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Improving yield is a primary soybean breeding goal, as yield is the main

determinant of soybean’s profitability. Within the breeding process, selection

of cross combinations is one of most important elements. Cross prediction will

assist soybean breeders in identifying the best cross combinations among

parental genotypes prior to crossing, increasing genetic gain and breeding

efficiency. In this study optimal cross selection methods were created and

applied in soybean and validated using historical data from the University of

Georgia soybean breeding program, under multiple training set compositions

and marker densities utilizing multiple genomic selection models for marker

evaluation. Plant materials consisted of 702 advanced breeding lines evaluated in

multiple environments and genotyped using SoySNP6k BeadChips. An additional

marker set, the SoySNP3k marker set, was tested in this study as well. Optimal

cross selection methods were used to predict the yield of 42 previously made

crosses and compared to the performance of the cross’s offspring in replicated

field trials. The best prediction accuracy was obtained when using Extended

Genomic BLUP with the SoySNP6k marker set, consisting of 3,762 polymorphic

markers, with an accuracy of 0.56 with a training set maximally related to the

crosses predicted and 0.4 in a training set with minimized relatedness to

predicted crosses. Prediction accuracy was most significantly impacted by

training set relatedness to the predicted crosses, marker density, and the

genomic model used to predict marker effects. The usefulness criterion

selected had an impact on prediction accuracy within training sets with low

relatedness to the crosses predicted. Optimal cross prediction provides a useful

method that assists plant breeders in selecting crosses in soybean breeding.

KEYWORDS

cross combination, molecular markers, genomic selection, cross prediction,
soybean breeding
Abbreviations: AYT, Advanced Yield Trial; BayesRR, Bayesian Ridge Regression; BLUP, Best Unbiased

Linear Prediction; EGBLUP, Extended Genomic BLUP; GEBV, Genetically Estimated Breeding Value; MV,
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Quantitative Trait Locus; RR-BLUP, Ridge Regression BLUP; SNP, Single Nucleotide Polymorphism; TS,

Training Set.
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1 Introduction

Parental selection and determination of cross combinations are

initial, essential steps in soybean breeding. Most often, these

crossing decisions are made on the basis of pedigrees, genetic

diversity, yield, and agronomic traits (Bernardo, 2003; Gaynor

et al., 2017). The following breeding stage, population

development, lasts for several years after which agronomically

important traits, such as yield, can be evaluated to determine if a

crossing decision will result in a new cultivar (Heffner et al., 2010).

A poor cross combination will therefore use up resources for

multiple years prior to yield evaluation without resulting in useful

cultivars. Furthermore, for a given set of parental lines, a breeder

can only perform a small subset of all cross combinations possible.

Assuming a panel of 100 parents, there are 4,950 unique cross

combinations, more than can be made by any breeding program. A

predictive method which would allow breeders to assess a cross at

the beginning of the breeding cycle would alleviate both these issues

with parental and cross combination selection, leading to better

genetic gains and more efficient breeding methodologies.

Predictive, genomics-based breeding techniques, notably

genomic selection, have been a major focus of study in both

animal and plant breeding (Meuwissen et al., 2001; Bernardo and

Yu, 2007; Habier et al., 2010; Crossa et al., 2014; Lorenz and Smith,

2015; Garcia-Ruiz et al., 2016; Crain et al., 2018; Stewart-Brown

et al., 2019). These techniques utilize genomic and phenotypic

datasets to predict the value of an individual based on their

genotypic data, enabling selection in earlier generations without

extensive field testing (Bernardo and Yu, 2007; Heffner et al., 2010;

Cui et al., 2020). Additionally, genomic selection can reduce

breeding cycle time by replacing preliminary replicated trials,

leading to an increased rate of genetic gain (Schaeffer, 2006;

Heffner et al., 2010; Rajsic et al., 2016; Gaynor et al., 2017;

Gorjanc et al., 2018). This shortening of breeding cycles is most

dramatic in breeding programs with longer breeding cycles, such as

perennial crops or animal breeding (Schaeffer, 2006; Garcia-Ruiz

et al., 2016; Lin et al., 2017). Genomic selection requires uniform

genotypes for reliable predictions, therefore it can only be used

following population development (Voss-Fels et al., 2019). In

current plant breeding methodologies, the use of genomic

selection differs for inbred line and hybrid development. For

inbred species, primary purpose of genomic selections is used for

per se evaluation, while it is used for parental line selection in hybrid

development (Beyene et al., 2019; Stewart-Brown et al., 2019; Islam

et al., 2020; Atanda et al., 2021).

Prediction of cross performance has been utilized for hybrid

production in allogamous crops. The success of F1 hybrids is a

function of each hybrid parents’ general combining ability and the

specific combining ability of the cross. These characteristics require

multiple rounds of testcrossing to accurately determine, making

such tests a central part of the hybrid production cycle (Zhao et al.,

2015; Cui et al., 2020). To aid in the development process, multiple

hybrid prediction models have been proposed and tested for hybrid

development (Marulanda et al., 2016; Beyene et al., 2019). These

models allow for prediction of hybrid performance without field

trials, based on the genetic data from the parents and their past
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performance in testcrosses. This allows breeding programs to

bypass early rounds of testcrossing, accelerating the hybrid

development process (Marulanda et al., 2016; Beyene et al., 2019;

Cui et al., 2020).

The hybrid prediction methods proposed by Marulanda et al.

(2016) and Longin et al. (2015), utilized genomic selection to evaluate

double haploids for general combining ability in wheat, maize, and rice.

After genomic selection, further testcrosses are utilized to make

advancement decisions. Marulanda et al. (2016) found the greatest

genetic gain when applying genomic selection once, following nursery

selection for highly heritable traits. Genomic selection was then

followed by one stage of phenotypic selection via testcrossing before

release to registration trials. This increased genetic gain over traditional

phenotypic selection was maintained as long as prediction accuracy

was above 0.2 (Marulanda et al., 2016). These results were similar to

those of Longin et al. (2015) and Beyene et al. (2019) who validated this

pipeline in wheat and tropical maize breeding programs, respectively.

As a parallel to hybrid prediction, cross prediction methods for

varietal development allow breeders to predict the value of the

recombinant inbred lines (RILs) that a cross will generate, though

there are key differences between predicting crosses for hybrids and

inbred varieties. First, marker effects must be assessed across all

RILs within the breeding population rather than on a per

population or heterotic group basis, as is done in hybrid genomic

selection (Schrag et al., 2009; Zhao et al., 2015). Additionally, the

progeny genotypes of a cross for an inbred species are not uniform

among full siblings as they are in hybrids. This means that a cross

cannot be valued on the basis of uniform progeny with identical

genetics, invalidating many of the assumptions of hybrid prediction.

Instead, a given cross will generate a multitude of progeny

genotypes which need to be statistically evaluated to determine

the value of said cross.

Prediction of cross values for inbred varieties requires the

prediction of progeny genotypes in order to predict progeny

genetic values and performance. Bernardo (2014) investigated the

concept of locus classification, in which loci were classified as

beneficial or detrimental for a specific mating combination. It was

theorized that more genetic gain would occur by crossing a parental

line with plant materials that had complementary alleles, rather

than crossing to a high performing, but genetically similar inbred.

The genetically similar inbred and parental line would likely share

many of the same detrimental alleles. By contrast, if a large or

infinite number of progeny were created from a complementary

mating, in one of the progeny the positive alleles of one parent

would completely replace the negative alleles of the other parent

and vice versa. This would lead to an optimal progeny with the

greatest possible genetic gain. Optimal cross selection (OCS)

advanced this concept, identifying complementary mating pairs

via estimation of population mean and genetic variance in inbred

species such as barley and wheat (Mohammadi et al., 2015; Lado

et al., 2017). Mohammadi et al. (2015) is particularly notable among

these studies, having created the PopVar package in R, which can

perform OCS using ridge regression BLUP (RR-BLUP) to assess

marker effects, and validated it using elite barley breeding lines.

Within these OCS methods, the value of a cross is determined by a

modified usefulness criterion (UC). The original form of this
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measurement was proposed by Schnell and Utz (1976) to estimate

the genetic variability present in F1 progeny. The UC used in

current GS studies modifies the equation by removing heritability

as a factor, as was originally suggested by Zhong and Jannink

(2007). With this modification, the UC represents the genetic gain

possible within a bi-parental population (Zhong and Jannink, 2007;

Bernardo, 2014; Mohammadi et al., 2015; Neyhart and Smith,

2019). The prediction methods used in prior OCS studies focused

on high heritability traits well suited to prediction. Therefore, the

models chosen in these studies to evaluate marker effects may not be

appropriate for the agronomic traits with lower heritability, such as

yield (Bernardo, 2014; Mohammadi et al., 2015; Wang et al., 2018;

Stewart-Brown et al., 2019).

The objectives of this study were to evaluate multiple existing

and novel models for yield prediction in cross combinations of

soybean, validate them using historical breeding data under a

multitude of conditions and parameters, and assess their uses in

breeding programs. These parameters include the genomic

evaluation method used for progeny analysis, the relatedness of

the training set (TS) to parental lines, the UC used to determine

cross value, as well as the marker density.
2 Materials and methods

2.1 Plant materials

The TS used in this study consisted of 702 elite, inbred soybean

lines from the University of Georgia (UGA) Soybean Breeding

Program’s advanced yield trials (AYTs). Thirty-five of these lines

were used as parents in crosses made between 2012 and 2014. These

parental lines were selected to be included in this study due to the

availability of seed and their parentage in crosses which generated

more than 15 progeny lines that were tested in replicated field trials

(Table S1). Materials in the TS ranged from maturity groups (MGs)

VI through VIII. These materials had been used to develop cultivars

for commercial release in the Southern United States (Boerma et al.,

2012; Boerma et al., 2016; King et al., 2016; Li et al., 2020).

Yield trials were conducted at three locations with three

replicates in each location: Athens, Plains, and Tifton in Georgia

and Florence, South Carolina. Plots consisted of four rows with a

row length of 4.9 m and 76.2 cm row spacing, and a planting density

of 27 seeds/meter. All plots were end-trimmed to a row length of

3.7 m the before harvest with only the middle two rows harvested

for yield to reduce edge effects. Each trial followed a randomized

complete block design and included a set of two checks with similar

maturity. The 35 parental lines were primarily evaluated during

2007 to 2013 growing seasons, with all other lines evaluated

between 2015 and 2019.

Additional plant materials were also included to calculate the

value of the validation crosses drawn from the UGA Soybean

Breeding Program’s preliminary yield trials (PYTs). For each of

the 42 crosses utilized in validation, progeny from both the UGA

Soybean Breeding Program’s AYT and PYT were used to calculate

the observed value of the cross. PYTs were conducted similar to the

AYTs with the exception that plots consisted of only two rows and
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were tested at two locations with two replicates in each location.

These plant materials from the PYT were not included in the TS or

used to predict cross values.
2.2 Genotyping

DNA was extracted from bulked, lyophilized leaf tissue

collected from ~15 plants of each genotype. Extraction was

accomplished using a modified CTAB, chloroform method

detailed in Keim (1988). DNA quality and quantity were

randomly checked via gel electrophoresis and fluorimeter DNA

quantification with a minimum desirable concentration of 100 μg/

mL for genotyping.

Genotyping was accomplished using the SoySNP6k iSelect

BeadChip. This genotyping method was developed based on the

analysis of the linkage disequilibrium and minor allele frequency

using >18,000 accessions in the USDA Soybean Germplasm

Collection. In validation using a diverse set of germplasm, the

chip had a minor allele frequency of >0.1 for >90% of the markers

included in the chip (Song et al., 2020). Following genotyping, SNP

allele calls were manually checked for quality control using

GenomeStudio (Illumina, San Diego, CA) with corrections made

when necessary. SNPMarkers with a minor allele frequency of<0.06

and/or >20% missing data were excluded from analysis, leaving

3,762 polymorphic markers for further analysis. The SNP markers

were coded as 2, 1, or 0, corresponding to the number of alleles from

the nucleotide variant first in alphabetical order for said marker.

Missing SNP marker alleles were imputed using the software Beagle

(version 5.0) (Browning et al., 2018). Additionally, a marker set of

reduced density which consisted of markers included in the

SoySNP3k iSelect BeadChip was tested (unpublished data). The

3k SNP marker set is a subset of markers drawn from the 6k SNP

marker set and was filtered under the same parameters for minor

allele frequency and missing data, which resulted in 2,020

remaining polymorphic SNP markers for further analysis.

Minimal heterozygosity was found in the plant materials as all

materials included in this study were RILs. Both marker sets are

available to the soybean community.
2.3 Phenotypic data analysis

Grain yield at each location was collected from the middle two

rows within each four-row plot after end-trimming. Yield was

calculated based on the weight gathered from the combines

during harvest of the yield plots, with yield adjusted to a

standardized moisture of 13%. Maturity was evaluated

continuously and collected as the days from planting to R8 when

maturity was achieved by 95% of plants within a plot.

Best Linear Unbiased Prediction (BLUP) values for each line

were calculated via a mixed model, which accounted for

environmental, maturity, and genotype effects along with

genotype by environment interactions. Environment was defined

as a combination of year and location. Genotypes and genotype by

environment interactions were treated as a random effect and
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environmental and maturity effects were treated as fixed effects in

BLUP calculation. Histograms and residual plots were used to check

for outliers in the raw phenotypic data, as well as the BLUP values,

with flagrant outliers excluded from the analysis.

The broad-sense heritability (H2) was calculated for each yield

trial in the TS utilizing data from the two testing locations where

maturity data was available. Variance components were determined

using a linear model equation in the form of:

y = m + E +M + E(r) + G + E(G) + e

Where y denotes the yield, M is maturity measured in number

of days from planting, E is the environmental effect, E(r) is the effect

of the replication in a given environment, G is the genotypic effect, E

(G) is the genotype by environment interaction, and e is the error

term. G and E(G) were treated as random effects, while M, E, and E

(r) were treated as fixed effects. Calculation was performed using the

lme4 package in R (Bates et al., 2015).H2 was calculated on an entry

mean basis for each test using the following equation:

H2 = s 2
 G=(s

2
 G +

s 2
 GxE

e
+
s 2
 R

er
)

Where s 2
 G, s 2

 GxE , and s 2
 R are the variance of genotypes, the

genotype by environment interactions, and residuals, respectively; e

is the number of environments for the test and r is the number

of replications.
2.4 Optimal cross selection

2.4.1 Progeny generation
Progeny were generated using parental genotypes via a

simulation of the single seed descent method. Each parent

consisted of 3,762 SNPs coded as 2, 1, or 0, corresponding to the

number of alleles from the nucleotide variant first in alphabetical

order for said marker. SNPs coded as 2 and 0 are therefore

homozygous, with heterozygotes coded as 1. For each cross, 500

progeny were generated using the sim.cross function of the R/qtl

package (Broman et al., 2003) in R, utilizing the genetic map

associated with the SoySNP6k iSelect Beadchip (Mohammadi

et al., 2015; Song et al., 2020). The progeny generation process

assumed that all progeny were developed via a single seed descent

method, with each of the progeny generated from a separate meiotic

event within the F1 hybrids. Each resultant F2 genotype was then

advanced through multiple generations of inbreeding to generate an

F5 RIL. Meiotic events operated under the chi-squared model of

crossover interference, with parameters similar to those of the

PopVar package, assuming no crossover interference (Broman

et al., 2003). R/qtl generated a generic RIL population for each

cross, in which the alleles from each parent were coded as A or B

and were replaced with the specific nucleotides of each parent for

that marker. Genotypes generated were assumed to be F5-derived

RILs. This process was carried out separately when utilizing the 3k

SNP marker set. Within the UGA soybean breeding program,

typically, 100 to 300 progeny rows were grown from each cross

for evaluation. Therefore, to simulate the number of plant rows
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present during evaluation, 500 progeny genotypes were generated

for each cross combination.

2.4.2 Genotypic prediction & cross analysis
Following progeny generation, each cross combination was

evaluated on the basis of the GEBVs predicted for their 500

progenies. GEBVs for all progeny of a given cross combination

were generated using a genomic prediction model with the progeny

as the validation set, and the parental lines, along with other inbred

lines, used as the TS. Four genetic evaluation methods were used in

this study for the calculation of progeny GEBVs: ridge regression

BLUP (RR-BLUP) (Whittaker et al., 2000), Bayes B (BayesB)

(Meuwissen et al., 2001), Bayesian ridge regression (BayesRR)

(Perez et al., 2010), and extended genomic BLUP (EGBLUP) (Su

et al., 2012). Both BayesB and RR-BLUP have been researched and

utilized in multiple studies of various plant species (Whittaker et al.,

2000; Meuwissen et al., 2001; Lorenz et al., 2011; Heslot et al., 2012;

Wang et al., 2018). BayesRR relies on a shrinkage of marker effects

similar to that in RR-BLUP which has been used successfully in

prior research of soybean grain yield genomic selection (Perez et al.,

2010; Duhnen et al., 2017). For both Bayes models (BayesB and

BayesRR) 1,500 iterations were generated for each validation with a

burn in of 500. EGBLUP resembles genomic BLUP but has an

additional matrix which estimates additive by additive epistatic

effects. This model was originally developed for animal breeding,

but was found success in previous studies on soybean genomic

selection (Su et al., 2012). The underlying assumptions of each

model determine its predictive ability for a given trait, with the

expectation that the model whose assumptions most closely match

the genetic mechanisms controlling yield would lead to the highest

prediction accuracies. The RR-BLUP model was fitted using the

rrBLUP package (Endelman, 2011), BayesB and BayesRR were

fitted using the bWGR package (Xavier et al., 2019; R Core Team,

2020), and EGBLUP was done using the EMMREML R package

(Akdemir and Godfrey, 2015). Following the generation of GEBVs

via genomic prediction, each cross’ value is assessed. The value of a

cross consists of two components, the mean value of the cross’

progeny and the genetic variance among progeny (Mohammadi

et al., 2015; Lehermeier et al., 2017). These two values are used to

calculate a UC for a given cross:

UCm = m + isg

In which UCm is the cross value of a given cross m; m is the

mean phenotypic value of cross m’s progeny; i is selection intensity;

and sg is the genetic standard deviation among cross progeny of m

(Mohammadi et al., 2015). VG can be divided into three

components, VA, VD, and VI , referring to genetic variance caused

by additive, dominant, or epistatic effects. As VD is not present in

RILs, VI is expected to be minimal and sg is equivalent to the

standard deviation of GEBVs predicted via genomic prediction

(Zhong and Jannink, 2007; Neyhart and Smith, 2019). Therefore,

the UC can be calculated as the mean value among the top i

proportion of GEBVs. For example, with a selection intensity of i =

0.1, the UC of a cross is equivalent to mean GEBVs of the top 10%

of predicted GEBVs. Cross combinations were analyzed using a UC
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with a selection intensity of 0, 0.1, and 0.2 termed mean value (MV),

UC0:1, and UC0:2, respectively (Zhong and Jannink, 2007; Bernardo,

2014; Mohammadi et al., 2015; Lehermeier et al., 2017).

2.4.3 Optimal cross selection method
development

As detailed above, there were multiple parameters which could

be varied to create distinct OCS models that may differ in predictive

ability. Within this experiment, 12 distinct OCS methods were

tested to predict the values of crosses. These differed in the genomic

prediction models (BayesB, BayesRR, RR-BLUP, and EGBLUP) that

were used to predict genetic values as well as the UCs (MV, UC0:1,

and UC0:01) used to assess cross values. The qtl R package was used

universally to generate inbred progeny genotypes for crosses. All

code was executed in an R environment, utilizing dependencies and

functions from the packages described above for their associated

processes. The evaluation method of MV using the RR-BLUPmodel

for marker effects was based on Mohammadi et al. (2015) in the

PopVar model. All other methods used in this study were novel.

Following the development of multiple OCS methods, a key

question was what conditions would affect their predictive

accuracies. Prior research in genomic selection has indicated that

TS formation can have a significant impact on predictive ability

(Atanda et al., 2021; Zhu et al., 2021). Validation would then be

focused on the conditions that OCS would be applied in a soybean

breeding program, with a TS consisting of genetically disparate, elite

breeding lines.
2.5 Training set composition & validation

Three TS compositions were utilized in validation, each with

differing levels of genetic relatedness to the cross combinations

predicted. The first composition, full training set (FTS), consisted of

the full TS using all 702 lines, including the 35 parental lines used

for validation. The second TS, without full siblings (WFS), removed

all lines from the TS which were direct progeny of the crosses to be

predicted, but still maintained all parental lines. The removal of full

siblings from the TS is most similar to a breeding program’s TS,

where a cross combination is only used once and is not repeated in

later years. An additional TS composition was used to assess if any

change in accuracy between FTS and WFS was due to the loss of

relatedness between the TS and validation set or only due to a

reduced TS size. The third composition, termed reduced training set

(RTS), removed as many lines from the TS as WFS. In RTS all

materials removed were randomly chosen lines that were not direct

progeny of the predicted crosses. Therefore, the relatedness of the

TS to the predicted crosses would be minimally impacted and WFS

and RTS would have an equivalent number of plant materials.

Additionally, predictions generated by OCS when utilizing the

SoySNP6k marker set were compared to those generated when

utilizing the SoySNP3k SNP marker set.

The validation for OCS consisted of predicting the value of 42

unique cross combinations made within the UGA Soybean

Breeding Program. All crosses had at least 16 progenies evaluated
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in multi-location yield trials between 2015 and 2019 (supplemental

table 1). The value of each cross was predicted using 12

combinations of four genomic prediction models (BayesB,

BayesRR, RR-BLUP, & EGBLUP) and three assessment methods

(MV, UC0.1, UC0.2). Accuracy was defined as the Spearman

correlation between the values predicted for a given set of cross

and the observed value of said set. Spearman correlation provides a

comparison of rankings, making it an effective method to evaluate a

OCS, which generates values that are used to rank and select

crosses. The observed value of the crosses was the mean yield

BLUP value of all progeny that were tested in AYTs for said cross.

Validation was carried out independently six times, for each

combination of TS composition (FTS, WFS, & RTS) and marker

sets (SoySNP6k & SoySNP3k). The validation process was identical

for all six combinations. Validation for each marker set and TS

consisted of 50 validation tests. In each test all 12 OCS evaluation

methods predicted the progeny values of a random sample of 40

crosses from the 42 possible crosses. After progeny generation each

genomic prediction method (BayesB, BayesRR, RR-BLUP, &

EGBLUP) was utilized to determine the GEBVs of said progeny.

Following this, OCS then assessed the value of each cross using all

three UCs (MV, UC0:1, and UC0:2). The prediction accuracy was

recorded for each combination of genomic prediction model and

analysis method.
3 Results

3.1 Heritability and genetic analysis

The heritability calculated from the 2015 to 2019 multi-location

yield trials was highly variable and heavily impacted by genotype ×

environment interactions. A majority of trials during this time

period consisted of two or more environments. In those yield tests

at the multiple environments, the variance components of the

genotype by environment interactions exceeded those of the

genotypes in almost all instances. H2 ranged from 0.09 to 0.74 on

an entry mean basis with a mean heritability of 0.51 across all tests.

Detailed information on each yield test and their heritability can be

found in supplemental file S2.

A principal component analysis of the plant materials indicated

that the parental lines selected well represented the genetic variation

found in the plant materials used in this study, with parental lines

spreading across the full range of the first and second principal

components which were plotted in Figure 1. Additionally, the plant

materials did not show significant population structure which

would interfere with analysis.
3.2 Comparison of genomic prediction
models and analysis methods

Between all the parameters varied in this study, there were a

total of 72 validation trials, each consisting of 50 replicates. These

trials varied in terms of genomic evaluation model used, UC

selected, TS composition, and marker sets. Variations in these
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parameters led to multiple statistically significant patterns and

changes in prediction accuracy.

3.2.1 Prediction using SoySNP6k marker set
The first 32 validation trials carried out in this study utilized the

SoySNP6k marker set. The results of these 32 validation trials were

compared using a Tukey HSD to determine statistically significant

differences. In a comparison of models, EGBLUP was found to have

a statistically higher predictive accuracy than all other models in all

TS when using any UC (P< 0.001 in all comparisons). Variation in

the UC only led to a statistical difference when using EGBLUP with

the WFS TS. In this scenario MV had a statistically higher accuracy

than UC0.1. EGBLUP had a prediction accuracy of 0.56 and 0.45 for

FTS and RTS, respectively, and of 0.35 when using MV inWFS. The
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prediction accuracy of other three models depended upon the TS.

Using the FTS and RTS TS there was not a statistical difference in

the prediction accuracies of the three non-EGBLUP models at 0.37

for FTS and 0.33 for RTS. Under WFS validation, BayesB’s

prediction accuracy, 0.26, was statistically below that of BayesRR,

RR-BLUP, and EGBLUP (Table 1).

The relationship between the crosses predicted and TS had an

additional, statistically significant impact on prediction accuracy.

For all OCS evaluation methods using the SoySNP6k marker set,

there was a statistically significant increase (P< 0.001) in prediction

accuracy when using RTS over WFS and FTS over RTS (Figure 2A).

Therefore, predictive accuracy was reduced both by a reduction in

TS size, as observed in the FTS to RTS comparison, and a reduction

in relatedness, as observed in the RTS to WFS comparison.
TABLE 1 Tukey honestly significant difference analysis of cross selection validation using a SoySNP6k marker set.

Usefulness Criterion Cross Prediction Model Full Training Set Reduced Training Set Without Full Siblings

UC0.1
a

BayesB 0.37 | cd 0.32 | fghi 0.26 | j

BayesRR 0.38 | c 0.33 | fg 0.29 | i

EGBLUP 0.55 | a 0.46 | b 0.34 | def

RR-BLUP 0.37 | cd 0.33 | f 0.29 | i

UC0.2
b

BayesB 0.37 | cd 0.32 | fghi 0.26 | j

BayesRR 0.37 | cd 0.33 | fg 0.29 | i

EGBLUP 0.57 | a 0.47 | b 0.36 | cde

RR-BLUP 0.37 | cd 0.33 | f 0.29 | hi

MVc

BayesB 0.38 | c 0.32 | fgh 0.26 | j

BayesRR 0.38 | c 0.33 | f 0.29 | i

EGBLUP 0.56 | a 0.47 | b 0.4 | c

RR-BLUP 0.37 | cd 0.33 | ef 0.3 | ghi
aUC0.1 = Usefulness criterion with I = 0.1.
bUC0.2 = Usefulness criterion with i = 0.2.
cMV = Mean value, usefulness criterion with i = 0.
Note: Each test underwent 50 replications, with the mean value of those 50 replications shown and test followed by a different letter are significantly different based on Tukey HSD
(a = 0.05).
FIGURE 1

Principal components analysis of training set used in this study. Percentage values on each axis indicate percent of variation explained by that
principal component. Parental lines are indicated as red triangles.
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3.2.2 Prediction using SoySNP3k marker set
Overall, the results of OCS using the SoySNP3k marker set had

similar patterns to those observed at higher marker densities.

EGBLUP provided the prediction accuracies statistically higher

than those of any of the other genomic evaluation models tested.

Additionally, UC only had an impact on prediction accuracy for

WFS using EGBLUP, leading to a statistically greater prediction

accuracy in MV than in UC0.1 and UC0.2. EGBLUP had a prediction

accuracy of 0.54 in FTS, 0.45 for RTS, and 0.35 using MV under

WFS. The performance of the other genomic evaluation models

relative to one another was dependent on the TS. Under FTS,

BayesB had statistically higher mean prediction accuracy with a

mean value of 0.33 than BayesRR, which had a mean prediction

accuracy of 0.29. RR-BLUP’s results under FTS were statistically

similar to those of BayesRR and BayesB with a mean predictive

accuracy of 0.37. With the RTS, BayesB, BayesRR, and RR-BLUP

had statistically similar results with a mean value of 0.27. In the

WFS TS RR-BLUP’s prediction accuracy, with a mean value of 0.18,

was statistically above that of BayesB, 0.12. BayesRR’s results in

WFS were statistically similar to those of BayesB and RR-BLUP

with a mean value of 0.14 (Table 2).

As when using the SoySNP6k marker set, a reduction in TS

relatedness to the crosses predicted led to lowered prediction
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accuracies at lower marker densities. For both EGBLUP and

BayesB going from the FTS to RTS or RTS to WFS led to a

statistically significant reduction in prediction accuracy. For RR-

BLUP and BayesRR there was not a statistical difference between

results from the FTS and RTS TS (Table 2). There was still a

significant difference between RTS and WFS for those two

models (Figure 2B).

3.2.3 Effects of marker density
Within this study two SNP marker sets (SoySNP6k and

SoySNP3k) were used. Overall, there was a statistically significant

increase in accuracy for all OCS methods when using the higher

marker densities (Figures 2A, B). In paired t tests between OCS

methods using the 6k and 3k SNP marker sets, accuracy was

statistically lower when using the 3k SNP markers for all OCS

methods at a 0.05 confidence level with the exception of UC0.1

EGBLUP and UC0.2 EGBLUP using the RTS. On average,

prediction accuracy was reduced by 0.06, 0.04, and 0.12 within

the FTS, RTS, and WFS TS, respectively (Table 3). Though all TS

compositions were affected, the difference in magnitude suggests

that less related TS (WFS) are more strongly affected than those

with higher relatedness to the crosses predicted. Between both

marker sets, the greatest prediction accuracies were found when
A

B

FIGURE 2

Prediction accuracies of four models utilizing two marker sets. (A) SoySNP6k SNP marker set and (B) SoySNP3k SNP marker set. Tested with the full
training set (FTS), a training set of reduced size (RTS), or with all direct progeny of the predicted crosses removed (WFS). Each bar represents 150
validation trials.
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using the SoySNP6k marker set, with EGBLUP giving the highest

prediction accuracies of the models tested in this study. In FTS the

greatest prediction accuracy occurred with UC0.2 EGBLUP with a

prediction accuracy of 0.57. MV EGBLUP was the best model tested

in RTS and WFS with accuracies of 0.47 and 0.40, respectively.
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4 Discussion

Yield is the primary agronomic trait of soybean with a complex,

quantitative genetic architecture and a low heritability relative to

soybean’s seed composition traits (Bernardo, 2002; Diers et al.,
TABLE 3 Comparison of prediction accuracy between SoySNP6k and SoySNP3k SNP marker sets.

Cross Prediction Model Full Training
Set Reduced Training Set Without Full Siblings Average Difference

UC0.1
a

BayesB >0.01 0.03 0.02 0.03 >0.01 0.15 0.07

BayesRR >0.01 0.09 >0.01 0.06 >0.01 0.16 0.1

EGBLUP >0.01 0.02 0.27 0.01 >0.01 0.09 0.04

RR-BLUP >0.01 0.07 >0.01 0.04 >0.01 0.12 0.08

UC0.2
b

BayesB >0.01 0.04 0.01 0.04 >0.01 0.14 0.07

BayesRR >0.01 0.09 >0.01 0.06 >0.01 0.15 0.1

EGBLUP >0.01 0.03 0.33 0.01 >0.01 0.08 0.04

RR-BLUP >0.01 0.07 >0.01 0.05 >0.01 0.11 0.08

MV

BayesB >0.01 0.06 >0.01 0.06 >0.01 0.13 0.08

BayesRR >0.01 0.1 >0.01 0.07 >0.01 0.13 0.10

EGBLUP >0.01 0.02 0.03 0.03 >0.01 0.04 0.03

RR-BLUP >0.01 0.07 >0.01 0.06 >0.01 0.09 0.07

Average Difference 0.06 0.04 0.12
aUC0.1 = Usefulness criterion with i = 0.1.
bUC0.2 = Usefulness criterion with i = 0.2.
cMV = Mean value, usefulness criterion with i = 0.
Note: The first (center) value indicates the p value for the associated test, the second value (right) indicates the estimated difference in mean prediction accuracies. A positive value indicates that
the predictions with the SoySNP6k marker set are more accurate.
TABLE 2 Tukey honestly significant difference analysis of cross selection validation using a SoySNP3k SNP marker set.

Usefulness Criterion Cross Prediction Model Full Training Set Reduced Training Set Without Full Siblings

UC0.1
a

BayesB 0.34 | cd 0.29 | fghi 0.11 | m

BayesRR 0.29 | fghi 0.27 | ghi 0.13 | klm

EGBLUP 0.53 | a 0.45 | b 0.25 | i

RR-BLUP 0.3 | defg 0.29 | fghi 0.17 | jk

UC0.2
b

BayesB 0.33 | cde 0.29 | fghi 0.12 | m

BayesRR 0.29 | fghi 0.27 | ghi 0.14 | klm

EGBLUP 0.54 | a 0.46 | b 0.28 | fghi

RR-BLUP 0.3 | efgh 0.28 | fghi 0.18 | j

MVc

BayesB 0.32 | cdef 0.26 | hi 0.13 | lm

BayesRR 0.28 | ghi 0.25 | i 0.16 | jkl

EGBLUP 0.54 | a 0.43 | b 0.35 | c

RR-BLUP 0.3 | defg 0.27 | ghi 0.2 | j
aUC0.1 = Usefulness criterion with i = 0.1.
bUC0.2 = Usefulness criterion with i = 0.02.
cMV = Mean value, usefulness criterion with i = 0.
Mote: Each test underwent 50 replications, with the mean value of those 50 replications shown and test followed by a different letter are significantly different based on Tukey HSD (a = 0.05).
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2018; Đorđević et al., 2019). In this study multiple OCS methods

were developed and validated empirically within a soybean breeding

program. While prior studies have tested cross prediction methods,

these have primarily been validated in silico or with specialized

populations and TS (Lehermeier et al., 2017; Neyhart and

Smith, 2019).
4.1 Parameters for OCS

Within validation there were significant differences in

predictive accuracies among the OCS methods developed for this

study. Of the methods assessed, those using EGBLUP were

preferable, providing the highest prediction accuracy. MV

EGBLUP in the WFS TS, which is the closest to breeding

program conditions, achieved an accuracy of 0.4 using the

SoySNP6k marker set, the highest observed for WFS. EGBLUP’s

unique factor is its inclusion of an additive by additive epistatic

effect matrix, as it otherwise resembles genomic BLUP or RR-BLUP.

The performance of EGBLUP in this study suggests that epistatic,

additive by additive effects are present in elite soybean germplasm.

The findings of this research indicate the incorporation of these

effects into OCS by usage of the EGBLUP genomic evaluation is key

to the cross assessment and prediction.

A prediction accuracy of 0.4 is comparable to prediction

accuracies reported for cross population genomic selection of

soybean yield. Genomic selection accuracies for yield in winter

wheat and soybean are reported with values typically between 0.5

and 0.7, (Norman et al., 2018; Jarquin et al., 2019; Zhu et al., 2021).

However, a majority of these results come from genomic selection

in which the plant materials are all members of the same breeding

populations or specially formed bi-parental populations. In these

studies, the TS and validation set are more closely related than they

would be in a breeding program and may even be full siblings,

leading to an increased accuracy of genomic selection (Michel et al.,

2016; Sun et al., 2019; Zhu et al., 2021). However, this is not truly

applicable to the plant breeding process. In experiments explicitly

investigating genomic prediction for yield across breeding cycles the

range of reported accuracies is much lower, 0.2 to 0.4, which the

WFS prediction accuracies found in this study equal and exceed

(Michel et al., 2016; Atanda et al., 2021).

These latter validation scenarios are closer to those which would

be experienced within a breeding program. New inbred lines within

a breeding program, which would be the targets of genomic

selection, have pedigrees distinct from those of prior varieties

which would be included in the TS. This set of conditions closely

follows the assumptions of the WFS TS in this study, in which there

are no directly related lines to the generated progeny which must be

evaluated by OCS. As the highest prediction accuracy under WFS

was 0.4, OCS achieves prediction accuracies within the same range

as genomic selection in cross environment predictions for yield.

4.1.1 Genetic relatedness affects predictive ability
Within this study there was a loss of prediction accuracy as

relatedness was reduced between the TS and the crosses predicted.
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This occurred to a statistically significant degree, universally when

using the SoySNP6k marker set, and between WFS and the other TS

compositions when using the SoySNP3k marker set. The impact of

TS relatedness and size on prediction accuracy is supported by prior

genomic selection and TS optimization research (Lorenz and Smith,

2015; Stewart-Brown et al., 2019; Zhu et al., 2021). Our results

further indicated that the relatedness of material within the TS is

more important than the size of said TS, as results using the RTS

were statistically superior to those from the same OCS methods

using the WFS TS. These findings suggest that TS formation and

optimization for OCS can use the same techniques as those

deployed in TS optimization for genomic selection (Lorenz and

Smith, 2015; Zhao et al., 2015; Đorđević et al., 2019; Atanda

et al., 2021).

4.1.2 Impacts of marker density on
predictive ability

An additional factor impacting prediction accuracy was the

marker density used. The results indicated the SoySNP6k marker

set led to statistically greater prediction accuracies than the

SoySNP3k marker set in almost all OCS methods and TS

compositions used. Though there was a decrease in prediction

accuracy for all TS when using the SoySNP3k marker set rather

than the SoySNP3k marker set, the loss of accuracy was greatest in

WFS, with a decrease of 0.12 on average, double that of RTS (0.04)

and FTS (0.06) (Table 3). Prior research has shown that a reduction

in marker density can lead to reduction in genomic prediction

accuracy to yield (Ma et al., 2016; Đorđević et al., 2019; Stewart-

Brown et al., 2019). However, within soybean the necessary marker

density to reach a plateau in prediction accuracy, where adding

additional markers has no impact, is considered to be low and the

~2000 polymorphic markers within the 3k SNP marker are

expected to meet said plateau (Wang et al., 2018; Đorđević et al.,

2019; Stewart-Brown et al., 2019).

These results suggest that genetic coverage is more important to

successful OCS than it is for genomic selection. Considering that

OCS must generate and predict progeny genotypes and values, the

increased marker density will lead to more accurate generation of

progeny genotypes. With a reduced marker density, the linkage

between markers and QTL is minimized, therefore progeny

generated using lower marker densities less accurately represent

the progeny which could result from a cross. This makes the

subsequent prediction of progeny values and cross values more

difficult, making SoySNP6k preferable for OCS over SoySNP3k

(Wang et al., 2018; Đorđević et al., 2019; Stewart-Brown

et al., 2019).
4.2 Deployment of OCS in an applied
breeding programs

Within this study the highest prediction accuracies were

observed when using the mean value EGBLUP method with the

SoySNP6k marker set, 0.40 (WFS) and 0.56 (FTS). Therefore, the

MV EGBLUP OCS model using the SoySNP6k marker set is
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recommended for the prediction of yield cross values in soybean.

Limited studies have validated OCS in an empirical manner, and

none have done so for soybean yield (Mohammadi et al., 2015;

Neyhart and Smith, 2019). Neyhart and Smith (2019) empirically

validated an OCS model, developing 27 unique barley crosses until

they could be evaluated for plant height, fusarium head blight

(FHB) severity, and heading date. In predicting these traits, their

OCS model achieved a prediction accuracy of 0.53 (height), 0.46

(FHB), and 0.62 (heading). Of these traits, FHB severity was noted

to have the lowest broad-sense heritability of 0.46, roughly

equivalent to the mean heritability observed in this study’s yield

trials. Within Neyhart and Smith (2019) only 12 families were

predicted to validate FHB severity as compared to the 42 families

used within this study. With a limited sample size of 12 crosses to

predict it is possible the predictive ability observed could be an

outlier, a possibility acknowledged by the researchers, and could

have a lower true mean predictive accuracy when used to predict a

larger number of crosses.

The successful use of the OCS method recommended here

depends on a number of factors and is beholden to some limitations.

The predictive accuracy of OCS is constrained by the phenotypic

and genotypic data used in the TS. The phenotypic data used in the

TS and for validation was gathered in the same geographic area in

the southern United States. The prediction accuracy of OCS would

be reduced if it were used to predict the performance of crosses in a

different geographic region than the TS was evaluated in.

Furthermore, OCS requires an efficient genotyping pipeline to

operate, as genotypic and phenotypic data for the parental lines

must be available prior to planting. This could cause issues

dependent on the genotyping resources and throughput available

to a breeding program. Computational resources are additionally

essential to OCS as the prediction and evaluation of crosses can be

computationally demanding. This is especially true for methods

involving EGBLUP which took ~12x longer to finish validation than

the other genomic evaluation models on a high-performance

desktop computer. Given sufficient access to computational

resources, the time to execute OCS in a breeding program would

be less than 24 hours.

This study presents multiple future research direction and

utilizations. First, OCS could be used to select for multiple traits

at once, with crosses selected based on an index of weighted traits

values such as yield, seed composition, disease, or nematode

resistance. This method could identify populations with progeny

that have both desirable yield and seed composition traits, which

can be antagonistic. Additionally, QTLs with known effects could be

included as weighted covariates in progeny evaluation for more

heritable traits, such as maturity, disease, and nematode resistance

(Yao et al., 2018; Neyhart et al., 2019). For pest and disease

resistance, OCS could allow breeders to determine how likely it is

for progeny to possess the resistance QTL from both parents for

multiple traits. This would be especially helpful for resistance QTL

which are in tight linkage with one another. For soybean

specifically, prediction of maturity using known maturity genes/

QTLs could allow breeders to make crosses between maturity

groups. OCS in this instance would provide a range of maturities

for the progeny of a given cross, allowing breeders to identify which
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regions the progeny of such a cross would be suitable for. This

would increase the variety of germplasm that breeding programs

have access to beyond the typically narrow range of maturity groups

(Zimmer et al., 2021). Multiple studies have identified maturity

QTLs which could be utilized in OCS for maturity prediction

(Langewisch et al., 2017; Zimmer et al., 2021).
5 Conclusion

Determination of cross combinations is one of essential steps in

soybean breeding. OCS enables parental selection decisions based

on genetic evaluation and simulation prior to crossing, which could

lead to higher efficiency in the breeding pipeline and greater genetic

gains. OCS considers complementation between parental genotypes

and allows a breeder to evaluate the distribution of progeny values

from a cross combination. Result indicated that MV EGBLUP using

the SoySNP6k marker set is the most accurate OCS method of those

tested, with a prediction accuracy of 0.4 when using a breeding

program TS. OCS is highly impacted by the relatedness of the TS to

the cross combinations predicted, marker density, and the genomic

evaluation model used. The predictive methodologies generated in

this study can be utilized by soybean breeding programs as well as

breeding programs for other crop species leading to improved rates

of genetic gain.
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Z., et al. (2019). Exploring the performance of genomic prediction models for soybean
yield using different validation approaches. Mol. Breed. 39, 74. doi: 10.1007/s11032-
019-0983-6

Duhnen, A., Gras, A., Teyssèdre, S., Romestant, M., Claustres, B., Daydé, J., et al.
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