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Improved multi-trait prediction
of wheat end-product quality
traits by integrating NIR-
predicted phenotypes

Shiva Azizinia 1*, Daniel Mullan2, Allan Rattey2,
Jayfred Godoy2, Hannah Robinson2, David Moody2,
Kerrie Forrest1, Gabriel Keeble-Gagnere1, Matthew J. Hayden1,3,
Josquin FG. Tibbits1 and Hans D. Daetwyler1,3

1Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia, 2InterGrain, Bibra
Lake, WA, Australia, 3School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
Historically, end-product quality testing has been costly and required large flour

samples; therefore, it was generally implemented in the late phases of variety

development, imposing a huge cost on the breeding effort and effectiveness.

High genetic correlations of end-product quality traits with higher throughput

and nondestructive testing technologies, such as near-infrared (NIR), could

enable early-stage testing and effective selection of these highly valuable traits

in a multi-trait genomic prediction model. We studied the impact on prediction

accuracy in genomic best linear unbiased prediction (GBLUP) of adding NIR-

predicted secondary traits for six end-product quality traits (crumb yellowness,

water absorption, texture hardness, flour yield, grain protein, flour swelling

volume). Bread wheat lines (1,400–1,900) were measured across 8 years

(2012–2019) for six end-product quality traits with standard laboratory assays

and with NIR, which were combined to generate predicted data for

approximately 27,000 lines. All lines were genotyped with the Infinium™

Wheat Barley 40K BeadChip and imputed using exome sequence data. End-

product and NIR phenotypes were genetically correlated (0.5–0.83, except for

flour swelling volume 0.19). Prediction accuracies of end-product traits ranged

between 0.28 and 0.64 and increased by 30% through the inclusion of NIR-

predicted data compared to single-trait analysis. There was a high correlation

between the multi-trait prediction accuracy and genetic correlations between

end-product and NIR-predicted data (0.69–0.77). Our forward prediction

validation revealed a gradual increase in prediction accuracy when adding

more years to the multi-trait model. Overall, we achieved genomic prediction

accuracy at a level that enables selection for end-product quality traits early in

the breeding cycle.

KEYWORDS

genomic prediction, multi-trait model, wheat breeding, genomic best linear unbiased
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Highlights
Fron
• Including NIR-predicted data into multi-trait prediction

models increases the prediction accuracy of genetically

correlated end-product quality traits in wheat, supporting

the selection of desirable lines in early breeding cycles
1 Introduction

An exponentially growing human population and a rapidly

changing and more variable climate present major risks to food

security. Wheat is the most important grain food source for humans

and is used for a diversity of products (FAO, 2018). World wheat

production will need to increase by 60% by 2050 to feed over 9.5

billion people (Gerland et al., 2014), which has to be achieved in an

increasingly variable environment with more extreme weather

conditions and land scarcity (Ceccarelli et al., 2010; Guo

et al., 2020).

Current major objectives in wheat breeding include enhanced

grain yield, improved agronomic performance, and durable disease

resistance, all production-oriented traits. While of considerable

value, breeding for end-product quality traits is generally a

secondary target met through the application of quality

thresholds for release and consumer acceptance (Battenfield et al.,

2016). As such, ensuring the breeding focus is from a whole value

chain perspective through the incorporation of end-product quality

traits into early-generation selection will have a major impact on

value creation through breeding. A major obstacle in measuring

end-product quality traits, such as flour quality characteristics, is

that they often involve time-consuming, labor-intensive, and costly

assays that require large grain samples. Thus, sophisticated quality

tests have to be postponed to the later phases of variety

development. It is common that candidate wheat lines, for which

considerable investment in testing has been made, do not pass

quality thresholds and are therefore not released to growers.

Overcoming these significant limitations requires tools to enable

discrimination against undesirable lines earlier in the breeding

cycle, improve these traits, and save both time and resources.

In complex genetic phenotypes, the application of marker-

assisted selection (MAS) is limited due to its low power to detect

minor quantitative trait loci (QTL), genotype-by-environment

interactions, and genotype-by-genotype interaction (interaction of

QTL and plant genetic background). Numerous linkage mapping

studies have shown that a large number of QTL with small effects

control most end-product quality traits, and, therefore, MAS is

unlikely to be able to capture sufficient variance of these traits to be

useful in breeding programs (Carter et al., 2012; Jernigan et al.,

2018; Kristensen, 2018; Yang et al., 2020). Genomic selection (GS)

can now be routinely implemented through the establishment of

prediction models based on a suitable training population with both

phenotypic and genotypic data. The trained model is used to predict

genomic estimated breeding values (GEBVs) of individuals with

only genotypic information (Meuwissen et al., 2001). The
tiers in Plant Science 02
effectiveness of GS in complex trait breeding, in accelerating

breeding cycles, and in improving genetic gains per unit of time

has been proven (Battenfield et al., 2016; Cericola et al., 2017;

Michel et al., 2017; Belamkar et al., 2018). The use of GS is

particularly advantageous in early generations, which could

support breeders in the faster development of new bread wheat

varieties that efficiently combine superior baking quality with

higher grain yield.

When compared to single-trait analysis, multivariate and/or

multi-environment predictive models generally have improved

accuracies, especially for traits with high genetic correlations

(Guo et al., 2014; Hayes et al., 2017; Okeke et al., 2017; Azizinia

et al., 2020; Guo et al., 2020). High genetic correlations are common

for quantitative traits such as grain yield and nutritional content in

cereal crops (Jia and Jannink, 2012; Lozada and Carter, 2019; Guo

et al., 2020). The advantage of multi-variate models could be further

extended where the selection population was already phenotyped

for a correlated trait (Jia and Jannink, 2012; Hayes et al., 2017). The

use of correlated traits is especially useful for predicting expensive

or difficult-to-measure traits (Lado et al., 2018; Lozada and Carter,

2019), such as many quality traits (Battenfield et al., 2016; Bhatta

et al., 2020). Predictors from near-infrared resonance (NIR) can be

treated as a correlated trait in multi-trait models (Dowell et al.,

2006; Osborne, 2006; Hayes et al., 2017) and can be easily deployed

at scale as they are higher throughput, nondestructive, and require

only a small quantity of whole grain when compared to end-use

quality assays. Many empirical studies have shown that increasing

the size of the training population and/or improving the

relationship between the training and prediction populations has

a positive impact on prediction accuracy (Habier et al., 2007;

Heffner et al., 2011; Clark et al., 2012; Lorenz et al., 2012;

Hoffstetter et al., 2016). Here, we investigate the impact on the

prediction accuracy of wheat quality traits by adding correlated

NIR-predicted data to increase the training population size. This

increase in size may also be improving the relationship between the

training and prediction sets; however, these effects have not been

separated in our analysis.

Cross-validation schemes can be implemented that mimic real

breeder circumstances when predicting lines in environments/years

that have not been observed in the field. In forward prediction,

previous years are used to predict the following year’s progeny. This

method represents a common breeding situation where previous data

are available, but no data are available for phenotypes or

environments in the future year(s). Predicting the performance of

lines for future years is a significant missing data problem and is

challenging (Hoffstetter et al., 2016; Jarquıń et al., 2017; Juliana et al.,

2018). Here, we explored the potential of genomic selection to predict

future performance using data from 2012 to 2019 for end-product

quality traits in fivefold cross-validation and forward prediction.

The main objectives of this study were to (1) estimate the

genetic correlations of end-product quality and NIR-predicted data,

(2) evaluate the influence of adding NIR-predicted data in

improving prediction accuracies of end-product quality traits

using fivefold cross-validation, and (3) investigate the forward

prediction of line performance across years in a multi-

environment context.
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2 Material and methods

2.1 Plant materials and phenotyping

Phenotype records for six quality traits from hexaploid bread

wheat breeding lines measured in laboratory assays along with NIR-

predicted data from approximately 27,000 lines were used in this

study. Wheat lines were evaluated for 8 years from 2012 to 2019,

grown in NSW, VIC, WA, and SA, in more than 150–197 trials of

end-product traits and 409–450 trials for NIR-predicted data. Lines

were evaluated for crumb yellow/blueness (b*; color), flour water

absorption (Wab; %), hardness/particle size index of flour (PSI; %),

flour yield (FlrYld; %), protein (Protein; %), and flour swelling

volume (FSV, ml/g). All data across trials and years were used in the

analysis, with a summary of the number of records and lines in each

trait and their range and means provided in Tables 1, 2.

Laboratory assays were conducted on 2–4 kg composite samples

assembled by blending all replicated plots of each line per trial. The

samples were conditioned at 16% moisture content for 24 h prior to

milling using a Buhler Laboratory Mill (MLU 202). End-use quality

tests were performed using approved methods of the American

Association of Cereal Chemists International (AACC International,

2008). The PSI (%), a measure of wheat hardness, was determined

after grinding and sieving of grain samples (AACC Method 55-

30.01). FlrYld (%) is the percentage by weight recovered of the total

product as straight-grade white flour. b* was analyzed with a

Minolta Chroma Meter (C-100, Minolta Camera Co. Ltd., Osaka,
Frontiers in Plant Science 03
Japan) (Oliver et al., 1992). FSV (ml/g) test was performed using

AACC Method 56-21.01, and Wab (%) was measured using a

Farinograph (Brabender, Germany) following AACC Method 54-

21.02. Near-infrared spectroscopy data were also acquired for each

of the end-use quality traits. NIR predictions were generated by

loading 100 grams of sample into the XDS Rapid Content Analyzer

(FOSS). AACC Methods 39-25.01 and 39-70.02 were used to

determine NIR-predicted protein content and PSI of whole grains

using a local calibration.
2.2 Genotyping

Genomic DNA was extracted from six seeds per sample using a

modified CTAB method (Tibbits et al., 2006), where a magnetic

bead clean-up step replaced isopropanol precipitation. In brief, the

modifications consisted of mixing 120 µl of the upper aqueous

phase with 120 µl of 10× diluted AMPure XP beads (Beckman

Coulter Inc. CA, USA) (diluted with a solution containing 20% PEG

and 2.5 M NaCl), followed by one wash with 200 µl of 50%

DNAzol® ES (Molecular Research Centre Inc. OH, USA) and

42.5% ethanol and two washes with 70% ethanol. DNA was

eluted in 15 µl of 10 mM Tris-HCl at pH 8.0.

The reference panel was genotyped with the Illumina Infinium

Wheat Barley 40K XT SNP array v1.0 (Keeble-Gagnère et al., 2021)

according to the manufacturer’s instructions (Illumina Ltd., CA,

United States), with modifications detailed in Keeble-Gagnère et al.
TABLE 1 Number of lines used for genomic analysis.

Traits Years b* Wab PSI FlrYld Protein FSV

End-product 2012 29 29 29 28 18 29

2013 188 189 189 189 189 188

2014 169 169 169 169 169 166

2015 219 223 177 251 219 147

2016 161 161 194 209 156 155

2017 166 164 304 309 114 131

2018 308 308 233 379 308 302

2019 401 352 469 400 407 284

Sum 1,641 1,595 1,764 1,934 1,580 1,402

NIR predicted 2012 29 29 29 29 29 16

2013 80 80 80 80 80 5

2014 92 86 86 86 86 84

2015 114 114 114 114 114 114

2016 249 249 249 249 249 249

2017 439 439 439 439 439 439

2018 8375 8375 8375 8374 8375 8358

2019 17,653 17,653 17,651 17,653 17,653 17,653

Sum 27,031 27,025 27,023 27,024 27,025 26,918
frontie
b*, crumb yellow/blueness; Wab, water absorption; PSI, texture hardness (particle size index); FlrYld, flour yield; Protein, grain protein; FSV, flour swelling volume.
rsin.org

https://doi.org/10.3389/fpls.2023.1167221
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Azizinia et al. 10.3389/fpls.2023.1167221
(2021). Genotype calling was performed using a custom pipeline

(Maccaferri et al., 2019; Keeble-Gagnère et al., 2021).

Genotypes were imputed to exome density following the

procedure described in Keeble-Gagnère et al. (2021). Briefly,

sporadic missing data were filled in with Beagle v4.1 (Browning

and Browning, 2016), before converting SNP coordinates to

positions in the IWGSC RefSeq v2.0 (O’Leary et al., 2016)

assembly and imputing to 435,404 SNPs with Minimac 3 (Das

et al., 2016) using the reference haplotypes described in Keeble-

Gagnère et al. (2021) together with 102 exome-sequenced historical

lines from InterGrain’s breeding program. This target set of 435,404

SNPs was defined as the set of SNPs with r2 > 0:7 to the set of

genotyped SNPs, based on the LD in the InterGrain historical lines.

This set of SNPs was further reduced to 330,169 after selecting the

SNPs in common with the transcriptome genotyping-by-

sequencing (tGBS) genotypes after imputation.
2.3 Broad-sense heritability

Phenotypic records were edited for possible outliers (mean ± 4SD).

Phenotypes were also adjusted for fixed effects using a linear mixed

model (Eq. 1) in ASReml (Butler et al., 2017), where y was a vector of

quality phenotypes, µ was the trait mean, trial was a group effect of

year, location, and nursery and fitted as fixed effect in the model.

y = m + Trials(year+location+nursery) + line + e (1)

The line was fitted as fixed to estimate BLUEs as adjusted

phenotypes in GEBV estimation and random to estimate the

variance due to lines in order to determine the broad sense

heritability using:

H2 = s 2
g

s2
g +

s2g
TR=

�
(2)

where s 2
g and s 2

e are line and residual variances, respectively. T

and R are the mean numbers of trials and replications per line.
2.4 Genomic predictions

Genomic Restricted Maximum Likelihood (GREML) was used

for estimating GEBVs and variance components in the MTG2

software (Lee and van der Werf, 2016).
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2.5 Single-trait genomic prediction

The single-trait GREML model used in this study was a linear

mixed model described as

y = 1nm + Zu + e, (3)

where y is the vector of adjusted BLUEs for the trait, m is the

overall mean, 1n is a vector of ones, Z is a design matrix relating

records to breeding values, u is a vector of GEBVs, and e is a vector

of residual effects. It was assumed that u~N(0, Gs 2
g ), where s 2

g is

additive genetic variance and G is the genomic relationship matrix

calculated as described in Yang et al. (2010) from the 330,169 SNP

markers, and e~N (0, Is 2
e ), where s 2

e is the residual variance and I is

the n × n identity matrix. We performed a principal component

analysis (PCA) of G using the prcomp function in R (R Core Team,

2020) to investigate the population structure in the sample. A plot of

the first two components was visualized using the ggplot2 package

(Wickham, 2016) in R. Narrow-sense heritability (h2) was

calculated as the ratio of the additive variance to the total

phenotypic variance using the GREML model.

Single-trait genomic prediction accuracy was evaluated with

fivefold random cross-validation. In each cross-validation run,

onefold was used as a validation set with their phenotype data

masked in the analysis (Figure 1). The accuracy of genomic

prediction was calculated as the Pearson correlation coefficient

between corrected phenotypic values and GEBVs in the validation

subset. This process was repeated 10 times and average prediction

accuracy across all folds (50) was reported.
2.6 Multi-trait genomic prediction

A basic multi-trait mixed model was used as follows:

yEP

yNIR

" #
=

1EP 0

0 1NIR

" #
mEP

mNIR

" #
+

ZEP 0

0 ZNIR

" #
uEP

uNIR

" #
+

eEP

eNIR

" #
(4)

where yEP and yNIR are the vectors of adjusted phenotypes, 1 is a

vector of ones, mEP and mNIR are general means, ZEP and ZNIR

are the design matrices of breeding values, uEP and uNIR are

the vectors of genomic breeding values, and eEP and eNIR are the

vectors of random residual effects, for trait end-product quality and

NIR-predicted data, respectively. Residuals ( e = ½eEP , eNIR�) are
TABLE 2 End-product quality trait ranges (Min, minimum; Max, mean and maximum); variance components (genetic variance: s 2
g and residuals: s 2

e );

and broad- (H2) and narrow-sense heritability (h2) estimated with the SNP of lines analyzed from 2012 to 2019.

Trait Min Mean Max s2
g s2

e H2 h2 (SNP)

b* (colo) 5.96 9.62 18.70 0.86 0.13 0.87 0.68

Wab (%) 48.90 60.74 71.10 1.9 0.91 0.68 0.67

PSI (%) 7.00 15.68 36.80 3.64 1.47 0.71 0.68

FlrYld (%) 65.03 74.14 80.61 0.93 0.51 0.65 0.54

Protein (%) 7.55 11.47 15.80 0.19 0.30 0.40 0.40

FSV (ml/g) 7.14 12.31 29.00 8.42 8.31 0.50 0.27
fro
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assumed to follow a normal distribution, e | R0 ~ N(0, R0⊗ I) and

R0 = ½
s 2
eEP s2

eEP−NIR

s 2
eNIR−EP s 2

eNIR

�:

Residuals are assumed to be unstructured.

Wheat end-product quality traits are costly to assay directly and

therefore cannot be rapidly determined for a large number of lines

in breeding programs. NIR-predicted data can be generated easily

across many lines and used to predict end-use traits, making them

an interesting test case for examining bivariate models. The benefit

of using NIR to predict end-product quality traits was investigated

using three different cross-validation scenarios.

2.6.1 Cross-validation scenario S1
The end-product quality phenotypes of validation lines were

masked and predicted with a reference population with equal

numbers of end-product and NIR-predicted data. This aimed to

assess the effect of multi-trait analysis in the improvement of

prediction accuracy of end-product quality traits where both traits

are available on the same lines (i.e., their assessment is costly and

time-consuming).

2.6.2 Cross-validation scenario S2
Validation lines were masked from both end-product and NIR-

predicted traits; however, the reference set included all additional

lines with only NIR-predicted data. This aimed to study the effect of

extra NIR-predicted data on improving prediction accuracy.

2.6.3 Cross-validation scenario S3
Assessment of adding NIR-predicted data on validation lines to

increase prediction accuracy, assuming that NIR-predicted data are

easy and cost-effective to generate on all lines. In this scenario, end-

product phenotypes were masked only in the validation set, while their

corresponding NIR measurements were included in the reference set.
2.7 Forward genomic prediction

In breeding programs, the aim is to predict future years/

environments using previous years’ data. These independent
Frontiers in Plant Science 05
predictions were performed by training the model on previous

years’ data and predicting future environments using GREML. Data

from 2012 to 2015 were used to predict 2016, 2012 to 2016 to

predict 2017, and 2012 to 2018 to predict 2019.
3 Results

3.1 Trait heritability and correlation

Phenotype records of wheat lines from different breeding cycles

(2012–2019) were used to estimate broad- and narrow-sense

heritabilities as well as genomic prediction analyses. Records were

unbalanced across years and trials, with, in total, 1,400–1,900 end-

product wheat lines and 27,000 NIR-predicted lines available. For

both end-product and NIR-predicted data, the lowest number of

individuals was recorded in 2012, while in 2018 and 2019, the

largest number of lines were measured. Phenotypic records by trait

and year are summarized in Table 1. Phenotypic values exhibited

variation suitable for breeding, with H2 being high for b*, Wab, and

PSI, moderate for FlrYld and Protein, and relatively low for FSV

(Table 2). SNPs also captured a high proportion of the phenotypic

variance, as demonstrated by h2.

Genetic correlations between end-product quality and NIR-

predicted traits were estimated using a multi-trait model (Table 3).

All end-product traits were strongly correlated with NIR-predicted

traits, with the exception of FSV, which had a low correlation, and

protein, with a moderate correlation. The phenotypic correlations

for the trait sets were high for most traits, except for FlrYld and

FSV (Table 3).
3.2 Population structure

A principal component analysis was used to investigate

population structure. The two first components jointly explained

56.2% of the variation (Figure 2). The plot shows the relationship

between groups of individuals used in the analysis. There is a

slightly denser concentration of lines in the lower right corner of

the chart for three groups (i.e., end-product only, NIR only, and

both phenotypes). However, there is a complete overlap of lines in

all groups. In other words, lines from diverse backgrounds have

been recorded for both NIR and end-product performance. This

close genetic relationship between lines with end-product assay

data and those with NIR-predicted data is expected to improve

prediction accuracy and result in more accurate genomic

breeding values.
3.3 Single-trait prediction

Single-trait BLUE prediction accuracies for end-product quality

traits were highly variable, ranging from 0.20 for FSV to 0.56 for b*

(Table 4). A correlation between trait heritability and prediction

accuracy was observed with traits of lower heritability tending

towards lower prediction accuracy. The correlations of broad-
FIGURE 1

Schematic illustration of cross-validation in three different multi-trait
analysis scenarios.
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and narrow-sense heritabilities with single-trait prediction

accuracies were 0.62 and 0.54, respectively.
3.4 Multi-trait prediction

We assessed three scenarios that included NIR-predicted data

to predict end-product quality traits in a different manner. In the

first scenario (S1), NIR-predicted data were limited to the lines that

had been assessed for end-product quality traits, while in the second

scenario (S2), a large number of additional lines with NIR-predicted

data were added to the training population. In both S1 and S2, end-

product measured phenotypes of the validation set and their

corresponding NIR-predicted data were removed from training;

however, in the third scenario (S3), NIR-predicted data of lines in

the validation set were included. The aim of this approach was to

investigate whether early NIR phenotyping of candidate lines

improves the prediction accuracy of end-product traits. Fivefold

cross-validation within the population was used to estimate

prediction accuracy from the GBLUP. In S1, adding NIR-

predicted data increased the accuracy of predictions in all end-

product quality traits compared to single-trait prediction, except for

protein, in which there was a reduction in prediction accuracy and

b* with no material change (Figure 3). In this scenario, PSI showed

the highest improvement, followed by Wab.

To identify whether the inclusion of additional NIR-predicted

data in the model could further improve the predictive performance
Frontiers in Plant Science 06
of end-product quality traits, S2 and S3 scenarios were studied.

Adding more information through the inclusion of NIR-predicted

data improved the mean prediction accuracy of all traits (Figure 3),

although traits responded differently depending on the scenario. For

most multi-trait scenarios, the inclusion of NIR-predicted data

prediction accuracy increased. Protein content was an exception

with multi-trait prediction inferior to the single-trait model in all

scenarios. Wab and PSI showed the highest accuracy increase in S2

and S3 when compared to single-trait scenarios, with an average

accuracy of 0.40 and 0.50 for Wab and PSI, while their

corresponding single-trait accuracy was 0.26 and 0.27,

respectively. FlrYld and b* also positively responded to including

more NIR-predicted data, where in S3 an accuracy of 0.41 (flour

yield) and 0.64 (b*) were observed compared to the single-trait

model (0.35 and 0.56, respectively).

The scale of the genetic correlation between end-product and

NIR-predicted traits was reflected in the level of genomic prediction

accuracy. For example, genetic correlations and prediction

accuracies were high for Wab and PSI. There was a high

correlation between the magnitude of prediction accuracy in the

multi-trait scheme and the genetic correlation of end-product and

NIR-predicted data (0.69–0.77). Correlations between broad- and

narrow-sense heritability with multi-trait prediction accuracies in

different scenarios ranged between 0.53 and 0.60 and 0.43 and 0.47,

respectively. Broad- and narrow-sense heritability also had a

correlation of 0.58 and 0.45, respectively, with mean prediction

accuracies across all three scenarios.
3.5 Forward prediction

Despite some fluctuations, there was a gradual increase in

prediction accuracy through the addition of phenotypic data over

the years, though PSI accuracy was variable (Figure 4). All trait

prediction accuracies increased by 13%–30% compared to the mean
FIGURE 2

Principal component analysis of the genomic relationship matrix of
wheat lines showing the distribution of lines with end-product
(yellow), NIR (aqua) phenotypic data, or with both traits (dark blue).
FIGURE 3

Prediction accuracy for wheat end-product quality traits in S0:
single-trait model; S1: using only end-product test results and their
corresponding NIR measurement; S2: including extra NIR-predicted
data for individuals without end-product test results; and S3:
including NIR measurements of the validation set in reference test.
TABLE 3 Phenotypic and genetic correlations between end-product and
NIR-predicted traits.

Trait Genetic correlation Phenotypic correlation

b* 0.83 ± 0.02 0.46 ± 0.01

Wab 0.86 ± 0.02 0.67 ± 0.01

PSI 0.82 ± 0.03 0.69 ± 0.01

FlrYld 0.67 ± 0.04 0.26 ± 0.01

Protein 0.50 ± 0.06 0.85 ± 0.01

FSV 0.19 ± 0.08 0.12 ± 0.02
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accuracy across years between 2016 and 2019. The highest forward

prediction accuracy was observed for b*, which was similar to

single- and multi-trait scenarios.

Forward prediction in a univariate scheme showed similar

average prediction accuracy across years with a lower upward

trend than the multi-trait, demonstrating more accurate

predictions were achieved when using correlated NIR-predicted

traits to increase training size (Table 4).
4 Discussion

Wheat end-product quality traits have been difficult to include

in early selection as testing is labor intensive, costly, and requires

large grain samples that are usually not available until late in the

breeding cycle. These limitations cause breeding program

inefficiency with high-yielding lines, which incur significant field

trial resources before often being discarded late in the breeding

cycle based on quality testing results. The genomic selection offers

a new way to include end-use quality traits into the early breeding

cycle; however, genomic selection success requires having training

populations of sufficient size for accurate prediction, and some of

the limitations listed above also make the accumulation of

adequate training populations problematic (Hayes et al., 2017;

Zhang-Biehn et al., 2021). Studies have also shown that closely

related training and validation populations result in accurate

genomic breeding values (Habier et al., 2007; Daetwyler et al.,

2008; Meuwissen, 2009). In this paper, we demonstrate two

effective strategies for increasing the power of genomic selection.

First, by increasing the training population size using correlated

NIR predictions of end-product quality in a multi-trait model and,
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second, by adding observations to the training population in a

breeding-relevant forward validation scenario across years.

Overall, the multi-trait models were effective in increasing

prediction accuracy.
4.1 Heritability and genetic correlations

The broad-sense heritability of end-product quality traits

evaluated varied from 0.40 to 0.87, with most of them having a

value above 0.60. These heritability estimates for quality traits are

consistent with values reported in other studies (Carter et al., 2012;

Jernigan et al., 2018; Michel et al., 2018; Kristensen et al., 2019). The

lower heritability of traits like FSV may be representative of a

complex and polygenic underlying architecture (Hayes et al., 2017).

Intermediate to high heritability estimates suggested that most of

the variation of the trait is genetic (Tsai et al., 2020). In this study,

the achieved prediction accuracy indicates that genomic selection is

suitable for breeding highly heritable traits, as the models are

generally able to capture much of the additive genetic variation.

Multi-trait models have been shown to improve the prediction

performance of traits with lower genetic correlations, whereas

correlated predictors have higher heritability (Jia and Jannink,

2012; Guo et al., 2014). However, for very complex polygenic

traits, multi-trait models may not show an advantage over single-

trait models even where heritability is high (Jia and Jannink, 2012;

Lado et al., 2018).

End-product and NIR-predicted traits showed a high genetic

correlation. This is consistent with other studies, where the genetic

correlation of end-quality traits and their corresponding NIR

prediction were notably high (Hayes et al., 2017). High

correlations have been shown to have an impact on increasing the

prediction accuracy of traits (Hayes et al., 2017; Michel et al., 2018;

Azizinia et al., 2020; Guo et al., 2020; Tsai et al., 2020).

In general, traits with lower genetic correlations of end-product

and NIR-predicted data showed a smaller improvement in

prediction accuracy. This is similar to the result reported by

Hayes et al. (2017). Our results also align with previous studies

that reported that prediction accuracy for traits with intermediate to

low correlations was not substantially improved in multi-trait

schemes (Calus and Veerkamp, 2011; Lado et al., 2018). Jia and

Jannink (2012) indicated that for very complex traits with low

heritability, multi-trait models have little advantage over other

models. Our hypothesis was that using a larger reference

population would increase prediction power in the validation

population with increased relatedness of reference and validation

sets. Overall, our results suggest that multi-trait models using

correlated attributes do improve the accuracy of genomic

prediction (Guo et al., 2014; Rutkoski et al., 2016), and this

increases the potential uses of NIR-predicted data to predict

wheat end-product quality traits (Dowell et al., 2006; Hayes et al.,

2017). Increasing the size of the reference set through the addition

of both end-product quality and NIR-predicted data is therefore

recommended to improve end-product predictions, especially for

traits with moderate and low correlations (e.g., FlrYld, Protein,

and FSV).
FIGURE 4

Multi-trait prediction accuracy for wheat end-product quality traits
(b*: ; Wab: ; PSI: ; FlrYld: ; protein: ; FSV: ) in
forward prediction. Combined data from previous years were
applied as training for future years.
TABLE 4 Mean forward prediction accuracies across 2016–2019 in
single- and multi-trait analyses.

b* Wab PSI Flour yield Protein FSV

Multi-trait 0.54 0.09 0.42 0.17 0.21 0.16

Single trait 0.49 0.07 0.42 0.17 0.19 0.15
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4.2 Multi-trait prediction

Multi-trait models combine information of correlated traits to

deliver higher prediction accuracy and are thus useful in enhancing

the prediction accuracy of favorable traits, which are difficult to

assess in the early cycles of the program. We showed higher

prediction accuracy across quality traits in multi-trait models (S1,

S2, and S3), which is consistent with Lado et al. (2018), who

reported increased prediction ability of quality traits using the

information of correlated attributes compared to a single-trait

prediction model.

Using NIR-predicted data in a multi-trait scheme, prediction

accuracies showed on average a 0.05 to 0.2 (8% to 73%) rise across

all scenarios and traits (excluding Protein). This is comparable to

Lado et al. (2018), who reported a 60% to 100% increase in

prediction accuracy of target quality traits using correlated traits

in different multi-trait models. Hayes et al. (2017) also reported an

increase of 0.03 to 0.45 (6% to 300%) in soft and hard wheat for

grain hardness, grain protein, b*, and water absorption in different

multi-trait scenarios, although the strategy used to predict

performance was different. Overall, the addition of NIR-predicted

data substantially improved trait prediction accuracy, and it is

worthwhile perusing as a strategy in breeding programs.

Higher accuracies of different multi-trait scenarios also

suggested that an expanded reference set of predictors would

improve the prediction accuracy of correlated traits (S2 and S3).

While using NIR-predicted data of the reference population (S1)

showed an 11% increase in prediction accuracy over the single-trait

model, increasing NIR measures as a correlated trait in the second

scenario (S2) had a 33% increase over the single model. Including

NIR measures of candidate lines in the training population (S3) also

showed a 30% increase in prediction accuracy across all traits but

did not considerably affect prediction accuracy compared to S2. The

additional NIR information in S3 compared to S2 involved adding

only a small number of observations. It could be that the addition of

a relatively small number of NIR-predicted data would be unlikely

to substantially affect the prediction accuracy. Particularly, focusing

on improving the genetic correlation of NIR predictions with end-

product assays and therefore increasing NIR-predicted data will

positively affect prediction accuracy for target traits. The findings of

the present study can be potentially applied in plant breeding to

achieve more accurate and improved predictions compared

to single-trait predictions for end-product quality traits of

high importance.
4.3 Forward prediction

Predicting the performance of new individuals lacking

phenotypes is always a challenge in breeding programs. We

demonstrated continuous increases in forward prediction

accuracy across years as the size of the training population (and

relatedness to the training set) increased. The importance of large

training population sizes in increasing forward prediction accuracy

has been previously demonstrated (Battenfield et al., 2016; Yao

et al., 2018; Michel et al., 2019b). Jarquıń et al. (2017) indicated
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difficulty in predicting future years for grain yield, with lower

prediction accuracy compared to cross-validation. In our study,

cross-validation in all scenarios had higher prediction accuracy

compared to mean forward prediction accuracy. Higher accuracy

from cross-validation arises from over-inflation in the method and

the fact that the likelihood of assignment of close relatives in

validation and reference sets can cause inflation of prediction

accuracy (Rutkoski et al., 2015). Lower average forward

prediction accuracy compared to cross-validation can be due to

the random selection of reference and validation sets in the latter

method, which results in a better estimation of environmental

variation (Rutkoski et al., 2015; Battenfield et al., 2016). In

forward prediction, genotype-by-environment interactions may

play a major role since the training set is not as representative of

the validation set. On the other hand, the prediction accuracy of

2019 in forward prediction was higher, suggesting the importance

of including bigger training sets and genotype–environment

interaction, which has been highlighted in other research studies

(Crossa et al., 2014). Increasing training population size and

updating genomic selection models every year is recommended

for the best prediction accuracy (Michel et al., 2019a). Given the

promising results of forward prediction for the quality traits,

implementing GS will enable breeders to make a selection for

those quality traits in a larger population at earlier stages, thereby

enhancing selection efficiency (Fiedler et al., 2017). Additionally,

eliminating less favorable lines can be done in early cycles of

breeding programs based on GEBVs alone. This approach will

remove costs from breeding programs by only keeping potential

candidate lines that will be of sufficient end-product quality for

relevant markets.

Prediction ability could be improved by optimizing other

factors affecting GS accuracy (Daetwyler et al., 2008); for

example, integrating GxE and spatial effects in the model could

improve prediction accuracy (Lin et al., 2021). Extending the multi-

trait model to a multi-trait and multi-environment model that takes

into account the interaction of trait–genotype–environment is

another approach that could enhance the prediction ability of

complex traits (Montesinos-lópez et al., 2016; Tsai et al., 2020).
5 Conclusion

We investigated the potential benefit of including NIR-

predicted data in multi-trait models for predicting six end-

product quality traits in a commercial wheat breeding program.

Different scenarios of multi-trait models were compared with a

single-trait prediction model. We demonstrated that multi-trait

models combining direct measures of end-product quality traits

with their NIR predictions had higher predictive accuracy than their

respective single-trait models. The increased prediction accuracy

was observed with the inclusion of NIR-predicted data in the

training population, which was likely driven by the increased size

of the reference set and the relationship between the reference and

validation populations. The prediction accuracies we achieved using

the combined data were at a level that breeding selections could be

confidently applied in the breeding process to increase breeding
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efficiency and genetic gain. Integrating NIR-predicted data into the

prediction is a cost-effective way to improve the prediction accuracy

of end-product quality traits, enabling breeders to confidently

validate large numbers of lines in early breeding cycles. While our

results state the efficiency of multi-trait analysis in end-quality traits

in bread wheat, the method can be generalized to any other plant

breeding program that may want to benefit from NIR-predicted

data in improving the prediction accuracy of laborious-to-

phenotype traits (Hayes et al., 2017; Lado et al., 2018; Azizinia

et al., 2020; Sandhu et al., 2022).
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Gerland, P., Raftery, A. E., Ševčıḱová, H., Li, N., Gu, D., Spoorenberg, T., et al. (2014).
World population stabilization unlikely this century. Sci. (80-.). 346, 234–237.
doi: 10.1126/science.1257469

Guo, J., Khan, J., Pradhan, S., Shahi, D., Khan, N., Avci, M., et al. (2020). Multi-trait
genomic prediction of yield-related traits in US soft wheat under variable water
regimes. Genes (Basel). 11, 1–25. doi: 10.3390/genes11111270

Guo, G., Zhao, F., Wang, Y., Zhang, Y., Du, L., and Su, G. (2014). Comparison of
single-trait and multiple-trait genomic prediction models. BMC Genet. 15, 1–7.
doi: 10.1186/1471-2156-15-30

Habier, D., Fernando, R. L., and Dekkers, J. C. M. (2007). The impact of genetic
relationship information on genome-assisted breeding values. Genetics 177, 2389–2397.
doi: 10.1534/genetics.107.081190

Hayes, B. J., Panozzo, J., Walker, C. K., Choy, A. L., Kant, S., Wong, D., et al. (2017).
Accelerating wheat breeding for end-use quality with multi-trait genomic predictions
incorporating near infrared and nuclear magnetic resonance-derived phenotypes.
Theor. Appl. Genet. 130, 2505–2519. doi: 10.1007/s00122-017-2972-7

Heffner, E. L., Jannink, J.-L., and Sorrells, M. E. (2011). Genomic selection accuracy
using multifamily prediction models in a wheat breeding program. Plant Genome 4,
65–75. doi: 10.3835/plantgenome2010.12.0029

Hoffstetter, A., Cabrera, A., Huang, M., and Sneller, C. (2016). Optimizing training
population data and validation of genomic selection for economic traits in soft winter
wheat. G3 Genes.Genomes|Genetics (Bethesda) 6, 2919–2928. doi: 10.1534/
g3.116.032532
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