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Development of effective model
for non-destructive detection of
defective kiwifruit based on
graded lines

Feiyun Wang †, Chengxu Lv, Lizhong Dong, Xilong Li,
Pengfei Guo and Bo Zhao*†

National Key Laboratory of Agricultural Equipment Technology, Chinese Academy of Agricultural
Mechanization Sciences Group Co., Ltd, Beijing, China
The accurate detection of external defects in kiwifruit is an important part of

postharvest quality assessment. Previous studies have not considered the

problems posed by the actual grading environment. In this study, we designed

a novel approach based on improved Yolov5 to achieve real-time and efficient

non-destructive detection of multiple defect categories in kiwifruit. First, a

kiwifruit image acquisition device based on grading lines was developed to

enhance the image acquisition. Subsequently, a kiwifruit dataset was

constructed based on the external defect characteristics and a new data

enhancement method was proposed to augment the kiwifruit samples.

Thereafter, the SPD-Conv and DW-Conv modules were combined to improve

Yolov5s, with EIOU as the loss calculation function. The results demonstrated

that the improved model training loss value was 0.013 lower, the convergence

was accelerated, the number of parameters was reduced, and the computational

effort was increased. The detection accuracies of the samples in the test set,

which included healthy, leaf-rubbing damaged, healed cuts or scarred, and

sunburned samples, were 98.8%, 98.7%, 97.6%, and 95.9%, respectively, with

an overall detection accuracy of 97.7%. The detection time was 8.0 ms, thereby

meeting real-time sorting demands. The average detection accuracy and model

size of SSD, Yolov5s, Yolov7, and Yolov5-Ours were compared. When the

confidence threshold was 0.5, the detection accuracy of Yolov5-Ours was 10%

and 6.4% higher than that of SSD and Yolov5s, respectively. In terms of the model

size, Yolov5-Ours was approximately 6.5- and 4-fold smaller than SSD and

Yolov7, respectively. Thus, Yolov5-Ours achieved the highest accuracy,

adaptability, and robustness for the detection of all kiwifruit categories as well

as a small volume and portability. These results can provide technical support for

the non-destructive detection and grading of agricultural products in the future.
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1 Introduction

Kiwifruit is characterized by a soft texture, sweet and sour taste,

and richness in amino acids and minerals. The detection and

grading of kiwifruit are key aspects of postharvest processing and

provide important support for value-added commercialization (Fu

et al., 2018; Li et al., 2022).

In China, the grading of kiwifruits from different cities is

primarily conducted by manual sorting at present, which is

inefficient and subjective. Existing sorting equipment, such as

mechanical size grading and weight grading, cannot identify the

external defects of the fruit. Thus, computer vision is being applied

increasingly to agricultural products with the developments in

image processing technology (Liu et al., 2020; Tian et al., 2021).

Traditional image processing methods usually achieve fruit

recognition and detection by combining the extraction of shallow

information, such as the color, size, and texture of the target, using

techniques such as segmentation and discriminative models. Cui

et al. (2012) proposed the use of a near-infrared light source for

image acquisition and realized the extraction of scratch, decay, and

sun-burning defects using segmentation. Yang et al. (2021) used the

K-means clustering algorithm to segment the surface of kiwifruit

and reject defective fruits according to the darker color of surface

defects, such as fruit scars and disease spots, compared with those of

normal fruits. Subsequent studies (Zhou et al., 2012; Liu and Gai,

2020) used an image segmentation algorithm to extract the

contours of the fruit in an image to meet the detection and

grading needs. Li et al. (2020) used hyperspectral techniques for

deformed kiwifruit detection and compared three methods: the

partial least-squares linear discriminant model, back-propagation

neural network (BPNN), and least-squares support vector machine.

The experimental results showed that the BPNN model achieved

the highest accuracy at 97.56%. Fu et al. (2016) used a camera with a

weight sensor on a grading line that was equipped for kiwifruit

shape grading through a stepwise multiple linear regression

method. The grading accuracy when using a linear combination

of the cross-sectional diameter length was 98.3%. However,

traditional image processing techniques, which generally extract

feature targets manually, are only applicable to specific scene

studies, have weaker robustness, and are susceptible to

environmental influences during the extraction process.

Deep convolutional neural networks (CNNs) are superior to

traditional methods and have been applied to the class classification

and defect detection of fruits. Fan et al. (2020) improved the

parameters and number of connections in a CNN model to detect

the surface defects of apples in real time, with an accuracy of 92%.

Lu et al. (2022) used the Attention-YOLOv4 model to detect the

ripeness of different-colored apples. Zhang et al. (2020) improved

the VGG16 model by converting it into a fully convolutional

network and combining it with a spectral projection image to

segment the mechanical damage and calyx regions of blueberries.

Their method achieved an accuracy of 81.2%. Similarly, Wang et al.

(2018) combined hyperspectral images with deep learning methods,

and used the AlexNet and ResNet models to detect internal

mechanical damage in blueberries. Their results showed that the
Frontiers in Plant Science 02
deep learning models could maintain a higher accuracy than that of

machine learning methods while reducing the calculation time

significantly. Yu et al. (2018) proposed a combined model

consisting of an autoencoder and a fully connected neural

network to predict the hardness and soluble solid contents of

Korla fragrant pears, resulting in a correlation coefficient of 0.89.

Momeny et al. (2020) combined maximum pooling with mean

pooling in a CNN to classify self-built regular and irregular cherry

databases with an accuracy of 99.4%. Luna et al. (2019) created a

dataset of healthy and defective tomatoes and evaluated the

accuracy of their model using VGG16. A high accuracy rate of

98.75% was achieved. Azizah et al. (2017) used a four-fold cross-

validation method to classify CNN mangosteen with an accuracy of

97.5%. Jahanbakhshi et al. (2020) proposed an improved CNN

model for healthy and damaged sour lemon detection, achieving an

accuracy of 100%. Xue et al. (2018) improved the YOLOv2 model

using the Tiny-yolo-dense network to detect unripe mangoes with

an accuracy of 97.02%. CNNs have achieved high detection

accuracy, application flexibility, and good performance rates in

many fruit quality detection studies. However, the detection of

small objects with a low resolution remains challenging. This is

because small objects with a low resolution provide few learning

features and often coexist with larger undetectable objects.

Therefore, in this study, a kiwifruit dataset was constructed

according to an image acquisition device based on grading lines for

the detection of external kiwifruit defects. The widely used Yolov5s

(Li et al., 2023) was selected as the base model. The network

structure was improved and the loss function was optimized to

achieve non-destructive and efficient external detection of kiwifruit.

The results of this study can provide technical support for kiwifruit

quality grading.
2 Materials and methods

2.1 Dataset production

2.1.1 Sample source
Kiwifruit samples were obtained from the Zhouzhi (108.20 °E,

34.17 °N) and Meixian counties (107.76 °E, 34.29 °N) in Shaanxi

Province. The kiwifruit varieties Xu Xiang and Cui Xiang were

selected as the subjects of the study, and multiple batches were

acquired in the field and online from November 2021 to November

2022. A total of 1,020 original samples were obtained, including 320

healthy samples, 240 leaf-rubbing damaged samples, 240 sunburned

samples, and 220 healed cuts or scarred samples. The various

sample types are presented in Figure 1.
2.1.2 Image acquisition
Image acquisition was performed using an MV-EM200C

camera (Microvision, Xi ’an, China) with a model BT-

23C0814MP5 industrial lens, an image resolution of 1,600 ×

1,200 pixels, and an acquisition frame rate of 39.93 fps. The

image acquisition device was constructed based on a grading line

(Li et al., 2018), as illustrated in Figure 2, and mainly included the
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FIGURE 2

Acquisition device diagram.
B

C D

A

FIGURE 1

Kiwifruit samples. (A) Healthy, (B) leaf-rubbing damaged, (C) sunburned, (D) healed cuts or scarred.
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camera, lens, camera obscura, light sources, and acrylic plate. The

camera height was adjusted to 32 cm above the tray level to capture

the information of the three trays completely in a single image for

the grading application scenario. When the grading line moved, the

roller tray could turn the kiwifruit, and three samples in a single

image could be obtained to acquire the full surface information of

the kiwifruit. The light source was emitted from the bottom and

reflected on the kiwifruit surface through a half-cylinder acrylic

plate, which helped to reduce the problems of uneven light exposure

and reflection at different locations owing to direct radiation. When

the graded line speed was adjusted to 3–5 pcs/sec, the pallet

information was captured by a counter-light sensor, which was

passed to the isolation plate, thereby driving the camera to trigger

synchronously. Thus, the quality of the images captured by the

device was improved. The captured images contained 1–3 unequal

samples, with a total of 2,220 images captured, as shown in Figure 3.
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2.1.3 Data processing
First, the collected images were divided into training (1,332),

validation (444), and test (444) sets by batch at a 3:1:1 ratio. A multi-

data-enhanced fusion method based on an adjustable range was

implemented to enhance the robustness of the model under

background differences in the kiwifruit images. The training set data

were randomly combined using six methods: contrast, brightness, and

rotation angle adjustment, mirroring, Gaussian noise addition, and

filtering. The training dataset was enhanced seven times, resulting in a

total of 10,656 images. The specific parameters are listed in Table 1. The

experiment was conducted using a dataset in the Pascal Voc format and

the dataset was labeled using labelImg. Four categories were labeled:

“Kiwifruit,” “Leaf-rubbing damaged,” “Sunburned,” and “Healed cuts

or scarred,” with the latter three categories corresponding to each defect

type. The sample labeled “Kiwifruit”was used to locate the kiwifruit, but

a single sample labeled “Kiwifruit” was considered as healthy.
B

C

A

FIGURE 3

Image acquisition. (A) Single sample, (B) two samples, (C) three samples.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1170221
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1170221
2.2 Model construction

2.2.1 Experimental environment
The experimental operating platform was a Dell Precision 7920

Tower workstation (Dell, Round Rock, TX, USA) with an Ubuntu

18.04 64-bit operating system. The central processor of the

workstation was an Intel Xeon Silver 4216 @ 2.10 GHz (X2; Intel,

Santa Clara, CA, USA) with 128 G of running memory. The GPU

was an NVIDIA GeForce RTX 3090 (Nvidia, Santa Clara, CA, USA)

with a 24 G display memory. A deep learning framework with a
Frontiers in Plant Science 05
GPU was used to accelerate the dynamic neural network Pytorch

version 1.11, Anaconda 3.7 environment manager, and Python

version 3.8.

2.2.2 Model structure
The structure of Yolov5-Ours, which was based on Yolov5s, is

depicted in Figure 4. It included four parts: the input, backbone,

neck, and prediction.

(a) Input: The input was a three-channel RGB image of

kiwifruit, and the image size was uniformly adjusted from 1,600 ×

1,200 to 640 × 640 at the acquisition time using adaptive

picture scaling.

(b) Backbone: The backbone consisted of CBL, DWCBL, SPD-

Conv, C3, and SPP. CBL consisted of convolutional and BN layers

and leaky ReLU. The image size at the input was 640 × 640 × 3, and

the output was 320 × 320 × 32 after slicing by the first CBL. DWCBL

consisted of depth-wise separable convolution (DWConv) and BN

layers and a Leaky ReLU. The DWConv layer with SPD-Conv

(consisting of spatial-depth (SPD) and step-free convolutional

layers) was implemented as the improved structure (the

numbered part marked in Figure 4). The improved structure is

described in detail in Section 2.3. C3 consisted of a CBL, residual

structure, and convolutional layer connection, which could solve
FIGURE 4

Yolov5-Ours network structure.
TABLE 1 Data enhancement methods.

Methods Parameter range

Mirroring /

Contrast ratio (0.8, 1.2)

Gaussian noise /

Filtering /

Rotation angle (-20°, 20°)

Brightness (0.8, 1.2)
/, non-random variation.
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the problem of gradient repetition in the backbone network of the

large CNN framework. Furthermore, it integrated the gradient

changes into the feature map from beginning to end, thereby

reducing the number of model parameters and computation

values (Li et al., 2019) to ensure the speed and accuracy of the

inference. SPP concatenated the different scales of the feature maps

to expand the extraction of kiwifruit features using the maximum

down-sampling of different convolutional kernels.

(c) Neck: FPN+PAN (Lin et al., 2017; Liu et al., 2018) was used.

The FPN structure fuses and passes the feature information on the

upper layers from top to bottom by up-sampling. The PAN

structure is a bottom-up feature pyramid. The FPN+PAN

structure was fused with feature layers from different backbone

layers to improve the feature fusion capabilities further.

(d) Prediction: Output feature maps with sizes of 80 × 80, 40 ×

40, and 20 × 20 were used to localize the kiwifruit defects. The

training loss values were calculated using the loss calculation

function and were iteratively updated to obtain the best model.
2.3 Structure optimization

2.3.1 SPD-Conv module
The convolution and pooling layers that are used in

conventional methods lead to the loss of fine-grained information

and insufficient learned features in the image. This results in small

and low-resolution kiwifruit defect features that cannot be learned

effectively during the convolution process. To address this problem,

we incorporated the convolutional structure of SPD-Conv (Sunkara

and Luo, 2022) into Yolov5s instead of the convolutional and

pooling layers. When the feature size of the kiwifruit was a

feature mapping X with a size of M �M � C, to achieve a two-

fold down-sampling operation, the scale value S was selected as 2 in

Equation (1). Subsequently, the SPD layer was subjected to spatial

sub-mapping f0,0、f0,1、f1,0、f1,1 by slicing. These spatial sub-

mappings were spliced in the channel dimension to acquire the

dimensional mapping X 0 ( M
S=2 ,

M
S=2 , 4C), and a step-free

convolutional layer after SPD was added to obtain the final

mapping X 0 0 ( M2 ,
M
2 ,C

0 ). The SPD layer preserved the

information in the channel dimension when down-sampling was
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performed in the feature layer by retaining all information in the

channel dimension when down-sampling the feature layer. The

step-free layer retained the feature discriminant information in the

convolution and adjusted the number of output channels. As

illustrated in Figure 4, SPD-Conv was used as a substitute for

four convolutional layers with a step size of 2 to down-sample the

feature map in the backbone. Similarly, two alternative operations

were executed in the neck.

f0,0 = X½0 :M : S, 0 :M : S�,⋯ f0, S−1 = X½0 :M : S,  S − 1 :M : S�
f1,0 = X½1 :M : S, 0 :M : S�,⋯ f1, S−1 = X½1 :M : S,  S − 1 :M : S�
⋮

fS−1,0 = X½S − 1 :M : S, 0 :M : S�,⋯ fS−1, S−1 = X½S − 1 :M : S,  S − 1 :M : S�

(1)
2.3.2 DWConv
The number of model calculation parameters and calculation

amount increased following the structural improvement described

in Section 2.3.1. We used DWConv (Chollet, 2017) instead of

conventional convolution to solve this problem. The four regular

convolutions in the backbone were replaced with DWConv, as

indicated in Figure 4. As illustrated in Figure 5, the basic

implementation process of DWConv consisted of depth-wise and

point-wise convolution. Each convolution kernel of the depth-wise

convolution convolved a single channel to make the number of

input feature map channels the same as that of the output feature

map channels. The point-wise convolution generated a new output

feature map by linearly weighting the number of input feature map

channels in the depth direction. DWConv effectively reduced the

volume and computation of the parameters compared with

conventional convolution for the same input and output cases.
2.4 Loss function

The target detection regression loss function IOU (Yu et al.,

2016) cannot evaluate the distance information of the two frames

when the prediction and target frames do not intersect. Thus, the

gradient information cannot be passed back to the model, which

results in the model not being learned and trained further.
FIGURE 5

Schematic of DWConv.
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Moreover, when the prediction and target frames intersect, the

model cannot reflect the overlapping method of both frames. GIOU

(Rezatofighi et al., 2019) introduces the minimum outer rectangle

concept into the prediction and target frames. Although it solves the

problems of IOU, errors, difficult convergences, and horizontal and

vertical instability occur when the prediction and target frames have

inclusion relations. DIOU (Xu et al., 2023) improves the penalty

term in GIOU to calculate the distance between the minimized

center point of the prediction and target frames to accelerate the

convergence. However, DIOU does not consider the aspect ratio in

the regression process. CIOU adds the influence factor to the

penalty term based on DIOU and considers the prediction frame

aspect ratio as fitting the target frame aspect ratio. However, the

aspect ratio that is described by CIOU is a relative value and may be

ambiguous. EIOU (Zhang et al., 2022) replaces the aspect ratio with

the width-height difference value based on CIOU and introduces

the focal loss to solve the problem of imbalance between difficult

and easy samples. Therefore, EIOU was used as the loss calculation

function in this study. The implementation process is illustrated in

Figure 6 and the loss function value is calculated using Equation (2).

LEIOU = LIOU + Ldis + Lasp

= 1 − IOU + d2(bP ,bgt )
(wc)2+(hc)2

+ d2(wP ,wgt )
(wc)2

+ d2(hP ,hgt )
(hc)2

,
(2)

where LIOU is the overlap loss, Ldis is the center distance loss,

and Lasp is the scale loss. Furthermore, bP and bgt are the coordinates

of the center points of the prediction and target frames, respectively,

whereas d(bP , bgt) is the Euclidean distance between the frames. wc

and hc are the width and height of the smallest outer rectangle of

the prediction and target frames, respectively. Moreover, IOU is the

ratio of the intersection of the prediction and target frames to the

union, d(wP ,wgt) is the difference between the widths of

the prediction and target frames, and d(hP , hgt) is the difference

between the lengths of the prediction and target frames.
2.5 Evaluation indicators

To evaluate the effectiveness of the external defect detection

model for kiwifruit, multiple metrics were used, including the rate

of precision and recall, number of parameters (Params) and FLOPs
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(Li et al., 2021), model size, average precision (AP) of a single

sample, and average precision (mAP) of all categories. The

precision and recall are determined by Equations (3) and (4),

respectively.

P = TP=(TP + FP)� 100% (3)

R = TP=(TP + FN)� 100%, (4)

where P is the precision rate; that is, the proportion of predicted

targets that are the same as the labeled targets, and R is the recall

rate; that is, the proportion of correctly predicted positive samples

to all labeled positive samples. TP represents the predicted positive

and actual positive samples, FP represents the predicted positive

and actual negative samples, and FN represents the predicted

negative and actual positive samples.

The curve for PR was plotted with R and P as the horizontal and

vertical coordinates, respectively, and the area enclosed by the curve

was calculated to obtain AP. The calculation of mAP is shown in

Equations (5) and (6).

AP =
Z 1

0
P(R)dR� 100% (5)

mAP =
1
C oc∈C

AP(c)� 100%, (6)

where c is a single category and C is all categories.
3 Results and discussion

3.1 Model training results

A stochastic gradient descent optimizer with a momentum

of 0.937 and a weight decay of 0.0005 was selected to evaluate

the performance of the proposed network. The number of

training warm-up rounds, total number of rounds, and training

batches were set to 3, 200, and 32, respectively. The training

learning rate was set linearly from 0.003 to 0.01 following the

warm-up phase and decayed linearly to a final value of 0.0001 after

200 iterations.
FIGURE 6

Schematic of EIOU implementation.
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The loss value is a metric that is used to measure the effectiveness

of network training. Figure 7 shows the loss values of Yolov5s and

Yolov5-Ours in the training set. The loss value of Yolov5-Ours

decreased rapidly to approximately 0.08 from the beginning of the

iterations, and then steadily with an increase in iterations. The initial

loss value of Yolov5s was larger than that of Yolov5-Ours; the loss

value decreased more slowly and appeared to fluctuate with the

increase in iterations. After 200 iterations, the loss value of Yolov5-

Ours was 0.050 and that of Yolov5s was 0.063. Thus, Yolov5-Ours

reduced the loss value by 0.013 compared to Yolov5s.

The AP of the training detection provides an important

indication of whether the model has learned the features

effectively. Figure 8 depicts the average class detection accuracies

of Yolov5s and Yolov5-Ours in the training set. From the beginning

of the iterations, the detection mAP increased while Yolov5s and

Yolov5-Ours learned the kiwifruit defect features. Yolov5-Ours

reached convergence at 100 iterations and the detection mAP was

slightly higher than that of Yolov5s. After 200 iteration rounds, both

Yolov5s and Yolov5-Ours reached stability, and both had better

detection mAPs for kiwifruit defects, but that of Yolov5-Ours was

slightly higher than that of Yolov5s. The Yolov5-Ours model

achieved a detection accuracy of 99.4% for healthy kiwifruit,

99.3% for leaf-rubbing damaged kiwifruit, 97.7% for healed cuts

or scarred kiwifruit, and 99.2% for sunburned kiwifruit during the

validation phase on 444 kiwifruit images.

The number of parameters and computations were visualized in

terms of the spatial and temporal complexity for the model size and

speed, respectively. Spatial complexity refers to the consumption of

computer hardware memory resources, whereas temporal complexity

is the model computation time. The number of parameters and

amount of computation during the training process of Yolov5s,

Yolov5s+SPD-Conv, and Yolov5-Ours were determined, as

indicated in Table 2. The number of parameters of Yolov5s+SPD-

Conv increased by 1.54 M and the computation amount increased by

17.5 G compared to Yolov5s. The number of parameters of Yolov5-

Ours decreased by 1.56 M and the computation amount decreased by

15.1 G compared to Yolov5s+SPD-Conv. These results demonstrate
Frontiers in Plant Science 08
the effectiveness of the model improvement described in

Section 2.3.1.
3.2 Model testing results

The 444 test set images contained 1,151 kiwifruit samples,

including 326 healthy, 268 leaf-rubbing damaged, 284 healed cuts

or scarred, and 273 sunburned samples. The samples in each

category were tested using Yolov5-Ours with optimal weights. As

indicated in Table 3, the precision rates for the four categories were

all higher than 99% and the recall rates were all higher than 95%.

The average detection precisions of the healthy, leaf-rubbing

damaged, healed cuts or scarred, and sunburned samples were

98.8%, 98.7%, 97.6%, and 95.9%, respectively, at a confidence

threshold of 0.5, whereas the detection mAP of all categories was

97.7%. Moreover, the detection time of the image was only 8.0 ms,

thereby meeting the real-time sorting requirements of the grading

line. As shown in a partial plot of the results (Figure 9), Yolov5-

Ours could effectively detect all categories at a confidence level

higher than 0.8 for each category, which suggests that the model is

highly adaptable and robust for each category of kiwifruit.
3.3 Model comparison

The sample mAP and model sizes of SSD, Yolov5s, Yolov7, and

Yolov5-Ours were compared to validate the performance of

Yolov5-Ours further. As shown in Table 4, the mAP of the
FIGURE 7

Training loss value.
FIGURE 8

Average accuracy of training categories.
TABLE 2 Number of parameters and calculated values.

Model Params (M) FLOPs (G)

Yolov5s 7.03 15.9

Yolov5s+SPD-Conv 8.57 33.4

Yolov5-Ours 7.01 18.3
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TABLE 3 Test results.

Category P (%) R (%) AP@0.5 (%) mAP@0.5 (%) Image (ms)

Healthy 99.8 97.1 98.8

97.7 8.0
Leaf-rubbing damaged 99.7 96.7 98.7

Healed cuts or scarred 99.5 98.3 97.6

Sunburned 1.0 95.1 95.9
F
rontiers in Plant Science
 09
B

C

D

A

FIGURE 9

Test results. (A) Healthy, (B) leaf-rubbing damaged, (C) sunburned, (D) healed cuts or scarred.
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samples was compared at confidence threshold values of 0.5 and 0.8.

When the confidence level was 0.5, the mAP of Yolov5-Ours was

1.1% lower than that of Yolov7, but 10% and 6.4% higher than those

of SSD and Yolov5s, respectively. When the confidence level was

0.8, the mAP of Yolov5-Ours was 88.3%, 15.5%, and 10.1% higher

than those of SSD and Yolov5s, but 3.2% lower than that of Yolov7.

The model size of Yolov5-Ours was the same as that of Yolov5s,

which was approximately 6.5- and 4-fold smaller than those of SSD

and Yolov7, respectively.

SSD is mainly divided into the backbone network and multi-scale

prediction network. The backbone network adopts the VGG16 model,

which is used to realize the initial extraction of image features. The

multi-scale feature detection network extracts the feature layers that

are obtained from the backbone network at different scales, so that

different feature maps can detect different-sized features. Finally, the

detection results are regressed. Yolov7 introduces model

reparameterization into the network structure, includes a new label

assignment method, and incorporates multiple tricks for efficient

training compared to Yolov5. Yolov7 achieves higher computational

efficiency and accuracy than Yolov5, and can achieve better detection

accuracy with the same computational resources. However, Yolov5 is

much faster than Yolov7 in terms of the inference speed, because the

faster computational efficiency of Yolov7 leads to more memory-

occupied resources. Yolov5-Ours improves the detection of small

feature defects on the surface of kiwifruit by adding the SPD-Conv

module based on Yolov5s and reduces the parameters using

DWConv, which means that the model size does not increase even

with higher detection accuracy. In summary, the results verified that

Yolov5-Ours balances the model size and accuracy and achieves

efficient performance in kiwifruit defect detection.
4 Conclusions

We developed and validated the effectiveness of a non-destructive

detection method for kiwifruit defects. We applied the target detection

technique to multiple healthy and defective kiwifruits and improved

several aspects, including the data acquisition and methodology, to

detect kiwifruit defects in various categories efficiently. First, a

kiwifruit image acquisition device was constructed and improved to

solve the problem of uneven light exposure in the image, thereby

improving the image quality. Subsequently, a kiwifruit database was

established. To avoid the problem of overfitting, the training dataset

was increased seven-fold using a new data enhancement method. We

proposed Yolov5-Ours based on Yolov5s, in which we fused SPD-

Conv and DWConv and improved the loss calculation function. The

average detection accuracy of healthy, leaf-rubbing damaged, healed
Frontiers in Plant Science 10
cuts or scarred and sunburned samples was 97.7%. The single-frame

image detection was run in 8.0 ms, thereby meeting the classification

line-sorting requirements. The results validated the effectiveness of

Yolov5-Ours in terms of both the accuracy and model size.

The external kiwifruit defects of sunburned and healed cuts or

scarred affect the flesh of the kiwifruit, and effective detection can

increase the commercial value of the kiwifruit. Leaf-rubbing damaged

kiwifruit only has defects in the skin and the flesh of the kiwifruit is

normal, and correct detection can increase the reuse of iso-extracted

fruits. Consequently, the proposed method can facilitate the effective

detection of kiwifruit defects, provide a theoretical basis for online

real-time detection and grading, and serve as a framework for future

non-destructive defect detection in agricultural products.

This study also has some shortcomings. Only three major

kiwifruit defects were selected for detection and sorting. We plan to

expand the categories of kiwifruit defects for detection in the future,

which will make the study more applicable to actual kiwifruit sorting.
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