strengthen the generalization ability and robustness. Then, data

enhancement is performed on the acquired 5932 rice pest images to

expand the dataset to 20,000 to alleviate the overfitting

phenomenon in training. In the model construction, the input

images are first enhanced with data using generative adversarial

networks. The residual module in ConvNeXt was introduced into

the ResNet model to optimize the calculation ratio of the residual

blocks in the ResNet model to better extract the minute disease

features while avoiding the occurrence of overfitting imagination

and improving the recognition accuracy. Secondly, a multi-scale-

two- branch structure is constructed to extract disease features at

different scales using convolutional kernels at different scales, then

perform feature fusion, and finally output the classification results

through the Softmax layer to solve the problem of difficult

extraction of tiny diseases caused by complex backgrounds. The

new model is feasible and advanced in rice pest recognition and
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provides a reference for realizing rice pest recognition in

complex environments.

The objectives of the current study are as follows.
(1) We propose a method to pre-process and enhance the

training dataset. Firstly, the natural complex background is

simulated to reduce the effect of strong light and wind on

disease image acquisition, which enhances the flexibility of

the sensor for crop disease image acquisition. Then the

dataset is enhanced using image enhancement to solve the

problem of too few rice disease samples, which leads to

overfitting.

(2) The original ResNet model was improved, and the model

recognition accuracy was improved by optimizing the

residual block calculation ratio and reducing the number

of computational parameters.

(3) A multi-scale dual-branch structure rice pest identification

model based on generative adversarial network and

improved ResNet was constructed. The number of

training samples is increased by the generative adversarial

network to alleviate the overfitting phenomenon, and the

dual-branch structure is used to reduce the influence of the

complex background of the image on the model training

and improve the extraction of minor disease features.
2 Literature review

Research on the application of deep learning in the field of crop

pest and disease identification continues to grow, and with the

continuous development of deep learning. Deep learning can

achieve correct identification and timely prevention of crop pests

and diseases through feature extraction and classification of disease

images, which can greatly save manpower and material resources

and is expected to minimize economic losses (Kamilares and

Francesc, 2018; Patricio and Rieder, 2018). The process of crop

pest and disease identification based on deep learning includes the

collection of data sets, the construction of training models, and

inference validation (Zhai et al., 2021; Zhou andWu, 2021). Lu et al.

(2021) proposed a citrus yellow dragon disease recognition model

based on the Mixup algorithm and convolutional neural network,

and the final model achieved 94.29% recognition accuracy through

data enhancement and migration learning. Huang et al. (2021)

proposed a crop leaf disease recognition model in a complex

environment with ResNet as the base model, combined with an

inception module to extract disease features at different scales and

added attention mechanisms, and the average recognition rate

reached 95.62%. Luo et al. (2021) proposed a YOLOv5-C-based

method for the identification of wide Buddha’s hand pests and

diseases by introducing a multi-scale feature fusion module with a

recognition accuracy of 93.61% in a complex background using

YOLOv5s as the base model. Yu et al. (2021) proposed a knowledge

graph construction method and a graph-based rice pest retrieval
frontiersin.org
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algorithm for rice pests and diseases, and the diagnostic algorithm

achieved an 86.25% correct rate. Chen et al. (2020) used VGGNet to

initialize the weights by pre-training on a large labeled dataset,

ImageNet as the research object, and then performed migration

learning. The initialized weights from the pre-training were

transferred to the target dataset for training, and the experiments

showed that the average accuracy for rice disease image recognition

under complex background conditions reached 92.00%. Yuan et al.

(2021) proposed a method for mushroom recognition based on

migration learning combined with the ResNet-v2 network using the

feature extraction capability of the Inception module as a way to

improve the fine-grained feature extraction of mushroom images,

and the accuracy of phenotype recognition of fine-grained

mushrooms reached 93.94%. The above deep learning-based crop

pest recognition method provides an important reference for

current crop pest recognition research.
3 Materials and methods

3.1 Experimental data

This dataset contains a total of four types of rice leaf disease

images, including 1584 images of Bacteriablight, 1440 images of

Blast, 1600 images of Brownspot, and 1308 images of Tungro, for a

total of 5932 images, all taken under natural conditions and saved in

JPG format (Sethy et al., 2020), and the images were resized to 224 ×

224 pixels. The dataset was divided into training and test sets

according to the ratio of 8:2, and training and test were performed

under random disruption. Some of the sample images are shown

in Figure 1.

In a realistic scenario, i.e., in a rice farm, the rice leaves are often

exposed to strong direct light, and the rice leaves are often

interlaced and shaded by each other, and shaken by the wind.

Among them, the strong direct light will affect the extraction of

disease features by the model, the rice leaves are often interlaced,

and the mutually blocked leaves make the disease features more

difficult to extract, and the wind-blown and shaking leaves tend to

make the pictures blurred. Considering the above practical factors,

this paper preprocessed the original data set by image preprocessing

methods such as Gaussian noise, random blocking, random

brightness, and motion blur (Wu et al., 2019), so that the model
Frontiers in Plant Science 03
learns more disease features in complex environments during the

training process to achieve the purpose of simulating actual scenes

and improve the accuracy of model validation. Figure 2 shows some

image preprocessing samples.

In the field of crop pest identification, data augmentation

methods are mainly applied to small sample datasets or

unbalanced datasets of pest and disease category image samples

to increase the number of samples or to make the dataset as

balanced as possible (Su et al., 2021; Liu et al., 2022). And with

deep learning models becoming deeper and deeper and parameters

becoming more and more massive, data augmentation methods are

particularly important to enable normal training of small datasets

and improve accuracy. The data enhancement methods such as

mirroring, cropping, scaling, panning, and rotation (Cruz et al.,

2017) are used to change the spatial location of pixels in the image

and increase the number of samples to avoid overfitting without

changing the content of the image through spatial geometric

transformation. The rice disease dataset in this study has 4

categories of rice diseases with a total of 5932 sheets, as shown in

Table 1. Using the data enhancement method, the samples of each

disease category were expanded to 5,000 images, totaling 20,000

images, and the specific data distribution changes are shown in

Figures 3, 4.
3.2 Model construction

3.2.1 Convolutional neural network theory
The components of a convolutional neural network mainly

include a convolutional layer, a pooling layer, and a fully connected

layer. The convolutional layer computes the convolution of the

input image samples through the convolutional kernel to extract the

key features in the image, and the output of the convolutional layer

is a representation of the input at a certain level in the spatial

dimension, also called feature map (Lecun et al., 1998), and the

relationship between the input and output of the convolutional

layer can be expressed by equation (1).

Hi = j(Hi−1Wi + bi) (1)

where Hi denotes the feature map of layer i, Hi−1 denotes the

features of layer i-1, the features of the previous layer are input to

the current convolutional layer. Wi denotes the weight of layer i,
A B DC

FIGURE 1

Sample images of rice diseases.
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which is the learnable parameter, is the bias of layer I and j (•) is the

activation function. The pooling layer is designed to alleviate the

over-sensitivity of the convolutional layer to position and is divided

into maximum pooling, average pooling and global pooling, whose

output and input channels are kept consistent. The pooling layer is

calculated as shown in equation (2).

Xl
j = down(Xl−1

j ,   s) (2)

where Xl
j represents the output features of the current pooling

layer, down(•) is the downsampling function, Xl−1
j is the feature

vector of the previous layer, and s is the pooling window size. After

the convolution operation in the convolution layer and the pooling

operation in the pooling layer, the output feature vector is input into

the fully connected layer to classify the extracted features. In this

study, the softmax classifier is used for classification calculation, and

the specific formula is shown in equation (3).

softmax(Z)j = ezj=o
K

K=1
ezk (for   j = 1,…,  K) (3)

The softmax function is a mapping between 0 and 1. Since the

sum of the output probability values of each category is not equal to

1, the e-exponential operation is utilized for the output probability

of each category and then the summation is performed, which

finally results in a result between 0 and 1. Since Sigmoid is extremely

prone to the gradient disappearance problem, to avoid the gradient

disappearance problem, the unsaturated activation function ReLU

is used as the activation function in this study for this experiment

(Krizhevsky et al., 2012). The function comparison curves of

Sigmoid and ReLU are shown in Figure 5.
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Considering that this study is a multiclassification experiment,

stochastic gradient descent is used as the optimizer (Lu et al., 2017).

The specific mathematical formulation and descent diagram are

shown in equation (4).

qj : = qj + a(y(i) − hq(x
(i)))x(i)j (4)

Where. represents the step size, hq(x
(i)) represents the

hypotheses function (hypotheses function), and the initial value

of qj can be any value, and the parameters are updated by

continuously iterating in the direction of gradient descent.

3.2.2 ResNet residual theory
In order to solve the gradient disappearance problem, He et al.

(2016) proposed ResNet. Residual Network is proven to handle the

vanishing gradient and effective feature learning better. This study

uses the residual neural network (ResNet-50) as the base

framework. ResNet-50 has 50 layers of CNNs, as well as a

MaxPool and a fully connected layer with a softmax layer. resNet

builds the network by stacking the remaining connections on top of

each other. Even when the architecture becomes more complex, the

ResNets model remains as efficient as before, making it a better

choice than other architecture models(Praveen et al., 2022). The

most important idea of ResNet is that the X output from the

previous layer, after the convolution calculation of this layer to

get the post F(X), the X and F(X) will be added to get H(X). The

purpose of this is that when even if the. gradient tends to 0, the item

X will still leave 1, cleverly avoiding the gradient during the

backpropagation. The residual structure of the core in ResNet is

shown in Figure 6.
TABLE 1 Rice disease dataset.

Diseases Train Test Total Aug-train Aug-test Aug-dataset

Bacteriablight 1265 316 1584 4000 1000 5000

Blast 1152 287 1440 4000 1000 5000

Brownspot 1280 320 1600 4000 1000 5000

Tungro 1047 261 1308 4000 1000 5000

Total 4748 1184 5932 16000 4000 20000
A B DC

FIGURE 2

Sample images of pre-processing.
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Although the ResNet network is good for avoiding overfitting,

there is still room for improvement. At the beginning of the design

of the ResNet model, the model mainly consists of four Stages

containing different numbers of Bottlenecks, and the ratio of the

number of Bottlenecks in the Stages is largely proposed empirically,

for example, the ratio of ResNet50 is 3:4:6:3, the ratio of ResNet101

is 3:4:23:3, and the ratio of ResNet152 is 3:8:36:3. It can be seen that

there are also more excellent computational ratios of the number of

Bottleneck in the Stage, which makes the model performance

more excellent.

3.2.3 ConvNeXt residuals module
In 2022, Facebook AI Institute proposed the ConvNeXt

convolutional neural network (Liu et al., 2022), which achieved

87.8% accuracy on the ImageNet top-1 dataset, surpassing the

previous highest accuracy of 81.3% achieved by the Swin

transformer (Liu et al., 2021), the ratio of residual blocks

computed in the ConvNeXt network borrows the design ratio of

the transformer (1:1:3:1), and the ratio of residual blocks in the

ConvNext network is 3:3:9:3, which improves the accuracy of the
Frontiers in Plant Science 05
model from 78.8% to 79.4%. The proposed residual blocks in the

ConvNeXt model optimize the ratio of the number of Bottleneck in

Stage. In this study, the residual blocks in ConvNext are introduced

into ResNet50 as the base model, and the model accuracy of the

original ResNet50 is improved on the original basis by optimizing

the proportion of the number of residual blocks. The specific model

parameters are shown in Table 2. The overall architecture of the

model consists of two branches, each branch mainly consists of one

stem layer and four Stages, the stem layer consists of a 7×7

convolutional layer and a 3×3 maximum pooling layer to keep

the output feature resolution constant. The four Stages, i.e., res2,

res3, res4, and res5 in Table 2, each Stage contains different

numbers to the Bottleneck with a ratio of 3:3:9:3, where the

specific structure of the Bottleneck is shown in Figure 7. This

study refers to this structure as MSDB-ResNet.

3.2.4 Multi-scale double branch structure
The overall process of rice pest identification in this study is

shown in Figure 8. Firstly, the false rice pest images are generated
FIGURE 5

Activate function.
FIGURE 6

ResNet block.

FIGURE 4

Augmented dataset distribution.
FIGURE 3

Original dataset distribution.
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using the generative adversarial network, secondly, the rice pest

images preprocessed and enhanced with data from this study are

fused with the false images generated by the generative adversarial

network. Finally, they are input into the classification model and the

classification results are output. In this study, the proposed model is

referred to as GAN-MSDB-ResNet.

The common sizes of convolutional kernels in the model are 1 ×

1, 3 × 3, 5 × 5, and 7 × 7. Due to the different sizes of convolutional

kernels, the model is prone to lose small features or easily learn the

features of complex backgrounds during training, resulting in poor

recognition accuracy (Guo et al., 2019). Based on this problem, this

paper proposes a multi-scale dual-branch structure based on

improved ResNet, with ResNet-50 as the base architecture, and

constructs a dual-branch ResNet model, placing large convolutional

kernels and small convolutional kernels in two different branches,

respectively, to extract disease features of different sizes and reduce

the influence of complex backgrounds. The model framework

diagram is shown in Figures 7, 9.

As shown in Figure 7, the input training sample images are

preprocessed and enhanced, and then entered into two different

branches, each of which is preceded by a stem layer consisting of a

7×7 convolutional layer, a ReLu activation layer, and a 3×3

maximum pooling layer. The structure of the Bottleneck is shown

in Figure 9. The bottleneck consists of a residual block with a 1 × 1

convolution layer and two residual blocks with constant mapping X

to avoid the occurrence of overfitting in model training. The

bottleneck structure in branch 1 is composed of 1×1 and 3×3

convolutional kernels, and the bottleneck structure in branch 2 is

composed of 5×5 convolutional kernels, which can extract features

at different scales through different sizes of convolutional kernel

operators to avoid the problem of subtle disease features being

affected by complex backgrounds, resulting in key diseases not

being extracted. The problem of not extracting the key disease
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features due to the complex background is avoided. After the input

image is extracted with features by two network branches of

different scales, ReLu activation and global mean pooling are

performed, then it is input to concatenation layer for feature

fusion, finally, it is input to the fully connected layer, and

Softmax layer to output classification results.
4 Test results and analysis

4.1 Experimental environment

The experimental software environment is Windows 10 64-bit

system, using Pytorch open source framework for deep learning,

and Python is chosen as the programming language. The computer

memory is 16 GB, equipped with AMD Ryzen 7 5800H with

Radeon Graphics processor, and NVIDIA GeForce RTX 3070

Laptop graphics card to accelerate image processing.
4.2 Experimental parameters

In this study, the model is used SGD optimization algorithm

and CrossEntropyLoss loss function. The size of the input image is

224*224, and batch size is 32, the number of training epochs is 20,

the initial learning rate learning rate is set to 0.01, and the

momentum is set to 0.9 and weight decay is 1e-4.
4.3 Model evaluation index

In this paper, the average recognition accuracy rate is used as

the evaluation index of the model.
TABLE 2 Model compute parameter.

output size MSDB-ResNet-I MSDB-ResNet-II

stem 56×56
7×7,64,stride 2

3×3 max pool, stride 2
7×7,64,stride 2

3×3 max pool, stride 2

res2 56×56

1� 1, 64

3� 3, 64

1� 1, 256

 � 3

res3 28×28

1� 1, 128

3� 3, 128

1� 1, 128

 � 3

1� 1, 128

5� 5, 128

1� 1, 128

 � 3

res4 14×14

1� 1, 256

3� 3, 256

1� 1, 1024

 � 9

1� 1, 256

5� 5, 256

1� 1, 1024

 � 9

res5 7×7

1� 1, 512

3� 3, 512

1� 1, 2048

 � 3

1� 1, 512

3� 3, 512

1� 1, 2048

 � 3
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FIGURE 7

Proposed MSDB-ResNet architecture.
FIGURE 8

Overall process of rice disease recognition.
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Accuracy =
1
co

c

j=1

njj
nj

� 100% (5)

The formula c denotes the number of categories, nj denotes the

number of category j, and njj indicates the number of correct

predictions in category j.
4.4 Analysis of data pre-processing and
data enhancement test results

In order to verify the performance of the model proposed in this

study, several experiments were conducted on the data

preprocessing and data enhancement methods, the generative

adversarial network data enhancement method, and the model

improvement method, respectively. Among them, the data

preprocessing and data enhancement methods were compared on

the base model ResNet-50 and the MSDB-ResNet model proposed

in this study, respectively. The model improvement methods were

tested on the original dataset and the dataset after data

preprocessing and data enhancement, respectively. The generative

adversarial network data enhancement method was tested on the

MSDB-ResNet model. Among them, the Precision, Recall, F1-score,

and Accuracy of the GAN- MSDB-ResNet model on the test dataset

for four different rice pests are shown in Table 3, and the confusion

matrix (Trevethan R et al., 2017) is shown in Figure 10. The results

of each test and the accuracy curve comparison graphs are shown in

Table 4 and Figures 11–16.

As shown in Figure 11, the accuracy achieved on ResNet-50 for

the original dataset was 96.68%, and the accuracy achieved on

ResNet-50 for the dataset after data enhancement was 98.26%, an

improvement of 1.58%. It can be seen that the model accuracy can

be improved by using data preprocessing methods such as Gaussian

noise, motion blur, random brightness, random occlusion, and data

enhancement methods. As shown in Figure 12, the accuracy

achieved by the original dataset on ResNet-50 was 96.68%, and

the accuracy achieved by introducing the ConvNet residual module,
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constructing the two-branch MSDB-ResNet model was 99.06%,

which was a 2.38% improvement over the original ResNet-50. It can

be seen that the multi-scale dual branch structure based on the

improved ResNet has good performance and can significantly

improve the model accuracy. As shown in Figure 13, the accuracy

of the improved ResNet-based multiscale double branching

structure (MSDB-ResNet), is 99.10% with using the data set after

data enhancement, which is a significant improvement of 2.42%

compared with the accuracy of 96.68% achieved by the original

ResNet50 without data enhancement. To further improve the

model performance, the model (GAN- MSDB-ResNet) has a

model accuracy of 99.15% on the original dataset, an

improvement of 2.47%, after introducing generative adversarial

networks for data augmentation in the Figure 14. The model

accuracy on the augmented dataset was 99.34%, an improvement

of 2.66% in the Figure 15. It can be seen that the proposed Multi-

Scale Dual-branch structure (GAN-MSDB-ResNet) based on a

generative adversarial network and the improved ResNet has

excellent performance in improving the accuracy of rice pest

identification. Figure 16 shows a composite plot of the model

recognition accuracy, and the red curve shows the recognition

accuracy of the improved model on the enhanced dataset.
4.5 Analysis of model improvement
experimental results

To verify the robustness and generalization ability of the model,

GAN-MSDB- ResNet was tested against AlexNet, VGG, DenseNet,

ResNet and Transformer using the same enhanced dataset, as

shown in Table 5, the training recognition accuracy of GAN-

MSDB-ResNet was as high as 99.76%, and the test recognition

accuracy was as high as 99.34%, which was the highest among

highest recognition accuracy among these networks. Figure 17

shows the comparison of accuracy curves of all models, Figure 18

shows the comparison of loss value curves of all models. It can be

seen that the improved multiscale two-branch GAN-MSDB-ResNet
TABLE 3 Accuracy of different approaches.

Model Origin-Data accuracy rate/% Data-augment
accuracy rate/%

ResNet-50 96.68% 98.26%

MSDB-ResNet 99.06% 99.10%

GAN-MSDB-ResNet 99.15% 99.34%
TABLE 4 GAN-MSDB-ResNet confusion matrix.

Diseases Precision Recall F1-score Accuracy

Bacterialblight 1.00 0.99 1.00 0.994

Blast 0.99 0.99 0.99 0.995

Brownspot 0.99 0.99 0.99 0.993

Tungro 1.00 0.99 0.99 0.992
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model has good performance for pest and disease recognition of

crops in a practical environment.

As shown in Table 5, with the same enhanced dataset, the

accuracy of the validation set obtained by AlexNet is 95.07%,

which is much lower than the recognition accuracy of GAN-

MSDB-ResNet proposed in this study by 4.27 percentage points.

The accuracy of the validation set achieved by DenseNet-121 and

ResNet-18 is 96.53% and 96.25%, respectively, which is also lower

than that of 99.34% achieved by GAN-MSDB-ResNet. It can be seen

that the recognition accuracy achieved by DenseNet-121 and ResNet-

18 containing the same residual connections on the same data set is

much lower than that of GAN-MSDB-ResNet. Finally, in comparison

experiments with the emerging Transformer recognition model, the

accuracy of GAN-MSDB-ResNet on the validation set is higher than

the accuracy of the Transformer by 2.23%. It can be seen that the

model improvement method has some feasibility.

As shown in Figures 17, 18, the recognition accuracy curve of

GAN-MSDB-ResNet is higher than other models, and its model

training convergence speed is also higher than AlexNet, VGG,
Frontiers in Plant Science 09
DenseNet, ResNet and Transformer. The above experimental

results show that the GAN-MSDB-ResNet rice pest identification

model proposed in this study has good robustness and

generalization ability under complex background environment.

In order to fully demonstrate the feasibility of this study, the

experimental results were compared with the latest research methods

in this field. As shown in Table 6, Xing and Lee (2020) proposed a

BridgeNet-19 deep convolutional neural network for classifying 7

classes of citrus diseases with a maximum classification accuracy of

95.41%. li et al. (2020) proposed an improved GoogLeNet model to

identify 10 classes of rice pests in complex backgrounds, and the

optimized GoogLeNet model improved by 6.22% over the existing

methods with a maximum classification accuracy of 98.91%.

Krishnamoorthy and Lvnarasimha (2021) combined migration

learning based on the InceptionResNetV2 model to classify three

classes of rice leaf diseases with a maximum recognition accuracy of

95.67%. Chen et al. (2020) based on VGGNet, pre-trained on

ImageNet after adding the Inception module. The average

recognition accuracy of eight types of rice pests and diseases under

complex background conditions reached 92.00%. Huang et al. (2021)
FIGURE 11

AugmentData of test comparison.
FIGURE 9

Stage of architecture.
FIGURE 10

GAN-MSDB-ResNet confusion matrix.
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FIGURE 13

AugmentData and Model improvement
FIGURE 12

Model improvement of test comparison.
FIGURE 14

GAN and model improvement.
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FIGURE 15

GAN AugmentData and model improvement.
FIGURE 16

All approaches of accuracy curve.
FIGURE 17

Accuracy rate curve.
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proposed a MultiScale-SE-ResNet model by adding an attention

mechanism based on the residual structure. The average

recognition accuracy reached 95. 62% on a dataset of eight crop

diseases collected in a complex field environment. By comparing with

the latest research methods in this field, the GAN-MSDB-ResNet rice

pest identification model proposed in this study with data

enhancement through generative adversarial networks achieves

99.34% accuracy for rice pests in four types of complex

backgrounds. The experimental results demonstrate the
Frontiers in Plant Science 11
effectiveness of the method to achieve the detection of plant pests

and diseases effectively.
5 Conclusion

The current study on deep learning-based rice pest and disease

identification is critical in croppest anddisease control because theyhelp

to identify early rice diseases based on established disease datasets and

improve grain yield. The proposed GAN-MSDB-ResNet rice disease

recognition model has been proven a higher recognition accuracy. The

study has shown that the model can learn complex disease information

from images and reduce the interference of complex backgrounds, and

themodel recognition accuracy is greatly improved. Themodel has been

shown to bemore effective, and themodel has goodperformance on rice

pest and disease dataset, achieving 99.34% disease recognition

verification accuracy on rice disease dataset with data preprocessing

and data enhancement, which is 2.66% improvement compared to

96.68% recognition accuracy of ResNet-50. And it is significantly

higher than the classical deep learning models such as AlexNet, VGG-

16, DenseNet-121, and Transformer. Finally, themethodGAN-MSDB-

ResNet rice pest recognition model proposed in this study has superior

performancewhen fully comparedwith the latestmethods in thefield of

croppest recognition.This studyprovidesa feasible researchmethodand

an important reference for solving key problems in rice pest and disease

recognition, suchascomplexbackground, too smalldata set, anddifficult

extraction of pest and disease features.
FIGURE 18

Loss curve.
TABLE 5 Accuracy and Loss of different networks.

Model Train Loss Test Loss Train Acc Test Acc

AlexNet 0.1587 0.1489 95.10% 95.07%

VGG-16 0.0379 0.2035 98.95% 95.79%

DenseNet-121 0.0691 0.1041 99.09% 96.53%

ResNet-18 0.0429 0.1064 99.16% 96.25%

Transformer 0.0291 0.0857 99.27% 97.11%

GAN-MSDB-ResNet 0.0143 0.0301 99.76% 99.34%
fro
TABLE 6 Summary comparison of crop pest and disease identification methods.

Methods Dataset Crop classes Accuracy Reference

BridgeNet-19
citrus disease
12561 images

7 95.41% (Xing and Lee, 2020)

fine-tuned GoogLeNet
crop pest

5629 images
10 98.91% (Li and Wang, 2020)

InceptionResNetV2
Rice disease
5200 images

4 95.67% (Krishnamoorthy and Lvnarasimha, 2021)

VGG- transfer- Inception
Rice Maize
1000 images

8 92% (Chen et al., 2020)

MultiScale-SE-ResNet
Rice Apple
2205 images

8 95.62% (Huang et al., 2021)
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Appendix A

Image dataset is available at: https://data.mendeley.com/

datasets/fwcj7stb8r/1.
Appendix B

Models and code are available at: https://github.com/kuihu-hk/

Rice-Pest-Identification.
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