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Living yeast-based
biostimulants: different genes
for the same results?
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Nowadays, many products are available in the plant biostimulants market.

Among them, living yeast-based biostimulants are also commercialized. Given

the living aspect of these last products, the reproducibility of their effects should

be investigated to ensure end-users’ confidence. Therefore, this study aimed to

compare the effects of a living yeast-based biostimulant between two different

soybean cultures. These two cultures named C1 and C2 were conducted on the

same variety and soil but in different locations and dates until the VC

developmental stage (unifoliate leaves unrolled), with Bradyrhizobium

japonicum (control and Bs condition) and with and without biostimulant

coating seed treatment. The foliar transcriptomic analysis done first showed a

high gene expression difference between the two cultures. Despite this first

result, a secondary analysis seemed to show that this biostimulant led to a similar

pathway enhancement in plants and with common genes even if the expressed

genes were different between the two cultures. The pathways which seem to be

reproducibly impacted by this living yeast-based biostimulant are abiotic stress

tolerance and cell wall/carbohydrate synthesis. Impacting these pathways may

protect the plant from abiotic stresses and maintain a higher level of sugars

in plant.

KEYWORDS

saccharomyces cerevisiae, soybean, seed coating, reproducibility, RNAseq, abiotic
stress tolerance, cell wall and carbohydrate synthesis
1 Introduction

The fact that phytosanitary products are widely criticized and the need to increase

productivity while helping plants to grow in adverse environments has recently brought

plant biostimulants into the equation (du Jardin et al., 2020). Biostimulants are natural-

based solutions that adhere to the principles of organic farming; they are assumed to have a

low impact on the environment or human health and thus could contribute to reducing the

use of chemical products (La Torre et al., 2016; du Jardin et al., 2020). Referring to the

European regulation (EU) 2019/1009, a biostimulant is a substance, a mixture, or a
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microorganism applied on plants or rhizosphere acting

independently from its nutrient content that stimulates nutrition

efficiency, soil nutrients availability, products quality, or abiotic

stress tolerance (European Commission, 2019). Referring now to

scientific literature, a consensus agrees to define biostimulants

around five main categories: humic substances, amino acids and

protein derivatives, non-nutritive inorganic molecules, land plant

and algal extracts, and microbial substances including beneficial

bacteria, filamentous fungi, or yeasts (du Jardin, 2015; Van Oosten

et al., 2017; Yakhin et al., 2017).

Within a few years, interest in biostimulants and related

literature has quadrupled (du Jardin et al., 2020). However,

microbial biostimulants and especially yeast-based products seem

to be less studied than others. Nevertheless, yeast-based plant

biostimulant effects were observed on yield and abiotic stress

tolerance of various plants such as wild rocket (Diplotaxis

tenuifolia L.) (Schiattone et al., 2021), tomato (Solanum

lycopersicum L.) (Lonhienne et al., 2014; Mannino et al., 2020;

Campobenedetto et al., 2021), rice (Oryza sativa L.) (Johnson and

Puthur, 2022), flax (Linum usitatissimum L.) (Emam, 2013), chia

(Salvia hispanica L.) (Esmail et al., 2022), maize (Zea mays L.)

(Abdelaal et al., 2017), navel orange (Citrus sinensis L.) (El-Boray

et al., 2015), and sugar cane (Saccharum officinarum L.) (Lonhienne

et al., 2014).

In these studies, yeast extracts were sometimes used in a

mixture with seaweed extract. Indeed, in wild rockets (Diplotaxis

tenuifolia L.), a fluid extract from brown algae and yeast applied on

leaves increased leaf chlorophyll content and decreased antioxidant

activity. With the foliar application of another mixture, an increase

in the antioxidant contents of tomato (Solanum lycopersicum L.)

fruits (Mannino et al., 2020) as well as fruit yield, size, and

nutritional composition, and a decrease in fruit ripening time was

demonstrated. Another such formulation was also investigated

during drought stress in tomato (Solanum lycopersicum L.), and it

seemed to mitigate this stress (Campobenedetto et al., 2021).

Some of these studies use only yeast and especially

Saccharomyces cerevisiae in extract form. Seeds priming of rice

(Oryza sativa L.) with a yeast extract from S. cerevisiae biostimulant

maintained cell homeostasis and provided a better adaptation to

nutrient deficiency stress (Johnson and Puthur, 2022). An S.

cerevisiae yeast extract combined with a phytohormone-based

biostimulant was applied at the bloom stage and one month later

was able to induce an increase in yield, fruit set, and fruit quality in

navel orange (El-Boray et al., 2015). Another study highlighted that

a yeast extract biostimulant applied three times on soil starting 45

days after sowing was not as effective as fertilizers but was still able

to significantly increase the quality component (fatty acid content)

of chia (Salvia hispanica L.) (Abdelaal et al., 2017).

Lastly, very few of them deal with the living-based formulation.

It was the case in a study where an active dry S. cerevisiae yeast

biostimulant applied during germination in salt stress condition,

was shown to improve flax (Linum usitatissimum L.) seedling

growth and restore membrane integrity (Emam, 2013). Living S.

cerevisiae yeast applied in soil was shown to increase root and shoot
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biomass and nitrogen and phosphorus content in tomato and

sugarcane plants (Saccharum officinarum L.) (Lonhienne et al.,

2014). Another such treatment applied in irrigation water 30 and

45 days after sowing led to significant increases in leaf biomass

(number and area), chlorophyll concentration, relative water

content, and antioxidant enzymes activity in maize (Zea mays L.)

plants in drought stress conditions (Abdelaal et al., 2017).

Thus, despite the low amount of studies on yeast-based plant

biostimulants, and the even lower amount of studies on living yeast-

based biostimulants, yeast seems to be an efficient solution for more

sustainable agriculture (Hernández-Fernández et al., 2021).

However, the living yeast biostimulant effect may be modulated

according to environmental and cultural parameters. Putative effect

modulation could also be due to possible changes in the soil

microorganism’s community as the biostimulant is composed of

living organisms. Due to the low number of studies on living yeast-

based biostimulants, the reproducibility of their effects according to

the soil type or environmental conditions still needs to be

investigated. To test this reproducibility, we aimed to compare

the effect of a living yeast-based plant biostimulant in two slightly

different experiments, recreating differences between two replicates

of a culture in the same field plot, as farmers would do in their fields

from year to year. In this study, the chosen plant model was soybean

(Glycine max (L.) Merr.), which is a highly and worldwide

cultivated plant thanks to its seeds that are mainly used in human

and animal nutrition (Kasai, 2017). Soybean seeds were coated with

the nodulating bacteria Bradyrhizobium japonicum as it would be

done in the field, and a living yeast-based biostimulant was applied

on seeds before sowing, as recommended by the biostimulant

manufacturer. To the best of our knowledge, no study was

conducted on this plant model, with the seed-coating treatment

of yeast-based biostimulant combined with a high throughput

transcriptomic analysis. Two soybean cultures were therefore

conducted in greenhouses, using the same variety and seed

treatment and the same loam soil. These two cultures were done

on different dates and geographical emplacements, reproducing

differences between the two crop seasons. A transcriptomic analysis

was performed on soybean leaves at the VC stage, allowing a fine

observation at the transcripts level of the living yeast-based

biostimulant effect between these two cultures.
2 Results and discussion

In this study, the effect of a living Saccharomyces cerevisiae-

based biostimulant (Bs) was investigated in two different soybean

cultures using transcriptomic analysis. The first culture, named C1,

was conducted in March in Normandy (France), and the second

one located 300 km from C1, named C2, was conducted in October

in Pays de la Loire (France). The seed batch, soil, and greenhouse

settings were the same for these two cultures. Between C1 and C2,

the difference was the location and growing period, which led to

sunlight differences. Indeed, stronger sunlight was observed during

culture C1 in Normandy (data not shown).
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2.1 Global analysis

Firstly, differential gene expressions were observed between

biostimulants treatment (Bs) and control (Bradyrhizobium

japonicum treated seeds) conditions (Figures 1A, B). For the two

cultures, we observed differentially expressed genes upon Bs

treatment, meaning that soybean plants were responding to the

biostimulant treatment on seeds. A comparable amount of

differentially expressed genes was found between the two cultures.

Indeed, for the C1 culture, 531 under-expressed and 437 over-

expressed genes were found. For the C2 culture, 516 under-

expressed and 583 over-expressed genes were found among the

42,007 genes described in soybean (Valliyodan et al., 2019).

To get a similar response to the Bs treatment that was observed

in the first analysis, another gene differential expression analysis was

performed. This time, the comparison was between the two cultures

in the same condition: Bs or control condition (Figures 1C, D). In

the Bs condition, 2918 genes were differentially expressed between

the two cultures (1469 genes were over-expressed in C1 and 1449

genes were over-expressed in C2). In the control condition, 2310

genes were differentially expressed between C1 and C2 (1157 genes

were over-expressed in C1 and 1153 genes were over-expressed

in C2).

These two differential analyses showed a clear difference in gene

expression between the two cultures C1 and C2 at the same plant

development stage and for the same condition (control or Bs). Further

analysis was performed, focusing on pathways corresponding to the

differentially expressed genes upon Bs treatment. One of the tools used
Frontiers in Plant Science 03
for this analysis was BlastKOALA, provided by the KEGG

database (Figure 2).

Despite the low number of annotated genes (between 34 and

43%), this analysis showed a clear majority involved in pathways

such as genetic information processing and carbohydrate synthesis

found in C1 and C2 and over and under-expressed genes. Other

pathways were also impacted as signaling and cellular processes and

metabolism. Pathways involved in the response to Bs treatment

seemed to be very similar between cultures C1 and C2.

To further confirm our observation, other analyses were

conducted with tools such as Panther DB (Mi et al., 2021),

Mapman (Thimm et al., 2004), or WeGO (Ye et al., 2018) (Tables

S1, S2; Figures S1, S2). According to these tools, pathways that seem

to be involved in Bs treatment response in soybean cultivated in C1

and C2 are reported in Table 1. Our observations highlighted 15

pathways differentially expressed in response to the Bs treatment

which were highly found in each analysis. Among these 15

pathways, only one pathway for each culture seemed culture-

specifically represented: negative DNA recombination for C1 and

catalytic activities regulation for C2. The 14 other pathways were

found to be induced in response to the Bs seed treatment in both

cultures (C1 and C2). This result was surprising, considering the

high number of differentially expressed genes between the two

cultures. Indeed, the first hypothesis was that the pathway

analysis would have resulted in different pathways impacted by

the Bs treatment between the two cultures. Consequently, further

analysis of genes involved in these different pathways for each

culture was done.
D

A B

C

FIGURE 1

Volcanoplot analysis of differentially expressed genes upon biostimulant treatment for the two cultures (A, B) or between the two cultures for the
same condition (C, D). Genes are represented by the points; the orange points correspond to significantly differentially expressed genes (fold change
(FC) ≤ 0.66 or FC ≥ 1.5 corresponding to Log2(FC) ≤ −0.585 or Log2(FC) ≥ 0.585; p-value ≤ 0.05, corresponding to −Log10(p-value) ≥ 1.30103).
Biostimulant (Bs); C1, culture conducted in Normandy, and C2, culture in Pays de la Loire.
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2.2 Commonly regulated pathways
between C1 and C2

Firstly, commonly regulated pathways between C1 and C2 were

investigated (Table 1). These 14 pathways are ‘abiotic stress
Frontiers in Plant Science 04
resistance’, ‘carbohydrate synthesis’, ‘cell wall metabolism’, ‘energy

metabolism’, ‘genetic information processing’, ‘growth and

development’, ‘lipids metabolism’, ‘nitrogen transport and use’,

‘nodulation ’ , ‘phytohormones ’ , ‘proteins metabolism ’ ,

‘signalization’, ‘specialized metabolism’, and ‘transcription factors’.

The pathway abiotic stress resistance in culture C1 was mainly

highlighted thanks to genes corresponding to cell wall components

and carbohydrate synthesis genes, transcription factors, kinases,

amino acids metabolism, specialized metabolism genes, heat shock

proteins, and a germin-like coding gene. In culture C2, genes

involved in abiotic stress resistance corresponded to cell wall

components and carbohydrate synthesis genes, transcription

factors, kinases, peroxidases, lipid metabolism genes, G proteins,

and TPR (tetratrico peptide repeats) domain-containing proteins.

In C1, among genes involved in cell wall components, over-

expressed genes such as cellulose synthase, pectin-methylesterases

(PME), and galacturonosyltransferase involved in pectins synthesis

(cell wall components) were found. Cellulose and pectin are

important components of the cell wall (Anderson and Kieber,

2020). The cell wall has many biological and physical functions of

which abiotic stress tolerance such as drought (Leucci et al., 2008)

or salt (An et al., 2014) stresses can be cited. PME are cell wall

remodeling enzymes allowing the formation of a strengthening

pectin gel (Micheli, 2001) in optimal conditions and upon stress

conditions (Pelloux et al., 2007; Wu et al., 2018). In C2, genes

involved in carbohydrate synthesis and cell wall metabolism were

also found. Concerning cell wall, genes were PME, xyloglucan

endotransglycosydases (XTH), precursors synthesis, and enzymes

degrading mannans (hexokinase and mannosidase). XTH are

enzymes responsible for xyloglucan polymer modification and the

formation of xyloglucan and cellulose cross-linking, and regulating

cell wall extensibility (Song et al., 2018).

For carbohydrate synthesis in C1, a raffinose synthase coding

gene was also detected. Raffinose is known as an osmoprotectant

involved in water stress response (Nishizawa et al., 2008). Genes

involved in glycolysis and starch synthesis were also found as part of
TABLE 1 The summary of observed pathways involved in response to
biostimulant (Bs) treatment in two different cultures C1 and C2.

Pathways C1 C2

Abiotic stress resistance +/− +/−

Carbohydrate synthesis +/− +

Catalytic activities regulation +

Cell wall metabolism + +

Energy metabolism +/− +/−

Genetic information processing +/− +/−

Growth and development + +/−

Lipids metabolism +/− +

Negative regulation of DNA recombination +

Nitrogen transport and use +/− +/−

Nodulation + +

Phytohormones +/− +/−

Proteins metabolism +/− +/−

Signalization +/− +/−

Specialized metabolism +/− +/−

Transcription factors +/− +/−
Pathways observed thanks to mainly over-expressed genes are annotated with “+” and
pathways observed with mainly under-expressed genes are annotated “−”. “+/−” means
there were over- and under-expressed genes involved in this pathway. The grey boxes stand
for pathways that were not observed to be involved in response to the Bs treatment in C1 or
C2. Results were obtained according to analyses performed with tools such as BlastKOALA,
Panther DB, Mapman, and WeGO. C1, culture conducted in Normandy, and C2, culture in
Pays de la Loire.
FIGURE 2

Pathways analysis of differentially expressed genes upon biostimulant (Bs) treatment in C1 and C2 cultures was achieved thanks to BlastKOALA
provided by the KEGG database. Path. = pathways. C1, culture conducted in Normandy, and C2, culture in Pays de la Loire.
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the carbohydrate synthesis pathway in C1 in response to Bs

treatment. In C2, trehalose synthesis genes were detected among

carbohydrate synthesis genes. This disaccharide plays a role in

growth and development control and stress resistance (Phan and

Van Dijck, 2019).

Genes involved in energy metabolism, especially in glycolysis

(enolases and hexokinases) and starch synthesis, were also found in

C2 as part of the carbohydrate synthesis pathway represented.

The genetic information processing pathway was represented

by genes involved in RNA splicing with genes coding for

spliceosome subunits (Wilkinson et al., 2020) or in protein

synthesis with genes coding for ribosomal subunits (Martinez-

Seidel et al., 2020).

The pathway of growth and development was found in C1

thanks to various genes such as G-proteins coding genes (Ofoe,

2021), a germin-like protein coding gene (Dunwell et al., 2008), or

genes involved in auxin metabolism (Teale et al., 2006). In C2,

differentially expressed genes coding for G-proteins were also

detected, as well as genes involved in auxin and abscisic acid

(Chen et al., 2020) metabolism.

Some differentially expressed genes involved in lipid

metabolism were detected in C1 and C2 as over-expressed

phospholipase genes and under-expressed ligase coding genes

involved in a lipid precursor synthesis in C1. In C2, synthase

coding genes involved in lipids synthesis and elongation and a

diacylglycerol kinase coding gene involved in membrane

sphingolipid synthesis were over-expressed. These lipids

participate in the development, stimulus sensing, and stress

response (Liu et al., 2021). Two ligases involved in lipid

elongation and two lipid degrading kinases were under-expressed.

Nodulation processes seemed impacted by the Bs seed

treatment, notably with the over-expression of transcription

factors involved in nodulation such as bZIP (basic leucine

zipper), MYB (myeloblastosis), and bHLH transcription factors

(Du et al., 2012; Chiasson et al., 2014; Wang et al., 2015). MYB

transcription factors functions are highly diverse but appear to play

an important role during nodulation in soybean (Du et al., 2012), as

well as bZIP transcription factors which are involved in plant

development, including nodulation processes (Wang et al., 2015).

bHLH transcription factors are involved in nodules growth and

ammonium transport in soybean (Chiasson et al., 2014).

The phytohormones pathway was mostly represented in both

cultures by under-expressed genes from ethylene and auxin

metabolism. In soybean, ethylene is known to be involved in

flowering and fruit development and the negative regulation of

abiotic stresses such as cold stress (Robison et al., 2019). Auxin is

known to be involved in growth regulation (Teale et al., 2006).

The protein metabolism pathway was largely impacted in the

two cultures C1 and C2, for instance, with the differential

expression of many ribosomal proteins involved in protein

synthesis (Martinez-Seidel et al., 2020) and MAP kinases

(mitogen-activated protein kinases) involved in protein

phosphorylation (Kumar et al., 2020).

The signalization pathway involved kinases receptors LRR-RLK

(leucine-rich repeat receptor-like kinase) in C1 and C2. More

specifically, LRR-XI and LRR-III family RLK were detected. LRR-
Frontiers in Plant Science 05
XI RLKs are known to play a role in growth and development (size

control of the apical meristem, floral meristem, and floral organ

abscission) in response to nodulation factors and during water

stress (Meng et al., 2020; Soltabayeva et al., 2022). LRR-III RLKs

have major functions in secondary cell wall formation, silique

formation, and organ and tissue development (Meng et al., 2020).

The specialized metabolism also seemed impacted in C1 and

C2, especially with under-expressed genes involved in flavonoids

metabolism as chalcone synthase genes playing a role in naringenin

synthesis, which is involved in tolerance to salt and osmotic stress

(Ozfidan-Konakci et al., 2020).

Many transcription factors from different pathways were also

detected in C1 and C2, among these, bZIP (basic leucine zipper) and

MYB (myeloblastosis) transcription factors. The differential

expression of these transcription factors mainly explained the

appearance of the nodulation process pathway among the

commonly regulated pathways. In C1 and C2, bHLH

transcription factors were also found. These transcription factors

are involved in nodules growth and ammonium transport in

soybean (Chiasson et al., 2014), as well as abiotic stress response

(Li et al., 2018).

With the analysis of these common pathways differentially

expressed upon Bs treatment in the two cultures C1 and C2, we

found four categories of pathways that have redundant genes:

abiotic stress resistance, cell wall and carbohydrate synthesis,

growth and development, and signalization.
2.3 Commonly regulated genes between
C1 and C2

Lastly, an analysis focusing only on common genes differentially

expressed in both cultures was conducted. This analysis highlighted

18 over-expressed (Table 2) and 60 under-expressed genes

(Table S3).

Among the 18 over-expressed genes in C1 and C2 with Bs

treatment, seven genes were involved in abiotic stress tolerance

mechanisms. A phenylalanine ammonia-lyase coding gene

(GLYMA_13G145000) involved in monolignol and naringenin

synthesis was over-expressed. These two previous compounds are,

respectively, involved in secondary cell wall rigidity and

hydrophobicity (Soltabayeva et al., 2022), and tolerance to salt and

osmotic stress (Ozfidan-Konakci et al., 2020). An HRGP

( h y d r o x y p r o l i n e - r i c h g l y c o p r o t e i n ) c o d i n g g e n e

(GLYMA_16G023500) was also found. HRGPs are cell wall

glycoproteins involved in abiotic stress response but also growth

and development pathways (Kieliszewski and Shpak, 2001; Deepak

et al., 2010). Another gene that seems to play a role in abiotic stress

tolerance is a cold-inducible RNA-binding protein (CIRBP) coding

gene (GLYMA_11G117600) known for being induced in various

stresses including cold stress (Sachetto-Martins et al., 2000; Brochu

et al., 2013). A basic helix-loop-helix (bHLH) transcription factor

(GLYMA_07G051500) involved in abiotic stress response (iron

deficiency), nodulation, and ammonium transport (Chiasson et al.,

2014; Cheng et al., 2018) was also detected among over-expressed

genes in C1 and C2. A protein phosphatase (GLYMA_05G042000,
frontiersin.org
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Medicago trunculata 84.5% identity) involved in stress signaling

responses during nutrient deficiency and in growth and

development (Bheri et al., 2021), a pentatricopeptide repeat-

containing protein (GLYMA_06G246500) involved in RNA

metabolism (translation, splicing, and editing), ROS (Reactive

Oxygen Species) generation, and abiotic stress resistance (Xu et al.,

2018), and an EXORDIUM-like 5 protein (GLYMA_10G179200)

involved in abiotic stress response such as low carbon availability,

sugar starvation, prolonged darkness, and anoxia (Schröder et al.,

2011; Hansch et al., 2020) were also over-expressed in the

two cultures.

Four genes involved in cell wall/carbohydrate synthesis pathway

were also commonly over-expressed in C1 and C2 upon Bs

treatment: an HRGP (GLYMA_16G023500), a hexosyltransferase

(GLYMA_01G037900) involved in pectin synthesis, a cell wall

polysaccharide (Yang and Anderson, 2020), an arabinogalactan

protein-like (GLYMA_02G039700), a cell wall protein involved in

growth, programmed cell death, communication with

microorganisms, and stress protection (Nguema-Ona et al., 2013;

Nguema-Ona et al., 2014), and a patatin (GLYMA_09G022000),

which is a storage glycoprotein (de Souza Cândido et al., 2011). The

other eight genes involved in different pathways (signaling, lipid
Frontiers in Plant Science 06
and protein metabolism, etc.) which have been detected are

described in Table 2.

Conversely, the 60 under-expressed genes (Table S1) play, in

particular, a role in glycolysis. Indeed, it has highlighted two

pyruvate kinases (GLYMA_20G136200 and GLYMA_10G255100)

which conver t phosphoeno lpyruva te in pyruva te , a

phosphofructokinase (GLYMA_01G005400) which converts b-D-
f r u c t o s e - 6 P i n b -D - f r u c t o s e - 1 , 6 P 2 , a n d a l i g a s e

(GLYMA_07G242100) which converts acetate in acetyl-CoA used

to produce citrate from oxaloacetate in citrate cycle. An isocitrate

dehydrogenase (GLYMA_19G005100), which synthesizes

oxoglutarate from oxaloacetate in the citrate cycle was also

under-expressed.

The protein degradation pathway also seemed under-regulated

upon Bs treatment. Indeed, a RING-type domain-containing

protein (GLYMA_19G037800), corresponding to a ubiquitin

ligase and F-box domain-containing genes (GLYMA_08G158200

and GLYMA_13G360600) were under-expressed. F-box proteins

have multiple functions, including protein degradation, cell death,

or stress response (Kipreos and Pagano, 2000; van den Burg et al.,

2008). Other under-expressed genes were also involved in protein

conformation and modification, such as an isomerase
TABLE 2 Commonly over-expressed genes between C1 and C2. A blast against all plants’ genomes was done with uncharacterized proteins.

Phytozome ID Protein names/BLAST Pathways

GLYMA_01G037900 Hexosyltransferase (EC 2.4.1.-) Carbohydrate synthesis

GLYMA_01G155600 Protein kinase domain-containing protein Signaling

GLYMA_02G039700 Classical arabinogalactan protein 5-like Carbohydrate synthesis, growth, programmed cell death, communication with
microorganisms, and stress tolerance

GLYMA_05G042000 Uncharacterized protein/Protein phosphatase 2c, putative
(Medicago truncatula; 84,5% identity)

Abiotic stress

GLYMA_05G131200 CAF1C_H4-bd domain-containing protein Histone chaperone

GLYMA_06G093600 Peptidase A1 domain-containing protein Protein degradation, cell death, and stress response

GLYMA_06G246500 Pentatricopeptide repeat-containing protein Abiotic stress, RNA metabolism, and ROS generation

GLYMA_07G051500 BHLH transcription factor Abiotic stress, nodulation, and ammonium transport

GLYMA_09G022000 Patatin (EC 3.1.1.-) Carbohydrate synthesis

GLYMA_10G179200 Protein EXORDIUM-like 5 Abiotic stress

GLYMA_11G117600 CIRBP cold-inducible RNA-binding protein Abiotic stress

GLYMA_13G145000 Phenylalanine ammonia-lyase (EC 4.3.1.24) Abiotic stress and secondary cell wall metabolism

GLYMA_13G206700 TPT domain-containing protein Transport

GLYMA_13G262800 FBD domain-containing protein Protein degradation, cell death, stress response

GLYMA_16G023500 Hydroxyproline-rich glycoprotein family protein Abiotic stress and growth, development

GLYMA_17G087500 SOUL heme-binding protein Electron transport, oxygen carrier, and enzyme cofactor

GLYMA_17G176200 3-ketodihydrosphingosine reductase Lipid metabolism

GLYMA_19G043000 Proline dehydrogenase (EC 1.5.5.2) Proline and arginine metabolism
C1, culture conducted in Normandy, and C2, culture conducted in Pays de la Loire.
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(GLYMA_03G198200) acting in protein conformation processes, a

glutamine-specific methyltransferase (GLYMA_03G027700)

regulating protein translation termination (Heurgué-Hamard

et al . , 2002), and an N-acetylglucosaminyltransferase

(GLYMA_05G175000) acting in N-linked glycoproteins synthesis.

Many other genes involved in various processes were found,

such as DELLA proteins (GLYMA_03G219900) which are negative

regulators of the gibberellic acid pathway (Locascio et al., 2013), a

b a s i c l e u c i n e z i p p e r ( bZ IP ) t r a n s c r i p t i o n f a c t o r

(GLYMA_03G247100) involved in stress signaling and

development (Dröge-Laser et al., 2018), and two zinc finger

proteins (GLYMA_04G044900 and GLYMA_05G094700). Zinc

finger proteins are involved in many biological processes,

including DNA recognition, RNA packaging, transcriptional

activation, and apoptosis regulation (Laity et al., 2001). ZAT10

(GLYMA_04G044900) proteins are specifically known to act as a

negative regulator of the abiotic stress response (Ciftci-Yilmaz and

Mittler, 2008). A gene coding for an ABC (ATP binding cassette)

transporter (GLYMA_06G154500) was also found. These

transporters are involved in flavonoid transport, detoxification,

growth and development, and stress response (Kang et al., 2011;

Zhao, 2015). Another gene under-expressed upon Bs treatment that

was also found was a gene coding for an EF-hand domain-

containing protein (GLYMA_07G053300) involved in Ca2+

signaling (Mohanta et al., 2019).

With this analysis of common genes between both cultures,

abiotic stress resistance and cell wall/carbohydrate synthesis seemed

to be the two main pathways represented by over-expressed genes in

response to Bs seed treatment. Protein degradation, modification,

and conformation processes, as well as glycolysis, seem to be the

main pathways modified by under-expressed genes (Figure 3). The

over-expression of genes involved in these pathways and notably

abiotic stress resistance pathway seems consistent with previous

studies on living-based biostimulants, which were shown to

improve flax seedlings’ growth in salt stress conditions (Emam,

2013) and maize resistance to drought stress (Abdelaal et al., 2017).
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Further investigation is needed to characterize the molecular

interactions leading to these soybean pathway modifications. Such

interactions might occur directly between the living yeast-based

biostimulant and soybean and between the biostimulant and the soil

microbial communities, including Bradyrhizobium japonicum.

Indeed, a possible interaction between S. cerevisiae and B.

japonicum was shown recently (Zveushe et al., 2023), resulting in

an increase in soil inorganic phosphate solubilization and auxin

production by yeast. A similar process might have occurred in this

experiment. Auxin is known to be involved in many biological

processes in plants, such as in signaling, transport, and root

development (Teale et al., 2006; Overvoorde et al., 2010), and

phosphorus is a highly important nutrient affecting soybean

culture yield (Vieira et al., 2023) involved in processes such as

nodulation and nitrogen fixation in soybean. The synthesis of these

two components by the yeast might improve soybean nutrition and

root development which may lead to an up-regulation of abiotic

stress resistance and cell wall and carbohydrates synthesis pathways

and a down-regulation of glycolysis and protein degradation and

modification pathways.
3 Conclusion

In the field, the same biostimulant is used in highly different

conditions for the same crop, considering parameters such as the

location, application timing, weather, and many other parameters

which lead to a putative loss or modification of its effect. This study

aimed to assess a living Saccharomyces cerevisiae-based

biostimulant effect between two different cultures, using RNA

sequencing by changing two parameters: the sowing date and the

culture location. These two parameters also led to differences in

sunlight in greenhouses between C1 and C2. As a main observation,

despite the high variability of differentially expressed genes between

the two cultures, these genes led to the activation or repression of

the same pathways, especially abiotic stress resistance, cell wall and
FIGURE 3

The mode of action of the living Saccharomyces cerevisiae-based biostimulant according to commonly up-regulated (orange) and down-regulated
(blue) genes in C1 and C2 cultures. Up-regulated genes in C1 and C2 seem to mainly impact abiotic stress resistance pathways and cell wall and
carbohydrate synthesis pathways. Down-regulated genes in C1 and C2 seem to mainly impact protein degradation and modification as well as
glycolysis pathways. C1, culture conducted in Normandy, and C2, culture in Pays de la Loire.
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carbohydrate synthesis, growth and development, and signalization.

Additionally, commonly differentially expressed genes between C1

and C2 upon Bs treatment confirmed that a reproducible effect on

genes of this living yeast-based biostimulant may have an impact on

abiotic stress resistance, carbohydrate synthesis, protein

metabolism, and glycolysis. In conclusion, despite the differences

between the two cultures, when merging both analyses, the

pathways which seem to be reproducibly impacted by this living

yeast-based biostimulant are abiotic stress tolerance and cell wall/

carbohydrate synthesis. Thus, the biostimulant may induce these

pathways to protect the plant against various abiotic stresses during

plant development and maintain a higher level of sugars.
4 Materials and methods

4.1 Plant material, seed treatments,
and cultures

All Glycine max (L.) Merr. seeds variety Nessie PZO (Sem-

Partners, Maule, France) were treated with 4g/kg of bacteria

Bradyrhizobium japonicum (FORCE 48 NPPL, Euralis semences,

Lescar, France), and for the treated condition (abovementioned Bs),

with 1g/kg of a Saccharomyces cerevisiae yeast strain (AGX19-009-

V, Agrauxine by Lesaffre, Beaucouzé, France). Seed coating was

done in a spinning tank developed by Aegilops Application (Val-

de-Reuil, France), in collaboration with Aegilops Application (Val-

de-Reuil, France).

Two different cultures in greenhouses were done for this study: a

first culture in NormanSerre in Mont Saint Aignan (Normandy,

France) named C1 in March 2021, and a second one in INEM

(Installations Expérimentales Mutualisées) in Beaucouzé (Pays de la

Loire, France) named C2 in October 2021. Greenhouses were set at

20°C during the day (14h) and 14°C during the night (10h). In order

to avoid high differences in soil microbial communities, the same

loam soil from Ryes (Normandy, France) and the same seed batch

were used for C1 and C2. Pots were drop by drop watered. Upon the

VC stage (12 days after sowing), soybean leaves were collected and

crushed in liquid nitrogen. Six replicates per condition were prepared.
4.2 RNA extraction and sequencing

RNA extraction was performed as per RNA/DNA Purification

Kit instructions (Norgen, Thorold, Canada). RNA quality was

assessed with a 2100 Bioanalyzer system (Agilent, Santa Clara,

California, USA) and the kit RNA 6000 Pico Kit Quick Start

(Agilent, California, USA). For each condition, the four replicates

with the best RNA quality were used to create 12 libraries with the

Stranded mRNA Prep Ligation kit (Illumina, San Diego, California,

USA), and a pre-run on a MiniSeq (mid-output flow cell) and a

NovaSeq run (S4 flow cell) were performed on the MGX facility

(https://www.mgx.cnrs.fr/).
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4.3 Bioinformatic analysis

Fastq files were uploaded on the Galaxy platform (Afgan et al.,

2016) and trimmed with Trimmomatic v0.36.6 (Bolger et al., 2014);

reads were aligned on the G. max genome (Gmax Wm82 a4 v1,

Phytozome v13) with Hisat2 v2.1.0 (Kim et al., 2015), and gene count

was performed with HTSeq-Count v0.9.1 (Anders et al., 2015).

Differential expression analysis of genes was conducted with

DESeq2 V2 (Love et al., 2014). Volcanoplot were generated from

DESeq2 differential expression analysis results (fold change and p-

value) on Microsoft Excel. BlastKOALA (https://www.kegg.jp/

blastkoala/) was used for KO (KEGG Onthologies) analysis. A

BLAST on UniProtKB reference proteomes and Swiss-Prot

databases was performed on uncharacterized proteins coded by

differentially expressed genes. Only proteins with over 80% identity

were considered. Other tools such as WeGO, Mapman, and Panther

db were also used in supplemental data (Tables S1, S2; Figures S1, S2);

methods used for these tools are described in supplemental data.
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