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root zone soil salinity under
vegetation cover conditions
by combining canopy spectral
information and crop
growth parameters

Xiaoyan Shi1,2†, Jianghui Song1,2†, Haijiang Wang1,2*, Xin Lv1,2*,
Tian Tian1,2, Jingang Wang1,2, Weidi Li 1,2, Mingtao Zhong1,2

and Menghao Jiang1,2

1College of Agriculture, Shihezi University, Shihezi, China, 2Key Laboratory of Oasis Ecological
Agriculture of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
Soil salinization is one of the main causes of land degradation in arid and semi-

arid areas. Timely and accurate monitoring of soil salinity in different areas is a

prerequisite for amelioration. Hyperspectral technology has been widely used in

soil salinity monitoring due to its high efficiency and rapidity. However,

vegetation cover is an inevitable interference in the direct acquisition of soil

spectra during crop growth period, which greatly limits the monitoring of soil

salinity by remote sensing. Due to high soil salinity could lead to difficulty in

plants’water absorption, and inhibit plant dry matter accumulation, a method for

monitoring root zone soil salinity by combining vegetation canopy spectral

information and crop aboveground growth parameters was proposed in this

study. The canopy spectral information was acquired by a spectroradiometer,

and then variable importance in projection (VIP), competitive adaptive

reweighted sampling (CARS), and random frog algorithm (RFA) were used to

extract the salinity spectral features in cotton canopy spectrum. The extracted

features were then used to estimate root zone soil salinity in cotton field by

combining with cotton plant height, aboveground biomass, and shoot water

content. The results showed that there was a negative correlation between plant

height/aboveground biomass/shoot water content and soil salinity in 0-20, 0-

40, and 0-60 cm soil layers at different growth stages of cotton. Spectral feature

selection by the three methods all improved the prediction accuracy of soil

salinity, especially CARS. The prediction accuracy based on the combination of

spectral features and cotton growth parameters was significantly higher than that

based on only spectral features, with R2 increasing by 10.01%, 18.35%, and

29.90% for the 0-20, 0-40, and 0-60 cm soil layer, respectively. The model

constructed based on the first derivative spectral preprocessing, spectral feature

selection by CARS, cotton plant height, and shoot water content had the highest

accuracy for each soil layer, with R2 of 0.715,0.769, and 0.742 for the 0-20, 0-40,
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0-60 cm soil layer, respectively. Therefore, the method by combining cotton

canopy hyperspectral data and plant growth parameters could significantly

improve the prediction accuracy of root zone soil salinity under vegetation

cover conditions. This is of great significance for the amelioration of saline soil

in salinized farmlands arid areas.
KEYWORDS

canopy hyperspectral data, growth parameters, partial least squares regression, soil
salinization, variable selection
1 Introduction

In recent decades, global warming and anthropogenic activities

have continuously caused the Earth system to deviate from its

normal state. In particular, soil degradation accelerates, leading to a

decline in soil quality. Soil salinization is one of the main causes of

land degradation in arid and semi-arid areas. It not only restricts the

sustainable agricultural development, but also greatly threatens

regional ecological environment. Therefore, soil salinization has

attracted many attentions from scholars. In Xinjiang, China, the

special topography and arid climate have led to increasing soil

salinization (Zhang et al., 2021a), which greatly limits the

development of agriculture and animal husbandry. For example,

in the Manas River Basin in Xinjiang, the flat terrain, high parent

material salinity, arid climate, and strong evaporation have caused

the massive accumulation of salts in the agricultural fields. In

addition, the long-term irrigation results in the rise of

groundwater level. Therefore, soil salinization and secondary

salinization are very prominent. To ameliorate saline soils,

accurate monitoring of soil salinity changes is very necessary.

Conventional soil salinity determination mostly relies on in-situ

sampling and indoor experiment. These methods are not only

labour-intensive and time-consuming, but also cannot accurately

and timely reflect the changes of soil salinity in vast lands.

Hyperspectral remote sensing, with the fast, nondestructive, and

high efficiency characteristics, has become a hotspot in the study of

soil salinization monitoring. Spectral features of soil salinity can be

directly obtained by remote sensing under bare soil conditions, and

the spectral reflectance increased with the increase of soil salinity at

visible-near infrared region (Sidike et al., 2014; El Harti et al., 2016).

However, soil spectra acquisition is highly influenced in areas

covered with vegetation, which inhibits direct spectral monitoring

of soil salinity. To solve this problem, academics have done a great

deal of researches. Several scholars removed areas with high

vegetation coverage, which led to information loss (Wester et al.,

1990). Some studies also used vegetation index to invert soil salinity

(Ramos et al., 2020; Wang et al., 2020; Zhang et al., 2021a; Zhu et al.,

2021). However, specific vegetation indices usually use reflectance

of limited bands for estimation, ignoring the hyperspectral

information in other bands. Besides, the characterization in

vegetation indices will be delayed when crops are subjected to salt

stress, which may lead to problems such as low estimation accuracy
02
and poor universality (Liu et al., 2019). Hyperspectral remote

sensing data provide complete information of crop spectrum,

which makes it possible to monitor soil salinity. However, the

increase of uncorrelated bands will also bring about the increase of

information redundancy and complexity. Therefore, it is necessary

to eliminate the noise and redundancy of canopy hyperspectral data

and select appropriate spectral features in the monitoring of soil

salinity under vegetation cover conditions.

In spectral prediction, the inevitable inclusion of interference

and irrelevant information such as noise in the spectral data, and

the collinearity between variables will affect the robustness and

prediction accuracy. Variable selection methods such as

Competitive Adaptive Reweighted Sampling (CARS), Genetic

Algorithm (GA), Random frog algorithm (RFA), Successive

Projections Algorithm (SPA), Uninformative Variable Elimination

(UVE), and Variable Importance in Projection (VIP), could extract

spectral features from massive and complex data, so as to simplify

multivariate models and improve prediction accuracy and

robustness (Sun et al., 2021a; Kamruzzaman et al., 2022). For

example, Yang et al. (2012) used spectral techniques to

quantitatively analyze soil nitrogen and carbon at farm scale and

found that the UVE method could effectively eliminate invalid

information and increase prediction accuracy. Vohland et al. (2014)

used the CARS method to extract spectral features to establish a

PLSR (Partial Least Squares Regression) model for soil organic

matter content estimation, and found that the PLSR model based on

CARS had a higher prediction accuracy than the PLSR model

constructed using the full band. Peng et al. (2014) accurately

predicted soil organic carbon content by combining SPA and

support vector machine regression (SPA-SVMR), with R2 of 0.73.

However, different spectral feature selection methods have different

prediction accuracy, that is, the selected spectral features and their

numbers are different (Zou et al., 2010; Vohland et al., 2014).

Besides, different feature selection methods have different

applicability for different data sets. Therefore, it is necessary to

determine the optimal feature selection method for a data set in

spectral prediction.

Cotton (Gossypium hirsutum L.) is the most important cash

crop in Xinjiang, China, and the widespread application of drip

irrigation and plastic film mulching make cotton roots mainly

distributed in the 0-60 cm soil layer (Min et al., 2014). Previous

studies have shown that the salinity in root zone directly affects
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cotton growth parameters such as plant height, aboveground

biomass, and moisture content (Abdelraheem et al., 2015a;

Abdelraheem et al., 2015b; Du et al., 2016; Oluoch et al., 2016;

Abdelraheem et al., 2019). For example, Ahmad et al. (2002) found

that high soil salinity inhibited the growth of cotton roots and

shoots, increased bud abscission, and decreased the boll number per

plant. At present, the saline soil amelioration methods mainly

include the development of salt-tolerant crop varieties (Kumar

et al., 2017), the application of amendments (Kibria et al., 2015),

and engineering measures (Shi et al., 2021). In arid areas in

Xinjiang, the high groundwater level and poor water quality are

the main reasons for the accumulation of salts in the tillage layer of

farmlands, and reducing the groundwater level and the upward

movement of salts in groundwater is very necessary to inhibit soil

salinization. Therefore, salt isolation layer in root zone and

subsurface drainage have been applied to inhibit soil salinization

in farmlands. Studies have shown that salt isolation layer in root

zone can effectively inhibit the upward movement of salts with

groundwater by blocking soil capillaries (Starr et al., 1978), and the

subsurface drainage can effectively reduce the groundwater level

and the risk of secondary salinization through drainage (Ritzema

et al., 2006).

At present, the effects of saline soil amelioration measures can

be directly evaluated by measuring soil salinity and indirectly

evaluated by monitoring the growth parameters of crops. Directly

measuring soil salinity in cotton fields during cotton growth season

is time-consuming and laborious, while remote sensing provides a

good option for monitoring. However, how to use remote sensing

technology to accurately obtain crop root zone soil salinity

information under vegetation cover conditions is an urgent

problem to be solved. At present, most studies on spectral

monitoring of soil salinity only consider the spectral features of
Frontiers in Plant Science 03
soil salinity, vegetation index, etc. (Wu et al., 2021; Zhu et al., 2021;

Chen et al., 2022; Jia et al., 2022), without considering the

combination of crop growth parameters and spectral information.

Therefore, this study hypothesized that the combination of crop

canopy spectral information and crop growth parameters (cotton

plant height, aboveground biomass, and shoot water content) might

improve the estimation accuracy of soil salinity in root zone under

vegetation cover conditions. The objectives were to: (1) study the

effects of soil salinity on cotton growth parameters at different

growth stages; (2) compare the effects of different feature selection

methods (VIP, CARS, and RFA) on the spectral prediction accuracy

of salinity of different soil layers (0-20 cm, 0-40 cm, and 0-60 cm);

and (3) explore the potential of combination of canopy spectral data

and crop growth parameters in the monitoring of root zone soil

salinity, to obtain a universal soil salinity monitoring method.
2 Materials and methods

2.1 Study site

The research area is located in an experimental base in

Beiwucha Town, Manas County, Xinjiang, China (44°35′N, 86°15′
E). The site has a temperate continental climate with hot summer

and cold winter. The average annual temperature was 6.8°C and

average annual precipitation was 152.6 mm. The average annual

evaporation (1967 mm) was much greater than average annual

precipitation (Figure 1). The terrain was flat and the soil type was

meadow soils. The soil texture was primarily medium loam, with a

large thickness. The groundwater level was high, and the average

annual groundwater level was between 0.5 and 3.0 m. The mineral

concentration of groundwater was greater than 30 g L-1. The soil
FIGURE 1

Variation of temperature, precipitation, and evaporation in the study area in 2020.
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salinity of the study site was very high (6.84 dS m-1 (EC1:5) in the 0-

20 cm soil layer) before construction of the base in 2011. And

salinity of groundwater in the study area was greater than 30 g L-1.

The irrigation water was from a nearby reservoir, with a salinity

below 1 g L-1 (Wang et al., 2021).
2.2 Test design

In 2011, three saline soil amelioration treatments including salt

isolation by a stone layer combined with cropping (T1), subsurface

drainage combined with cropping (T2), cropping (T3) and a control

group (CK) were set up (Table 1). Cotton was cropped since 2012

except for 2014 and 2015 (the field was abandoned for lack of

irrigation water). In 2018, cotton was cropped in part of the site of

the CK, which was recorded as T4 treatment. There were significant

differences in soil salinity among treatments before sowing in 2020

(Table 1), which provided a good experimental condition for this

study. In 2011, the initial average soil salinity (EC1:5) of the 0-20, 20-

40, and 40-60 cm soil layers were 6.84, 6.96, and 6.83 dS m-1,

respectively, indicating severe soil salinization (Table 2). After 9

years of saline soil remediation, there were differences in soil salinity
Frontiers in Plant Science 04
among different soil layers before cotton sowing in 2020, providing

a good experimental condition for this study. The detailed irrigation

timing, irrigation quota, and nitrogen fertilizer application amount

are shown in Table 3.
2.3 Data collection

Cotton canopy spectral reflectance were collected in-situ using a

high spectral resolution portable spectroradiometer SR-3500

(Spectral Evolution Inc., Lawrence, MA, USA) from 11:00 to

15:00 on 6th July (full-budding stage; 76 days after sowing

(DAS)), 6th Aug (full-flowering stage; 111 DAS), 19th Aug (boll-

setting stage; 124 DAS), 6th Sep (initial boll-opening stage; 142

DAS), and 26th Sep (boll-opening stage; 162 DAS). The instrument

has a spectral range of 350-2500 nm, and the spectral resolution for

350 ~ 1000 nm, 1000 ~ 1500 nm, and 1500 ~ 2500 nm were 3.5 nm,

10 nm, and 7 nm, respectively. The spectral sampling interval was 1

nm. During spectral acquisition, a non-contact fiber optic probe

was placed 100 cm above the cotton canopy, with a field of view of

25°. A white barium sulfate (BaSO4) panel was used for calibration

before each spectral acquisition. 7 replicates were selected from each
TABLE 2 Details for treatments in the experiment.

Treatments
Initial soil salinity in 2011 (dS m-1) Soil salinity in 2020 (dS m-1)

0-20 cm 20-40 cm 40-60 cm 60-100 cm 0-20 cm 20-40 cm 40-60 cm 60-100 cm

T1 6.80a 6.93a 6.85a 6.81a 2.89ab 3.23ab 3.10ab 3.04ab

T2 6.82a 6.95a 6.85a 6.76a 1.97b 2.62b 2.67b 2.41b

T3 6.88a 6.97a 6.81a 6.77a 2.45ab 2.72b 3.37ab 3.25ab

T4 6.85a 6.99a 6.82a 6.74a 3.47a 3.74a 3.78a 3.65a
Different lowercase letters in each column indicate significant difference (at the 95% confidence interval) between treatments in the same soil layer.
TABLE 1 Details for treatments in the experiment.

Treatment Details

T1

A salt isolation stone layer was built to stop the upward movement of salt in the deep soil layer by blocking the soil capillary. In 2011, the 0-20, 20-40,
40-60, 60-80, 80-100, and 100-120 cm soil layer of a plot (100 m × 70 m) were excavated in turn (the bottom slope was 1: 500), while the bulk density of
each soil layer was measured. Then, the pit bottom was covered with a geotextile, and the sides were covered with a waterproof plastic cloth. After that,
stones (particle size: 2-4 cm) were covered on the geotextile (thickness: 15-20 cm). A geotextile was then covered on the stone layer. Finally, the soils
were backfilled. To ensure consistent bulk density, the soils of different layers were compacted until the bulk density reached the initial value. The details
for cropping are shown in T3 treatment.

T2

Subsurface drainage was designed according to the principle of “salt moves with water”. In 2011, corrugated drainage pipes with inner diameter of 110
mm were wrapped with geotextile after being punched, and laid by a trenching machine in a plot (100 m × 70 m). The space and layout depth of
drainage pipe were 10 cm and 100 cm, respectively, and the slope was 1:500. The drainage pipes were connected with the water collecting pipe through a
gate valve. The water in the water collecting pipe was discharged to the drainage channel outside the study area through the built water collecting tank.
The details for cropping are shown in T3 treatment.

T3

Cotton (cv. Xinluzao 79) was sown in April, and drip irrigation and plastic film mulching were adopted. Three drip pipes and six rows were under each
film. Full irrigation was applied 11 times during the whole growth period, with the quota of 480 mm. Besides, 105 kg ha-1 of P2O5, 60 kg ha-1 of K2O,
and 72 kg ha-1 of pure N were basally applied, and the remaining 288 kg ha-1 of pure N was topdressed with irrigation water in different periods.
Irrigation was stopped on 30th Aug (135 days after sowing), and irrigation was conducted 1, 3, and 7 times at the seedling, bud, and flowering and boll-
forming stage, respectively. Other field managements were consistent with local practice. The area of the plot was 100 m × 70 m.

T4
In 2018, cotton was cropped in part of the site of the CK, which was recorded as T4 treatment (80 m × 70 m). The details for cropping are shown in T3
treatment.

CK Bare land (Before 2017, the area of the plot was 165 m × 70 m; After 2018, it was 85 m × 70 m)
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treatment for spectral acquisition, and 5 canopy data were collected

for each replicate. After removing the abnormal data, the mean of

each point was used as the spectral reflectance data of the point. A

total of 140 spectral data were collected from T1, T2, T3, and T4

treatments finally.

After the spectral acquisition, soil samples of the 0-20 cm, 20-40

cm, and 40-60 cm soil layer were collected from the spectral

sampling points. In the lab, the soil samples were air-dried,

ground, and sieved through a 2 mm sieve. The soil electrical

conductivity (EC1:5) was measured with a conductivity meter

(S230-K-CN, Mettler-Toledo, Switzerland) (soil: water = 1: 5).

The average EC1:5 was calculated for the 0-20, 0-40, and 0-60 cm

soil layers, which were labeled as S1, S2, and S3, respectively. Three

cotton plants were collected at each spectral sampling point, and 21

cotton plants were collected for each treatment. Plant height (H)

(cm) was measured in-situ with a tape measure, and cotton stems,

leaves, and reproductive organs were weighted by an electronic

balance. After that, the plant samples were dried at 105 °C for 30

minutes, and then dried at 80 °C to constant weight, followed by the

measurement of the dry weight. The average value of three

replicates was calculated. Finally, the aboveground biomass

(AGB) and shoot water content (SWC) were determined.
2.4 Spectral preprocessing

The spectral data of 350-399 nm and 2401-2500 nm were

removed because of the instrumental noises. Besides, the spectral

data of 1361-1489 nm and 1811-1959 nm were also removed

because these were prone to be affected by air moisture. The

Savitzky–Golay Filter method was used to smooth the raw

reflectance, with a window size of 13 × 13 nm. To reduce the

errors generated in the spectral acquisition, the first derivative

reflectance (FDR) preprocessing of the raw spectra was

performed, which could reduce the influence of noise on the

hyperspectral curve and the spectral difference caused by the

inhomogeneity of the samples.
Frontiers in Plant Science 05
2.5 Spectral feature selection

Spectral feature selection can reduce the impact of invalid

information and improve prediction accuracy and robustness and

operational efficiency (Kamruzzaman et al., 2022). In this study,

three methods including VIP, CARS, and RFA were used for

spectral feature selection using the libPLS in Matlab (The Math

Works, Inc., Natick, MA, USA).

2.5.1 Variable importance in projection
VIP is a method based on the PLSR model, which reflects the

explanatory capacity of independent variables on dependent

variables (Oussama et al., 2012; de Almeida et al., 2013). If the

VIP value of independent variable is less than 1, it indicates that the

variable has little contribution to the model and has a low

explanatory capacity for the dependent variable, so it can be

removed in the modeling (Chavana-Bryant et al., 2019). The VIP

was calculated as follows (Wold et al., 1983):

VIP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � oA

a=1
Rd(Y ,t)W2

oA
a=1

Rd(Y ,t)

r
(1)

where K represents the total number of independent variables;

A is the number of components; t represents the selected

independent variables; Rd (Y, t) represents the explanatory

capacity of components to dependent variables; W2 represents the

importance of variable in each component; If the VIP value is

greater than 1, it indicates a strong correlation between independent

variable and dependent variable.
2.5.2 Competitive adaptive reweighted sampling
CARS is a feature selection method based on the Monte Carlo

sampling and PLSR coefficients. By randomly selecting part of total

samples as the calibration set and establishing a PLSR model, the

absolute value of the regression coefficient of the model and the

corresponding weight of each band were calculated. After that,

variables were selected by using the exponential decay function and
TABLE 3 Information of irrigation and N topdressing.

Growth stage Irrigation timing (days after sowing) Irrigation quota/mm Topdressed N/%

Seedling stage 45 30 3

Squaring stage

61 40 6

71 40 10

79 40 15

Flowering and bolling stage

86 50 15

92 50 15

97 50 12

102 50 12

108 50 6

122 40 4

135 40 2
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the adaptive reweighted sampling method, and the root mean

square error of cross-validation (RMSECV) was calculated. After

N times of sampling, the subset with the smallest RMSECV was

selected as the optimal variable subset (Li et al., 2009; Wu

et al., 2012).

2.5.3 Random frog algorithm
The RFA was a variable selection algorithm based on the

reversible jump Markov chain Monte Carlo methods. The

selection probability of each variable was calculated by simulating

a Markov Chain Monte Carlo chain that obeys the steady-state

distribution in the model space. The selected wavelengths by the

RFA at each run were slightly different due to Monte Carlo

participation (Zhang et al., 2021b). Therefore, in order to

improve the stability of the method, this study iteratively ran 100

times to determine the optimal wavelength subset by the lowest

value of RMSECV.
2.6 Modeling and evaluation

2.6.1 Modelling method
The PLSR has the advantages of principal component analysis,

canonical correlation analysis, and multiple linear regression

analysis. This method can well deal with the problems of

multicollinearity between independent variables, less sample

number than variable number, and complex computation (Yang

et al., 2012; Hu, 2013). In this study, the data of twenty points were

randomly selected as the modeling set and the left data were set as

the validation set in each stage. Therefore, 100 points were

randomly selected as the modeling set and the other 40 were

included in the validation set for the whole growth period. The

spectral features selected by VIP, CARS, and RFA were used to

extract the salinity spectral features (Spec). On this basis, cotton

growth parameters were added for PLSR modeling one by one as

covariates, to construct a calibration model using the Matlab

software (The Math Works, Inc., Natick, MA, USA).
2.6.2 Evaluation of the models
The constructed models were evaluated with coefficient of

determination (R2), root mean square error (RMSE), and Lin’s

concordance correlation coefficient (LCCC). R2
C and R2

V represent

the coefficient of determination for calibration set and validation

set, respectively, and RMSEC and RMSEV represent the root mean

square error for calibration set and validation set, respectively. A

satisfactory prediction generally has high R2
V and LCCC and low

RMSEV. Besides, the closer RMSEv is to 0, the higher the prediction

accuracy.

R2 = 1 − on
i=1

(yi−ŷ i)
2

on
i=1

(yi−�yi)
2   (2)

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(yi − ŷ i)
2

q
(3)
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LCCC =
2rsysŷ

s2
y +s2

ŷ +(my+mŷ )2 (4)

Whereas yi is the predicted value of the i-th sample; n is the

number of samples; yi is the average of the measured values; yî is the

predicted value of the i-th sample; r is the correlation coefficient

(Pearson’s r) between measured and predicted value; sy and sŷ are
the variances of measured and predicted value, respectively; my and
mŷ are the mean of measured and predicted value, respectively.
3 Results

3.1 Changes in cotton growth parameters
and soil salinity under different saline soil
amelioration treatments

Soil salinity first decreased and then increased during the whole

growth period for T1, T2. T3, and T4 treatment, reaching the lowest

value on 124 DAS. The average EC1:5 of the 0-20 cm, 0-40 cm, and

0-60 cm soil layers for different amelioration treatments on 124

DAS decreased by 3.77% ~ 16.01%, 5.00% ~ 13.89%, and 5.69% ~

11.90%, respectively compared with those on 76 DAS (Table 4). On

142 and 162 DAS, due to the end of irrigation, soil salts tend to

migrate upward under the force from evaporation and crop

transpiration, resulting in an increase in soil salinity.

The four amelioration treatments reduced root zone soil

salinity. The desalination effect of T2 treatment was the best,

followed by T1 treatment, and the soil salinity of T3 treatment

was significantly lower than that of T4 treatment. Besides, soil

salinity in T1 treatment showed 0-60 > 0-40 > 0-20 cm soil layer.

The soil salinity in T2 treatment showed 0-20 > 0-40 > 0-60 cm soil

layer. The soil salinity in T3 and T4 treatments showed 0-60 > 0-20

> 0-40 cm soil layer.

Figure 2A shows the changes of cotton plant height in different

sampling periods. It can be seen that the cotton plant height in the

four treatments increased rapidly from 76 d to 141 DAS, peaked at

142 DAS, and stabilized from 143 to 162 DAS. The cotton plant

height in each stage showed a trend of T2 > T1 > T3 > T4. Besides,

there was no difference between T1 and T2 treatments (p > 0.05).

The aboveground biomass of cotton increased rapidly from 76

DAS (Figure 2B). The peaking time of aboveground biomass were

not consistent in different treatments. The aboveground biomass in

T1 and T2 treatments peaked at 142 DAS, while that in T3 and T4

treatments peaked at 124 DAS. The aboveground biomass of T1 and

T2 treatments were higher than that of T3 and T4 treatments (p<

0.05), and there was no difference between T1 and T2 treatments

(p > 0.05). The shoot water content in the treatments showed a

gradual downward trend (Figure 2C). The shoot water content in

T4 treatment was always lower than that in T1, T2, and T3

treatments (p< 0.05), and there was no difference between T1, T2,

and T3 treatments (p > 0.05).

There was a negative correlation between soil salinity and

cotton growth parameters (cotton plant height, aboveground

biomass, and shoot water content). The correlation between soil
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salinity and cotton growth parameters gradually weakened over

time, indicating that cotton was significantly affected by soil salinity

in the early stage of growth. The correlations between cotton growth

parameters and S2 were the highest at 76 ~ 111 DAS, and the

correlations between cotton growth parameters and S3 were the

highest at 124 DAS, indicating that the salinity of 0-60 cm soil layer

had an increased influence on cotton growth parameters over time.

For the whole growth period, the correlation between cotton growth

parameters and soil salinity was lower than that of single periods,

and the correlation between cotton growth parameters and S2 was

the highest. The correlation between plant height and S2 was

significantly higher than that between aboveground biomass/

shoot water content and soil salinity (Figure 3).
Frontiers in Plant Science 07
3.2 Hyperspectral changes of cotton
canopy under different saline soil
amelioration treatments

The canopy structure and biochemical components of cotton

changed at different growth stages, leading to differences in the

canopy spectra collected at different growth stages. It can be seen

from Figure 4A that the reflectance in the Vis (visible region, 400-

780 nm) and SWIR (short-wave infrared region, 780-1100 nm)

showed a decreasing trend from 76 to 124 DAS, while those showed

an increasing trend as the bolls opened and the blades fell off after

142 DAS. In the LWIR (Long-wave infrared, 1100-2400 nm), the

reflectance increased first, peaked at 111 DAS, and then decreased.
TABLE 4 Changes of soil salinity in different soil layers under different treatments (dS m-1).

Soil layers DAS T1 T2 T3 T4

0-20 cm

76 d 2.44 ± 0.44b 2.39 ± 0.39b 2.82 ± 0.28b 4.56 ± 0.93a

111 d 2.35 ± 0.13b 2.34 ± 0.26b 2.74 ± 0.44b 4.28 ± 0.54a

124 d 2.24 ± 0.54b 2.30 ± 0.26b 2.57 ± 0.48b 3.83 ± 0.23a

142 d 2.33 ± 0.45c 2.35 ± 0.51c 2.86 ± 0.27b 3.87 ± 0.30a

162 d 2.42 ± 0.55b 2.41 ± 0.29b 3.13 ± 0.65ab 3.99 ± 0.66a

0-40 cm

76 d 2.65 ± 0.52b 2.35 ± 0.37b 2.80 ± 0.46b 4.32 ± 0.88a

111 d 2.54 ± 0.19b 2.27 ± 0.25b 2.69 ± 0.51b 3.96 ± 0.71a

124 d 2.33 ± 0.67b 2.23 ± 0.28b 2.66 ± 0.60b 3.72 ± 0.42a

142 d 2.47 ± 0.26c 2.29 ± 0.48c 2.85 ± 0.25b 3.80 ± 0.25a

162 d 2.55 ± 0.53b 2.33 ± 0.34b 2.98 ± 0.69b 3.86 ± 0.73a

0-60 cm

76 d 2.81 ± 0.62bc 2.24 ± 0.34c 3.15 ± 0.52b 4.37 ± 0.80a

111 d 2.70 ± 0.25b 2.13 ± 0.42c 2.88 ± 0.37b 4.15 ± 0.57a

124 d 2.65 ± 0.41b 2.03 ± 0.38c 2.85 ± 0.63b 3.85 ± 0.43a

142 d 2.79 ± 0.32c 2.21 ± 0.35d 3.24 ± 0.24b 4.25 ± 0.32a

162 d 2.84 ± 0.52bc 2.28 ± 0.51c 3.35 ± 0.82b 4.37 ± 0.93a
The data are the average of 7 replicates; Different lowercase letters indicate significant difference between the treatments (Duncan’s test) (p< 0.05).
B CA

FIGURE 2

Changes of cotton growth parameters in different periods under different saline soil amelioration treatments: (A) plant height, (B) above-ground
biomass, and (C) shoot water content.
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This is because cotton is mainly in the vegetation growth stage

before 111 DAS, and the increase of canopy density leads to the

increase of LWIR spectral reflectance. After 111 DAS, cotton enters

the reproductive growth stage, and the reflectance in the LWIR

decreased as leaves aged, yellowed, and dried. In addition, under

different saline soil amelioration treatments, the spectral reflectance

of cotton canopy were different (Figure 4B). With the increase of

soil salinity (T2< T1< T3< T4), the spectral reflectance in the Vis

increased, while that in the LWIR decreased. The difference in

canopy spectral reflectance among T1, T2, and T3 treatments was
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small, indicating that there was little difference in canopy spectra

when the soil salinity was low.

The correlation coefficient curves of raw spectral reflectance (R)

and first derivative spectral reflectance with soil salinity in each soil

layer (Figure 5) showed that the R had the highest correlation with

S1 (r = -0.264, p< 0.01), S2 (r = -0.326, p< 0.01), and S3 (r = -0.370,

p< 0.01) at 878, 1078, and 1112 nm, respectively (Figure 5A). After

FDR preprocessing, the correlation coefficient curve for each soil

layer changed greatly. The bands with the highest correlation with

S1, S2, and S3 were at 745, 1000, and 1180 nm, with r of -0.399,
FIGURE 3

Correlation analysis between soil salinity of different soil layers and cotton growth parameters at different cotton growth periods.
BA

FIGURE 4

Cotton canopy hyperspectral reflectance characteristics for different periods (A) and different treatments (B).
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-0.397, and -0.454, respectively (p< 0.01) (Figure 5B). In addition,

compared with R, the absolute values of the maximum correlation

coefficient between FDR and S1/S2/S3 increased by 51.14%, 21.78%,

and 22.70%, respectively. That is, FDR preprocessing improved the

correlation between spectral reflectance and soil salinity for each

soil layer compared with R.
3.3 Prediction of soil salinity based on
salinity spectral features

3.3.1 Selection of salinity spectral features from
cotton canopy spectrum

The number of variables for different soil layers decreased

significantly after spectral feature selection. After performing VIP,

CARS, and RFA, the number of spectral features of S1, S2 and S3

were 331 ~ 649, 14 ~ 318, and 26 ~ 71, respectively (Figure 6). In

addition, the number of spectral features selected by different

methods were significantly different based on the R and FDR. For

VIP and CARS, except for S3, the number of spectral features

selected based on the FDR decreased by 34.97% ~ 78.37% compared

with that based on the R, and the spectral features selected by RFA

after FDR preprocessing were more than that based on R, especially

in the range of 1100 ~ 2000 nm. Overall, CARS and RFA

significantly reduced the selected variable number over a

continuous range, redundancy, and collinearity.

3.3.2 Soil salinity estimation based on salinity
spectral features

Based on different feature selection methods, R and FDR, the

PLSR models for predicting soil salinity in different soil layers were

constructed (Table 5). The models had the highest prediction

accuracy for S1, followed by S2 and S3. However, the optimal
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spectral preprocessing method and the optimal spectral feature

selection method for soil salinity prediction were different for

different soil layers. The prediction accuracy based on R for S1

and S2 were higher than that for S3, while that based on FDR for S3

was higher than that for S1 and S2. The prediction accuracy for S1

based on R + VIP was higher than that based on FDR + VIP, and

prediction accuracy for S2 and S3 based on FDR + VIP was higher

than that based on R + VIP. The prediction accuracy based on the

CARS + FDR and RFA + FDR were higher than that based on CARS

+ R and RFA + R for each layer, with R2
v increasing by 6.67% -

37.50%. In general, the estimation model based on spectral features

had higher accuracy than that based on full spectra, among which

the CARS method was the optimal spectral feature selection method

for the R and FDR (R2
v: 0.416 ~ 0.659), followed by RFA. The

prediction accuracy of the estimation model based on the spectral

features selected by VIP was only slightly higher than that based on

the full spectra. Therefore, in the subsequent analysis, the spectral

features selected by CARS were used for soil salinity estimation.
3.4 Soil salinity estimation based on the
combination of canopy spectral features
and plant growth parameters

The average soil salinity estimation accuracy for the three soil

layers based on the spectral features selected based on the FDR

increased by 20.88%, 23.44%, and 55.71%, respectively compared

with that based on the spectral features selected based on the R

(Figure 7). FDR was better than R in the prediction of soil salinity for

each soil layer. When plant growth parameters were included in

predictor variables for salinity prediction, the prediction accuracy of

the model (R2
C: 0.466-0.825) was higher than that of the model

constructed using spectral features only (R2
C: 0.428-0.717).
B

A

FIGURE 5

Correlation analysis of raw spectral reflectance (A) and first derivative reflectance (B) with soil salinity for different soil layers.
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TABLE 5 Model accuracy evaluation of soil salinity based on canopy hyperspectral data.

Index screening
method

Soil layer/
cm

R FDR

LV R2C RMSEC R2V RMSEV LCCC LV R2C RMSEC R2V RMSEV LCCC

Full spectra

0-20 9 0.517 0.637 0.413 0.658 0.679 4 0.473 0.665 0.334 0.701 0.605

0-40 7 0.474 0.607 0.313 0.631 0.641 3 0.391 0.653 0.293 0.640 0.519

0-60 4 0.331 0.691 0.242 0.680 0.517 4 0.413 0.648 0.289 0.658 0.492

VIP

0-20 4 0.528 0.630 0.416 0.656 0.696 5 0.462 0.672 0.373 0.681 0.620

0-40 5 0.376 0.661 0.348 0.614 0.627 3 0.448 0.622 0.359 0.609 0.597

0-60 9 0.515 0.588 0.248 0.677 0.581 4 0.488 0.605 0.310 0.649 0.556

CARS

0-20 9 0.593 0.585 0.516 0.598 0.737 6 0.735 0.472 0.659 0.456 0.802

0-40 8 0.571 0.548 0.499 0.539 0.736 5 0.704 0.455 0.626 0.526 0.813

0-60 9 0.428 0.639 0.416 0.597 0.621 5 0.667 0.488 0.572 0.498 0.77

RFA

0-20 10 0.496 0.651 0.495 0.611 0.736 5 0.581 0.593 0.528 0.590 0.762

0-40 10 0.541 0.567 0.429 0.575 0.675 7 0.579 0.543 0.483 0.547 0.735

0-60 4 0.422 0.643 0.383 0.613 0.623 4 0.570 0.554 0.499 0.553 0.720
F
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FIGURE 6

Selection of the spectral features of soil salinity based on the variable importance in projection (VIP) (A), competitive adaptive reweighted sampling
(CARS) (B), and random frog algorithm (RFA) (C) feature selection methods.
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Therefore, the combination of plant growth parameters and soil

salinity spectral features could effectively improve the prediction

accuracy. For the 0-20 cm, 0-40 cm, and 0-60 cm soil layer, the

R2
C of the model constructed based on the combination of spectral

features and plant growth parameters increased by 2.53% ~ 10.34%,

5.27% ~ 17.15%, and 4.09% ~ 19.37%, respectively compared with

that of the model constructed using spectral features only. In

addition, among all the prediction models, the models constructed

based on SpecFDR+H+SWC and SpecFDR+H+AGB+SWC after the

FDR preprocessing performed equally well for predicting soil salinity

in each layer, so the twomodels were further validated independently.

The validation results of the two models (SpecFDR+H+SWC and

SpecFDR+H+AGB+SWC) (Figure 8) showed that the models had

the highest prediction accuracy for S2, followed by S3 and S1.

Meanwhile, the comparison of the prediction accuracy of the two

models for each soil layer showed that for S3, the prediction

accuracy of the model based on SpecFDR+H+AGB+SWC was

higher than that of the model based on SpecFDR+H+SWC data

(R2
V and LCCC increased by 0.005 and 0.002 respectively, and

RMSEV decreased by 0.004 dS m-1). There was no difference in the

accuracy between the two models for S2. Besides, for S1, the

prediction accuracy of the SpecFDR+H+AGB+SWC model was

slightly lower than that of the SpecFDR+H+SWC model.

Therefore, the addition of AGB did no increase the prediction

accuracy of soil salinity in each layer, but it reduced the prediction

accuracy of soil salinity in the 0-20 cm layer. Therefore, the optimal

soil salinity prediction model was the SpecFDR+H+SWC model.
4 Discussion

4.1 Effects of soil salinity on growth
parameters of cotton

Under high soil salinity conditions, crop growth and

development are greatly inhibited (Kibria and Hoque, 2019;

Litalien and Zeeb, 2020), which is directly reflected in plant
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height, dry matter yield, moisture content, etc. Guo et al. (2019)

reported that the growth of roots, stems, and leaves of cotton was

increasingly inhibited with increasing NaCl concentration. Moussa

et al. (2019) reported that salt stress led to a decrease in plant height,

leaf number, leaf area, specific leaf area, and root dry matter

accumulation of wheat. Soil salinity first decreased and then

increased during the whole growth period in this study, which

reached the lowest on 124 DAS. This may be due to that high

frequency of irrigation during cotton growth period is conducive to

reducing soil salinity in the plough layer, and film mulching can

inhibit the upward movement of the salts in the deep soil layer by

reducing the surface evaporation. The difference in soil salinity

under different treatments caused significant differences in cotton

growth parameters (H, AGB, and PWC) (Figure 3). Generally,

cotton plant height, aboveground biomass, and aboveground

moisture content decreased with the increase of soil salinity. This

is consistent with the findings of Ahmad et al. (2002). Studies have

shown that the growth parameters of crops, such as aboveground

fresh weight, plant height, shoot water content, and physiological

related indicators, are sensitive to soil salinity (AbdelRahman et al.,

2019). In this study, cotton plant height was most affected by soil

salinity. This may be due to that on the one hand, high soil salinity

could reduce soil water potential, resulting in reduced plant water

potential and increased water loss (Nawaz et al., 2013). On the other

hand, excessive salt ions in soil can cause leaf cell damage during

transpiration, resulting in a decrease in plant photosynthesis rate,

abnormal plant growth, and low plant height (Greenway and

Munns, 1980). In addition, cotton has different tolerance to

salinity stress at different growth stages. Ahmad et al. (2002) and

Wang et al. (2011) found that cotton was more tolerant to salt stress

at the germination stage than at the seedling stage. This study found

that the correlation between soil salinity and cotton growth

parameters gradually weakened over time. This indicates that the

inhibition effect of soil salinity on cotton growth was more obvious

in the early growth stage of cotton. With the accumulation of crop

photosynthetic product, cotton’s tolerance to salt stress increases

(Greenway and Munns, 1980).
FIGURE 7

Soil salinity prediction accuracy of the model based on the combination of spectral features selected by competitive adaptive reweighted sampling
and plant growth parameters.
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4.2 Effect of spectral feature
selection methods on soil salinity
prediction accuracy

Spectral data contains massive information, and how to extract

useful information from massive and high-dimensional data is a big

challenge for current spectral data analysis (Peng et al., 2020).

Spectral feature selection can remove redundancies in the spectrum

and improve the prediction capacity. In this study, the effects of

VIP, CARS, and RFA methods on the soil salinity prediction

accuracy of three soil layers showed that the prediction accuracy

of the model based on spectral features was higher than that of the

model based on the full band. Compared with the VIP, the CARS

and RFA selected fewer spectral features (Figure 6). This may be due

to the difference in the search mechanism of the three methods (Lao

et al., 2020; Sun et al., 2021b). CARS could select the bands with

large absolute value of regression coefficient in PLSR model, and the

variables with smaller weight were removed. This method could

select the optimal band set closely related to soil salinity. RFA selects

spectral features by the frequency of being selected. VIP judges the

explanatory capacity of independent variables through the principal

components of independent variables (Xing et al., 2019), and retains

as many variables as possible. Besides, it was found that the CARS

and RFA were superior to VIP in predicting soil salinity of different

soil layers. The less and representative selected variables could

reduce the complexity of modeling and make the prediction
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model more stable. This is consistent with the results of many

previous studies. For example, Lao et al. (2020) used VIP, CARS and

RFA methods to select soil salinity spectral features, and found that

compared with the full spectrum (root mean square error of

prediction RMSEp = 2.54%) and the variables screened by VIP

(RMSEp = 2.17%), the RFA method had the most obvious

improvement in the accuracy of in-situ spectral estimation of soil

salinity (RMSEp = 1.63%, residual prediction deviation RPD =

3.80), followed by the CARS method (RMSEp = 2.0%, RPD = 3.09).

Sun et al. (2021b) used VIP, RFA, and CARS to select spectral

features to predict maize leaf water content, and found that

compared with the PLS model constructed based on the VIP

method, the PLS model constructed based on the CARS and RFA

methods had higher prediction accuracy, because CARS and RFA

methods could reduce the complexity of the model, extract more

important information related to maize leaf water content.

Spectral feature extraction can reduce the number of spectral

variables and improve prediction accuracy (Zou et al., 2010; Yun

et al., 2019), but there are still some problems. This research proved

that proper data preprocessing can enhance spectral quality and

facilitate the extraction of spectral information. However, it is

unclear how spectral data preprocessing affects the extraction of

key spectral variables (Gholizadeh et al., 2021). At present, the

consensus on the spectral feature extraction algorithm is that the

extraction of key variables streamlining the modeling variables by

eliminating redundant variables. But the stability and reliability of
B C
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FIGURE 8

Validation of prediction accuracy of the SpecFDR+H+SWC model (A–C represents 0-20 cm, 0-40 cm and 0-60 cm respectively) and SpecFDR+H
+AGB+SWC model (D–F represents 0-20 cm, 0-40 cm and 0-60 cm respectively) (n = 40; Ellipses denote the 95% confidence intervals for each
period; The long-dashed black line is the 1:1 line).
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the selected variables and the universality of the model still one of

the contents that need to be further studied.
4.3 Soil salinity prediction accuracy of the
model based on the combination of
spectral features and plant growth
parameters

The interference of vegetation cover on soil spectrum is one of

the main limiting factors in the estimation of soil attributes by

remote sensing technology. Therefore, exploring the method for

eliminating vegetation cover area or enhancing soil spectral

characterization by collaborating with vegetation spectral

information is of great significance for improving the accuracy of

soil attribute inversion by remote sensing (Zhang et al., 2021a).

Differences in soil salinity can lead to differences in landscape

(vegetation), and many studies have used hyperspectral

reflectance of vegetation canopy or derived vegetation indices

such as normalized difference vegetation index (NDVI) (Garajeh

et al., 2021; Gómez Flores et al., 2022), photochemical reflectance

index (PRI) (Ivushkin et al., 2019; Kim et al., 2020) etc., to indirectly

estimate soil salinity. However, the vegetation canopy reflectance

spectrum is mixed with the spectrum of ground objects, and affected

by factors such as leaf characteristics, canopy structure, soil

properties, and atmospheric conditions (Guo et al., 2017).

Especially, the vegetation index has little variation when the

vegetation grows densely, which limits the prediction accuracy of

soil salinity based on canopy spectral reflectance and vegetation

index (Daughtry et al., 2000; Peng et al., 2020; Ramos et al., 2020).
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The results of this study showed that the prediction accuracy of the

model based on the combination of plant growth parameters and

spectral features was higher than that of the model based on only

the spectral features. Therefore, the auxiliary variables could

improve the soil salinity prediction accuracy. The relative

importance of the variables for soil salinity estimation for

different soil layers (Figure 9) showed that cotton plant height

was the main factor to improve the estimation accuracy. Besides,

cotton shoot water content is also closely related to soil salinity.

This study used consider plant height, dry matter yield, and

plant water content as the variables for soil salinity prediction.

However, changes in soil salinity can also lead to changes in other

plant parameters such as chlorophyll content, photosynthesis, and

canopy structure. Therefore, the contribution of different plant

growth parameters to soil attribute prediction accuracy will be

compared in our future study.
5 Conclusion

Hyperspectral technology has been widely used in the

monitoring of soil salinity. However, the interference of

vegetation cover greatly limits the hyperspectral monitoring of

root zone soil salinity. This study proposed a new method for

estimating soil salinity of different soil layers under vegetation

cover conditions.

The canopy spectra were acquired to extract spectral features by

VIP, CARS, and RFA methods after spectral preprocessing, and

then the spectral features were combined with crop growth

parameters (cotton plant height, aboveground dry matter, and
FIGURE 9

Analysis of the importance of all variables in the SpecFDR+H+SWC model.
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shoot water content) to construct PLSR model for predicting soil

salinity of different soil layers. The results showed that the soil

salinity of the 0-20, 20-40, and 40-60 cm soil layers in the cotton

field showed a trend of decreased first and then increased during the

whole growth period, and soil salinity was negatively correlated

with cotton plant height, aboveground biomass, and shoot water

content. The correlation between soil salinity and cotton growth

parameters gradually weakened over time. The CARS method was

the most effective method, which not only reduced the proportion

of selected bands to 18.46% of the full spectra, but also improved the

prediction accuracy. Besides, the combination of spectral features

and cotton growth parameters significantly improved the prediction

accuracy of soil salinity of the 0-20, 0-40, and 0-60 cm soil layer,

compared with the prediction based on the spectral features only,

with R2 increased by 10.01%, 18.35%, and 29.90%, respectively. This

method has a great application potential in the monitoring of soil

salinity in the root zone during crop growth period.

The combination of cotton canopy spectrum and plant growth

parameters can improve the spectral estimation accuracy of soil

salinity in the root zone in cotton fields. However, near-ground

hyperspectral technology still has limitations in farmland-scale

information collection due to the limitation of data acquisition

methods. Compared with ground based hyperspectral imaging,

UAV-based remote sensing has higher spatial resolution, and is

more convenient and flexible, which provides the possibility for

large-scale and continuous acquisition of crop growth information.

Therefore, we will try to verify the potential of combining UAV-

based hyperspectral images with plant growth parameters in soil

salinity monitoring, to realize rapid real-time and accurate

monitoring of soil salinity at the farmland scale. This study

provides new ideas for spectral estimation of soil attributes based

on UAV remote sensing.
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