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Cynanchum wilfordii is a perennial tuberous root in the Asclepiadaceae family

that has long been used medicinally. Although C. wilfordii is distinct in origin and

content from Cynancum auriculatum, a genus of the same species, it is difficult

for the public to recognize because the ripe fruit and root are remarkably similar.

In this study, images were collected to categorize C. wilfordii and C. auriculatum,

which were then processed and input into a deep-learning classification model

to corroborate the results. By obtaining 200 photographs of each of the two

cross sections of each medicinal material, approximately 800 images were

employed, and approximately 3200 images were used to construct a deep-

learning classification model via image augmentation. For the classification, the

structures of Inception-ResNet and VGGnet-19 among convolutional neural

network (CNN) models were used, with Inception-ResNet outperforming

VGGnet-19 in terms of performance and learning speed. The validation set

confirmed a strong classification performance of approximately 0.862.

Furthermore, explanatory properties were added to the deep-learning model

using local interpretable model-agnostic explanation (LIME), and the suitability of

the LIME domain was assessed using cross-validation in both situations. Thus,

artificial intelligence may be used as an auxiliary metric in the sensory evaluation

of medicinal materials in future, owing to its explanatory ability.

KEYWORDS

explainable artificial intelligence, image classification, Incpetion-ResNet, sensory
evaluation analysis, image classification algorithm
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1 Introduction

Northeast Asian countries have long employed medical plants,

such as herbal medicines, in the private sector to treat chronic ailments,

and the industry is constantly developing. Functional compounds

extracted from medicinal plants, in particular, are being employed as

components of health functional meals, and efficacy studies as

pharmaceutical substances are being actively done. Thus, the value of

their use is quite high (Jiang et al., 2011). As the need for medical plants

grows, so do related industrial achievements. However, the

requirement for periodic standardization and stability difficulties

before production, distribution, and sales management is growing

(Han et al., 2016). This is a fundamental issue to address in

maintaining the equivalence of efficacy and quality control of

pharmaceuticals employing accurate medicinal ingredients, and

ensuring such quality is a critical aspect in standardizing and

modernizing oriental medicine products for entry into the

global market.

Cynanchum wilfordii is a perennial tuberous plant of the

Asclepiadaceae family that grows in Korea, China, and Japan. It

has traditionally been used for nutrition, tonic, blood, and renal

health. Among the components, gagaminine has been shown to

inhibit hepatic aldehyde oxidase, and cynandione A has been shown

to inhibit nerve cell damage (Ryuk et al., 2014). Comparing the

chemical composition of the two herbs, Caudatin-2,6-dideoxy-3-O-

methy- b-D-cymaropyranoside and caudatin isolated from C.

auriculatum Royle ex Wight showed high antitumor activity

against SMMC-7721 cells and inhibited H22 tumor growth in

vivo (Peng et al., 2008). Meanwhile, C. wilfordii roots yielded

nine new C21 steroidal glycosides, cynawilfosides A–I, and 12

known compounds(Li et al., 2016). C. wilfordii is not related to C.

auriculatum in origin or content. However, recognizing it is

challenging for the public owing to the similarity between the ripe

fruit and seed. C. auriculatum, in particular, was designated as a

toxic plant. However, two separate raw materials are blended and

placed into the market before ensuring raw material stability, which

might lead to consumer distrust of the mixed product (Ryu et al.,

2018). It is particularly challenging to detect whether or not it is

blended since it is processed in the form of powder or extract.

The traditional method of identifying medicines through

morphological characteristics such as appearance, color, taste, and

smell is widely used in the field because it has the advantage of being

simple and direct confirmation. However, its fundamental flaw is

dependent on the discriminator’s expertise and subjectivity (Jiang

et al., 2011; Ryu et al., 2018). Various methods have been developed

to compensate for these disadvantages. Internal morphology

identification using microscopy and anatomical techniques,

physicochemical identification that analyzes and compares

components, and gene identification through unique genetic

information search through genome analysis (Kim et al., 2013). A

method using DNA markers, which are not affected by external

factors, has recently been actively studied for major crops to identify

plant species accurately and quickly. Unlike morphological

characteristics such as the shape and size of plants, the method

using DNA markers can distinguish plant species without being

affected by the external environment. Furthermore, no limit exists
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on the number of markers that can be used. Therefore, an accurate

discrimination is possible (Sato-Masumoto et al., 2017). However, it

is necessary to secure the DNA nucleotide sequence of all medicinal

materials, and there is a limit to immediately distinguishing raw

materials in the field.

The spread of smartphones and the development of deep-

learning-based image recognition technology have laid the

foundation for easily recognizing various objects and acquiring

information through cameras (Sun and Qian, 2016; Afonso et al.,

2020). The field of plant recognition is a good use case that can

apply the advancement of these technologies, and various

technological studies are being conducted. Furthermore, services

based on this have become an environment that is easily accessible

through mobile devices (Grinblat et al., 2016; Saleem et al., 2019; Xi

and Panoutsos, 2020; Jung et al., 2022). The massive amount of

ImageNet data has had a profound impact on the development of

machine learning technology in the field of image recognition

vision. In particular, deep-learning technology, which has

developed existing neural network technology, has shown rapid

performance improvement. It has been applied to almost all fields

that require artificial intelligence (AI), such as vision and natural

language processing, and research is still being actively conducted.

Plant recognition technology mainly utilizes convolutional neural

networks (CNN) among deep-learning technologies. Recognizing

the type of plant captured by the camera is one of the primary

purposes of plant recognition. Because of this, plants become the

main subject, and usability is sufficiently increased by classification

alone. Dyrmann et al. (2016) developed a CNN model with 86.2%

classification accuracy for 22 weed and crop species by learning

10,413 images, including 22 weed and crop species. Lin et al. (2019)

applied a CNN-based deep-learning model to classify Powdery

Mildew in cucumber and reported a classification accuracy of

about 96.08%.

Deep-learning technology is widely applied in the plant

recognition field with the development of deep-learning technology.

However, there are not many cases of collecting and analyzing large

amounts of images of medicinal plants. In particular, the most

important point in applying image-based deep-learning classification

technology is to enhance understanding of which patterns and parts of

the sample were identified to predict the results for plants such as

Cynanchumwilfordii, which are difficult to distinguish due to the large

number of similar varieties with the naked eye.

Because these medicinal samples are easily jumbled during the

processing and distribution stages, they always necessitate the services

of a sensory evaluation expert (Chong and Cros, 2004). Numerous

images are required in this sensory evaluation area to translate

morphological features into data, and it is critical to locate the

feature locations. However, due to the black-box nature of neural

network-based modeling, it is nearly hard to interpret, making model

prediction challenging to understand. Sun and Qian (2016) used CNN

technology for herbal medicine image recognition to classify 95

categories of medicinal herbs from 5523 images. As a result, it

reported 71% recognition accuracy and 53% retrieval accuracy on

average when learning. This demonstrates that there is still a

tremendous possibility for improvement if we contribute to learning

by spotting similarities among therapeutic ingredients.
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Consequently, Explainable Artificial Intelligence (XAI) technology,

which can provide AI interpretation, is gaining popularity. By building

more explainable models while maintaining high levels of performance,

XAI enables analysts to understand and trust AI (Apostolopoulos et al.,

2022; Başaran, 2022). The goal of XAI was defined in three ways: The

first is to reduce the model’s complexity, the second is to improve the

predictability of model predictions, and the third is to employ AI

models for decision-making. One of the existing detection models, a

rule-based model, was proposed in early XAI as a model that conducts

detection based on rules that analysts can understand. Zhen et al.

suggested a CNN learning structure with an interpretability-oriented

layer in the form of fuzzy logic-based rules. The LRP (Layer-wise

Relevance BackPropagation) model was proposed as a method of

backtracking the NN (Neural Network) model’s outcomes and

calculating the contribution of input data to individual features

(Bach et al., 2015). Local Interpretable Model-Agnostic Explanations

(LIME) is an explanation technique for local models that focuses on

training local surrogate models to explain prediction outcomes (Ribeiro

et al., 2016; Tulio Ribeiro et al., 2016). LIME is frequently used for

image-based active site prediction. It looks for ‘superpixels’ with the

highest expressiveness for binary vectors or class outputs that signal the

presence or absence of continuous pathways. Several research cases

have been published, particularly those that learn characteristics and

enhance confidence in CNN algorithms.

CNN models capable of distinguishing C. wilfordii and C.

auriculatum are used in this study to verify the viability of image-

based categorization among herbal medications. Furthermore, this

study aims to contribute to the advancement of deep-learning

recognition models by employing LIME, which can express

morphological features using explainable AI technology.
2 Materials and methods

2.1 Acquisition of image data and
preprocessing method

C. wilfordii and C. auriculatum belong to the same

Asclepiadaceae family and are physically quite similar because

they have hypertrophied roots. Tuberous roots, in particular, are

generally seen in horizontally or vertically cut forms. The entire

length is approximately 7 to 12 cm, and the diameter is
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approximately 0.5 to 1.5 cm. Figure 1A depicts the overall shape

of C. wilfordii roots. It is commonly supplied on the market in the

shape of B and C in Figure 1, and samples cut in this manner are

difficult to match with C. auriculatum. Figure 1B exhibits the X-Y

axis with the long side of the root as the reference axis, while

Figure 1C illustrates the Y-Z axis. The truncated B and C forms of

C. wilfordii and C. auriculatum are to be recognized individually in

this study. As a result, two cut sections were photographed, yielding

800 images, 200 of each of the four classes.

The amount of training data is significant for constructing a model

in AI learning. The data augmentation method is primarily used when

obtaining a large number of image data is difficult. Data augmentation

was done on the captured images in this study using the generally used

image augmentation approach depicted in Figure 2 below. In Figure 2,

A is the original image, and B-G are images augmented using a

commonly used image processing technique.

In this study, 100 images were applied to each augmentation

method by selecting original images using a random function to

avoid overfitting through a specific technique in the six

preprocessing techniques. In the following, we investigate how the

learning and verification performance is affected by whether or not

image augmentation is conducted for the dataset before applying it

to the AI model.
2.2 Development of CNN
classification model

2.2.1 Applied CNN model
In RGB image object recognition and classification, the 2D

CNN model outperforms existing image processing approaches

(Rawat and Wang, 2017). Two models with good performance

and applications in various industries were chosen from among the

most frequently reported model structures in 2D image

categorization and utilized as comparison groups in this study.

Moreover, the same inputs and outputs were employed as in the

previous 2D CNN proposal. VGGnet-19 is the first 2D-CNN

algorithm identified for comparison. VGGNet is a model

proposed by Simonyan and Zisserman (2014) in the 2014

ILSVRC, which came in second place after GoogLeNet. However,

it is used more often since it is structurally simpler than GoogLeNet,

thus, easier to understand and test. Figure 3 illustrates the structure
FIGURE 1

A sample of the root zone of C. wilfordii (A), horizontal section (Xy) (B), vertical section (Yz) (C).
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of VGGnet-19. Layers are learned from the input on the left to the

softmax on the right of the diagram. In general, it consists of a conv

layer, which serves as the core of the CNN structure, and a pooling

layer, which reduces data space. Before categorization, the process’s

ultimate outcome is flattened one-dimensionally through a fully

linked layer. The softmax function is then used for categorization.

In the case of VGGnet, the filter of the conv layer was set to 3 × 3

with stride = 1, and the ReLU function was utilized as the

activation function.

Inception-ResNet, proposed by Szegedy et al. (2017), is the

second CNN classification model used. Inception-ResNet was

designed to successfully broaden and deepen the Inception neural

network. Furthermore, better learning speed was reported by

adopting a simpler and more uniform structure than Inception-v4

and more Inception modules. Figure 4 depicts the entire structure of

Inception-ResNet.

The structure of the stem used has a conv-net structure

commonly seen in general CNN structures, as shown in
Frontiers in Plant Science 04
Figure 5A below. This is because the inception effect is not

significant at the beginning of the layer. The biggest feature of

Inception CNN is that the matrix operation itself is processed

densely while connecting the Conv layer sparsely. As shown in

Figure 5B, a residual connection structure is configured to

implement a function that calculates by combining the result of

the previous layer with the result of the current layer. This has

significantly affected the improving learning speed. The Resnet-A

layer has a 35 x 35 grid, and the Resnet-B layer has a 17 x 17 grid.

The modules to reduce this are consecutively composed of

Reduction-A and B.
2.3 Local interpretable model-agnostic
explanation for XAI

LIME is a method that specifically implements the local

surrogate model. Surrogate models learn to “approximate” the
FIGURE 3

The structure of VGGnet-19 used to develop the image classification model.
FIGURE 2

Original image of the horizontal section sample of C. wilfordii (A) and augmented images (B) Vertical shift; (C) Horizontal Flip; (D) Brightness; (E)
Vertical Flip; (F) Rotation; (G) Zooming.
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predictions of the underlying black box model. However, we focus

on learning a local surrogate model to explain individual

predictions rather than learning a global surrogate model. A good

approach to using LIME is to forget about the original dataset and

see why the model returned a particular result. Therefore, LIME

tests what changes occur to model predictions when the input data

is modified and creates a new dataset consisting of perturbed

samples and corresponding predicted values of the black box

model. Based on this, an interpretable model weighted by the

proximity of the sampled observation to the observation

(instance) of interest is learned. A local surrogate model has

interpretability constraints can be expressed as follows (Ribeiro

et al., 2016):

explanation(x)= argmin g∈G L(f ,g,px)+W(g) …½1�

Here g denotes a model that can explain the observed value x

and minimizes the loss function L. While keeping the complexity of

the model W(g) lower, the loss measures how close the predictions

of the explanatory model are to those of the original model f. The

loss function L here is expressed as follows (Ribeiro et al., 2016):

L(f ,g,px)= oz,z0∈ Zpx(z)(f(z)−g(z
0))2 …½2�

Here G is a set of possible explanations, including a general

linear regression model, and px is the measure of proximity

indicating how close to the observed value (x) that we consider

for the explanation.
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Images’ data format is a cluster of pixels, and it is difficult to

determine how significantly a single pixel contributes to class

determination. Individual pixel changes have little effect on the

model’s predictions, and image transformation is accomplished

through the superpixel segmentation and masking procedure.

Superpixel is a method for image classification that collects and

groups perceptually important pixels (Wang et al., 2017). Adjacent

pixels with comparable qualities (e.g., color, brightness) are

clustered together to form a big pixel or superpixel. It signifies

that the image will be processed in units of superpixels rather than

units of pixels. When we look at an image, we look at related parts

together rather than each pixel separately. As a result, it can be

demonstrated that processing images in superpixel units is a more

natural (human-like) way (Achanta et al., 2012). Thus, superpixel

and XAI technology were coupled to provide an auxiliary metric for

sensory evaluation. The image was segmented using Simple linear

iterative clustering (SLIC), one of the superpixel segmentation

algorithms. SLIC is an algorithm applying k-means for superpixel

generation and has two key differences. 1) Reduce the number of

distance computations in the optimization by limiting the search

space to an area equivalent to the superpixel size. This becomes

linear in the number of pixels N and can lower the complexity

irrespective of the number of superpixels. 2) A weighted distance

measurement maintains consistency while using color and

geographical proximity. In this image classification and XAI

application, around 250 pieces were processed using the SLIC

algorithm on 512 × 512 video images (Figure 6).
FIGURE 4

The structure of Inception-ResNet used to develop the image classification model.
A B

FIGURE 5

Stem structure used in Inception-ResNet (A) and ResNet-A layer of the residual connection structure (B).
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2.4 Model performance evaluation method

The developed model is a classification model for differentiating

C. wilfordii and C. auriculatum, and its performance was evaluated

based on accuracy, F1 score, and the receiver operating

characteristic (ROC) curve. Accuracy is a metric that takes into

account the situation in which the model infers two classification

labels and predicts true as true and false as false, and is expressed as

follows:

Accuracy= 
TP+TN

TP+FN+FP+TN
…½3�

True Positive (TP): Predict the answer that is actually true as

true (correct answer)

False Positive (FP): Predict the answer that is actually false as

true (wrong answer)

False Negative (FN): Predict the answer that is actually true as

false (wrong answer)

True Negative (TN): Predict the answer that is actually false as

false (correct answer)

The F1 score is one of the statistics that define the classification

accuracy and recall rate, which are combined into a single statistic.

Here, the harmonic average was determined, not the standard

average. Its purpose is to ensure that the F1 score has a similar

low value as precision and recall, which are close to 0. The equation

for the F1 score is as follows:

F1=2 · 
1

1
recall +

1
precision

=2 · 
precisioin ·recall
precision+recall

…½4�

Figure 6 depicts the classification of the training data set used to

compare the performance of the CNN model used to create the C.

wilfordii and C. auriculatum classification models. Models 1-1 and

1-2 apply unprocessed video images without a separate light

reduction procedure. Models 2-1 and 2-2, which will be

contrasted with this, eliminate background light reflection. Except

for the sample area, the background was transformed to picture

RGB (0,0,0) or black. The classification goals of Model 1-1 and

Model 1-2 were assigned distinct labels to classify the two shortened
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forms of C. wilfordii and C. auriculatum. Models 1-2 and 2-2

defined both portions as a single medicinal product label and then

classified each variant (Figure 7). Moreover, whether a region that

could serve as a sensory metric could be detected was determined by

applying LIME to each model.

The CNN Inception-ResNet and VGGnet models were

constructed using the Tensorflow and Keras libraries in Python

3.8. The GPU used to calculate the model was NVIDIA RTX 3090.
3 Results

3.1 Comparison of performance between
CNN Inception-ResNet and VGGnet

The collected images of C. wilfordii and C. auriculatum were

divided into four classes based on the cut section, and learning and

verification were performed. Furthermore, the learning and

verification performances were compared using two CNN models.

Through the augmentation of the original 800 images, around 3200

images were utilized. The learning-to-verification ratio was 8:2, and

the data was split. Figure 8 compares the outcomes of data models

1-1 and 2-1. In the performance of the two CNN models, the CNN

Inception-ResNet structure clearly exhibited faster learning speed

and higher classification accuracy than VGGnet-19. The learning

accuracy of Model 1-1’s Inception-ResNet was 0.835, while its

verification accuracy was 0.812. The learning accuracy of VGGnet

was 0.776, while the validation accuracy was 0.710. The

classification accuracy of model 2-1 with light reflection removal

was 0.821 at 0.861 verification accuracy in Inception-ResNet

training and 0.701 at 0.712 verification accuracy in VGGnet

training. Figure 9 is a confusion matrix displaying the

classification accuracy of Inception-four ResNet’s classes. The

average separation accuracy of the xy-cut sections in collected

samples of C. wilfordii and C. auriculatum was 0.86, but the yz-

cut sections had a lower accuracy of 0.76.

With the implementation of the data augmentation method, the

accuracy in the test set showed a noteworthy improvement of 0.1 to
FIGURE 6

Top view of the cut C. wilfordii (right) and image segmented by the SLIC algorithm for superpixels (left).
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0.15. This indicates that there was a significant boost in learning

performance, even with a limited number of samples, while also

mitigating the potential risk of overfitting.
3.2 Result of removing light reflection of
an image through the application of LIME

Models 2-1 and 2-2 corroborated the model classification

outcome by specifying two cut sections as one class. Table 1

summarizes the results. Models 1-1 and 1-2, which split and

classified cut sections into classes, showed higher classification

performance in general. In particular, the accuracy of VGGnet-19

increased considerably from 0.71 to 0.80. The performance of

Inception-ResNet improved slightly as well, and the validation set

classification accuracy in Model 2-2 was around 0.862.

Table 2 summarizes the performance cross-validation results of

Model 1-2, a classification model developed using raw images, and

Model 2-2, which was developed using images with light removal

processing to extract sample regions. The performance of the model

trained with raw images was confirmed to be much lower when

categorizing images with light reflection removed. The accuracies of

0.641 and 0.671 were validated as the performance of the two CNN

models, which failed to show significant performance in classifying

the two classes.

These results validated the local active area identified by the

LIME algorithm as the cause. Figures 10, 11 depict the trained model
Frontiers in Plant Science 07
as a raw image and the image with the background’s reflected light

removed, respectively. They display the outcome of discovering an

explanation component through LIME analysis of the trained model.

Figure 10 depicts not only the cross-section of the sample but also the

descriptive local area inside the region of reflected light in the

backdrop. Conversely, Figure 11 confirmed the outcome of locating

the explanatory component in the sample area.
4 Discussion

Medicinal plants have similar species that can be readily

jumbled in distribution, and distinguishing them requires a very

high level of sensory evaluation experience. The medicinal plant

species C. wilfordii and C. auriculatum exhibit similar

morphologies, and they are commonly intermingled in the

distribution process. These kinds are exceedingly tough to find

professionals that can recognize them in the field. As a result,

disruptive molecular analysis, such as physicochemical component

analysis or RNA analysis, can provide confidence in their

categorization accuracy (Han et al., 2016). However, this study

demonstrated that it is possible to differentiate between C. wilfordii

and C. auriculatum efficiently using AI image classification

technology, which is rapidly evolving.

In particular, the architectures of CNN models Inception-

ResNet and VGGnet-19 were used for classification. Inception-

ResNet demonstrated improved results in terms of performance
FIGURE 7

Training data groups to compare the performance of CNN models applied to develop the C. wilfordii and C. auriculatum classification models.
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and learning rate. Regarding two algorithms, the average processing

speed for the same training data (approximately 2400 images) in a
Frontiers in Plant Science 08
single iteration was 12.45 ± 1.25s and 26.22 ± 2.76s, respectively,

based on the GPU specifications used. A strong classification

performance of around 0.862 was confirmed in the validation set.

The two medications are mostly available in sliced form. When 4

classes were identified through 2 representative cross-sectional

examples, the highest verification result was roughly 0.835. The

xy-axis truncated shape demonstrated higher classification

accuracy. In fact, the model appears to have limitations if the

model is inferred or given in a crushed or another form while the

sample is not cut. In this study, images were captured at a consistent

height and position of the sample in the top view, where the cross

section is most visible. Thus, the classification performance loss is to

be expected when testing the classification performance of images

from multiple camera angles. This appears to be solvable by

acquiring more diversified and numerous images and applying

them for training.

LIME, an AI explainability technique, was employed in this study

to investigate whether it may be used as an auxiliary metric for

sensory evaluation by marking the explanatory component among

cross-sections of categorized medicinal materials. Figure 11

confirmed that the technique was explanatory in the sample’s local

area and suitably adaptable. Light reflection on the background is
A B

C D

FIGURE 8

Comparison of the performance of the CNN model applied to develop a classification model for C. wilfordii and C. auriculatum: (A) Classification
result of raw image learning model, (B) Verification result of the developed raw image-learning model, (C) Classification result of the learning model
after light removal treatment, and (D) Verification result of the developed light-cancellation image set model.
FIGURE 9

Four-label classification confusion matrix of the CNN Inception-
ResNet.
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TABLE 1 Validation set accuracy and F1 scores of classification cases 2-1 and 2-2.

Inception-ResNet VGGnet-19

Accuracy F1 score Accuracy F1 score

Model 1-2 0.855 0.834 0.811 0.806

Model 2-2 0.862 0.851 0.805 0.801
F
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TABLE 2 Cross-validation accuracy and F1 score results of classification cases 2-1 and 2-2 based on the developed CNN model.

Inception-ResNet VGGnet-19

Accuracy F1 score Accuracy F1 score

Model 1-2 to
Model 2-2

0.641 0.560 0.671 0.622

Model 2-2 to
Model 1-2

0.821 0.798 0.742 0.712
FIGURE 10

Result of finding explanation parts through LIME analysis for the Inception-ResNet model trained by raw images.
FIGURE 11

Result of finding the explanation part of the Inception-ResNet model through LIME analysis for the Inception-ResNet model trained by images from
which the reflected light on the background has been removed.
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evident to the naked eye in the raw image data of the collected image.

LIME yielded sample results with an explanatory ability to model

training in this domain. This appears to be due to the model detecting

the impact of the surrounding environment during image collecting;

this is expected to be validated later through LIME analysis of several

images taken in different situations. Only the sample had model

explainability in the area where the background light was deleted. It

was also established that the surface of the sample, rather than the

center, is the area primarily stimulated between the C. wilfordii and C.

auriculatum samples; this can also be perceived as the overall shape of

the cross-sectional contour.

Explainable AI refers to the technology that provides

interpretable forms of the prediction results generated by

machine learning models. This technology helps to understand

and analyze the prediction results of the model, making the model’s

prediction results more reliable. The image recognition and

classification technology in video and images has already been

extensively researched, but it is difficult to judge whether the

learning intentions of the model, which is developed as a black

box,match. By utilizing explainableAI technology, it becomes possible

to understand how a machine learning model makes predictions,

enabling the judgment of whether the model’s learning intentions are

consistent. Furthermore, the classification technology of C. wilfordii

and C. auriculatum could be used as an auxiliary means for

determining herbal medicine in the distribution field if it is

connected to a web platform, and it is highly likely that it can be

used as a means of providing accurate information to customers by

using devices that can acquire images, such as smartphones. This

technologycan increase the reliabilityof herbalmedicine sales andhelp

customers use herbal medicine correctly.
5 Conclusions

Images were collected in this work to categorize C. wilfordii and

C. auriculatum, which were then processed and put into a deep-

learning classification model to corroborate the results. For image

classification, the architectures of Inception-ResNet and VGGnet-

19 among CNNmodels were employed for classification. Inception-

ResNet demonstrated improved results in terms of performance

and learning rate. The validation set confirmed a strong

classification performance of around 0.862. LIME was also used

to add explanatory characteristics to the deep-learning model. In

both situations, the appropriateness of the LIME area was

determined using cross-validation. As a result, the raw image was

confirmed to be activated in the light reflection area in the
Frontiers in Plant Science 10
surrounding background. When eliminated, the created model’s

accuracy declined dramatically from 0.855 to 0.641. The second case

model designed to choose the sample region, on the other hand,

maintained an accuracy of 0.8 or higher even after cross-validation.

This Explainable AI has the potential to be employed as an auxiliary

metric in the sensory evaluation of therapeutic compounds

in future.
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