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Design and operation of a
Peucedani Radix weeding
device based on YOLOV5
and a parallel manipulator

Xuechen Zhang1, Chengmao Cao1*, Kun Luo1, Zhengmin Wu2,3,
Kuan Qin1, Minhui An1, Wuyang Ding1 and Wang Xiang1

1School of Engineering, Anhui Agricultural University, Hefei, China, 2School of Tea and Food Science
and Technology, Anhui Agricultural University, Hefei, China, 3State Key Laboratory of Tea Plant
Biology and Utilization, Hefei, China
To avoid excessive use of herbicides in the weeding operations of Peucedani

Radix, a common Chinese herb, a precision seedling avoidance and weeding

agricultural robot was designed for the targeted spraying of herbicides. The robot

uses YOLOV5 combined with ExG feature segmentation to detect Peucedani

Radix and weeds and obtain their corresponding morphological centers. Optimal

seedling avoidance and precise herbicide spraying trajectories are generated

using a PSO-Bezier algorithm based on the morphological characteristics of

Peucedani Radix. Seedling avoidance trajectories and spraying operations are

executed using a parallel manipulator with spraying devices. The validation

experiments showed that the precision and recall of Peucedani Radix

detection were 98.7% and 88.2%, respectively, and the weed segmentation

rate could reach 95% when the minimum connected domain was 50. In the

actual Peucedani Radix field spraying operation, the success rate of field

precision seedling avoidance herbicide spraying was 80.5%, the collision rate

between the end actuator of the parallel manipulator and Peucedani Radix was

4%, and the average running time of the parallel manipulator for precision

herbicide spraying on a single weed was 2 s. This study can enrich the

theoretical basis of targeted weed control and provide reference for

similar studies.

KEYWORDS
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1 Introduction

Peucedani Radix (Chinese name Qianhu), the dried root of Peucedanum praeruptorum

Dunn (The State Pharmacopoeia Commission of P.R. China, 1997; Pharmacopoeia, 2010;

The State Pharmacopoeia, C., 2010), is a common Chinese herb. Peucedani Radix has been

widely used for centuries to treat colds and coughs (Chang et al., 1986). Competition for
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water, nutrients, space, and sunlight between weeds and Peucedani

Radix (Li et al., 2021) significantly reduces the yield of Peucedani

Radix, causing huge economic losses. However, the main economic

value of Peucedani Radix lies in its buried rhizome, which

mechanical weeding operations can damage along with plant

stems (Quan et al., 2022). At present, Peucedani Radix weeding is

mainly achieved using sprayed herbicides; however, spraying

herbicides over a large area on water, air, and soil can lead to

environmental problems (Villette et al., 2022). Therefore, reducing

the use of herbicides and ensuring the yield of Peucedani Radix is a

major challenge. Precision seedling avoidance spraying is an

effective way to maintain the use of herbicides and effectively

control weeds in Peucedani Radix fields (Özlüoymak, 2022).

The prerequisite for accurate seedling avoidance spraying of

herbicides is accurate spraying without damaging the crop. Some

researchers have proposed distinguishing weeds from crops using

features such as color space, leaf texture, spectrum characteristics, and

morphological size (Hamuda et al., 2017; Strothmann et al., 2017;

Sujaritha et al., 2017; Zheng et al., 2017). However, the performances

of these methods are influenced by a complex variety of factors,

including weed density, light conditions, crop–weed overlap, weather,

and crop growth stage. Therefore, an efficient and stable algorithm is

needed to handle the complex and diverse field operation situations

(Zou et al., 2021). In recent years, deep learning techniques have

developed rapidly. Chavan and Nandedkar (2018) combined Alexnet

and Vggnet models to form the AgroAVNET network for

classification of crops and weeds. Dos Santos Ferreira et al. (2017)

classified soybean and weeds using ConvNets. Tang et al. (2017) used

K-means combined with Convolutional Neural Network (CNN) to

identify and classify weeds. Although the accuracy of these

classification methods is relatively high, the operation requires the

segmentation of crops and weeds, and the classification time of a

single image will increase with the number of weeds and crops in the

image. Picon et al. (2022) achieved semantic segmentation of multiple

weed and maize crops using Dual Pyramid Scene Parsing Network

(PSPNet). Quan et al. (2019) used an improved Fast Region-based

Convolutional Network (Fast-RCNN) model with Visual Geometry

Group 19 (VGG19) to achieve maize seedling detection at different

growth stages and under various weather conditions. Ahmad et al.

(2021) and Quan et al. (2022) used the You Only Look Once Version

3 (YOLOV3) network model to detect and classify common weeds in

maize fields and the results showed that the average detection

accuracy of YOLOV3 was above 93% in all cases. Although

these methods have high identification accuracy in actual field

operations, they require extensive labeling of weeds and crops,

which greatly increases the workload of detection (Hasan et al.,

2021; Li et al., 2022).

It is challenging to use an end-effector to precisely spray

herbicide onto weed surfaces without collisions between the end-

effector and crop (Li et al., 2022). Utstumo et al. (2018) designed an

Asterix autonomous robotic platform that enables drop-on-

demand spraying of herbicides from the top to the bottom of the

crop through nozzles with a lateral spacing of 6 cm. Partel et al.

(2019) designed precision spraying systems adapted to crop row

spacing. Villette et al. (2021; 2022) compared different nozzle spray

shapes, nozzle spacing, and six spraying strategies to obtain the
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optimal pattern of triangular-shaped sprays combined with

overlapping sprays, which significantly reduced the amount of

herbicide used. However, the above method cannot avoid

potential damage to the crop if the nozzles are too high due to

improper nozzle spacing and height setting, causing the herbicide to

be sprayed onto the surface of the crop during equipment travel.

A key objective of this research was to design an algorithm that

identifies crops and weeds quickly and accurately, while reducing

the workload of dataset production. Another important goal was to

ensure that the spray actuation equipment avoids crop injury

during accurate herbicide spraying. To achieve these two goals,

this study developed an intelligent Peucedani Radix weeding

agricultural robot, which uses You Only Look Once Version 5

(YOLOV5) with Extra-Green (ExG) feature segmentation for crop

and weed recognition, and a parallel spraying device with Particle

SwarmOptimization (PSO)-Bezier seedling avoidance trajectory for

herbicide spraying. By applying YOLOV5 for crop identification

and ExG feature segmentation for weed identification, the crop and

weed identification problem is transformed into a binary problem,

thus simplifying the complex weed labeling work. In addition, the

PSO-Bezier curve is used to achieve accurate seedling avoidance

spraying of herbicides based on crop characteristics to reduce

pesticide usage and achieve seedling avoidance during operation,

which significantly reduces the amount of pesticide residues on the

crop surface and energy consumption.
2 Materials and methods

2.1 System overview

The biology of Peucedani Radix seedlings is characterized by an

erect growth type (Figure 1). Therefore, to facilitate subsequent

studies, the morphology of Peucedani Radix plants was simplified in

this study as cylinders of different diameters. An intelligent

Peucedani Radix weeding agricultural robot was designed, as

shown in Figure 2. The agricultural robot is driven by Direct

Current motors and is equipped with parallel robotic arms and

circular nozzles on the end-effectors. The crop and weeds on the

field ridge are photographed by a camera mounted at 90° to the

horizontal and the locations of Peucedani Radix and weeds are

identified in real time by a computer. The computer performs PSO-

Bezier trajectory planning for the robotic arm end-effector based on

the position and morphological parameters of Peucedani Radix and

the position of the weed to achieve precise seedling avoidance for

herbicide spraying. The corresponding workflow schematic is

shown in Figure 3.
2.2 Image dataset construction

The growth cycle of Peucedani Radix plants used in this study

was one year, planted in December 2021. Peucedani Radix fields are

usually weeded when the plants are approximately 15 cm tall.

Peucedani Radix planted in the Nongcui Garden of Anhui

Agricultural University, Hefei, Anhui Province, China (117°14’E,
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31°52’N) were photographed in April, June, and August 2022 to

produce the dataset. A Balser industrial camera (acA1920-150uc,

Germany) was used for image acquisition, cropping the left and

right unrelated areas of the image to improve acquisition speed. In

total, 5,092 images with a resolution of 1200 × 1200 were collected.

Since the dataset pictures were taken at 1 s intervals in a cycle, the

differences between adjacent pictures were not obvious. In addition,

some pictures of poor quality were obtained during the dataset

acquisition process and these pictures could not meet the

experimental requirements. Therefore, it was necessary to filter

the dataset manually. Finally, 2,347 images were selected as the

dataset and the dataset was enhanced by changing the brightness

and darkness of the images, mirroring, and other adjustments to

improve the richness of the sample. In contrast to other dataset

annotations, this annotation only labeled Peucedani Radix plants.

Finally, the dataset of 2,347 images was expanded to 9,388 images

and the enhanced dataset was divided into a training set and a

validation set at a 4:1 ratio (Table 1).
2.3 Crop and weed identification

Since the YOLO network is currently one of the best-

performing algorithms in the target detection field, this study

used the fast and accurate YOLOV5 network combined with ExG

feature segmentation to detect crops and weeds. The structure of the

crop and weed detection model is shown in Figure 4, which is

mainly divided into two parts: Peucedani Radix detection and weed

segmentation. The Peucedani Radix detection component consists
Frontiers in Plant Science 03
of the YOLOV5 network, which was developed from the previous

YOLOV4 and YOLOV3 (Redmon and Farhadi, 2018) networks.

The YOLOV5 network is divided into three parts: Backbone, Neck,

and Head. Compared with that of YOLOV4, the first layer of the

Backbone network in YOLOV5 has an additional 6 × 6 sized

convolutional layer. In the Neck part, YOLOV5 uses Spatial

Pyramid Pooling – Fast (SPPF) network structure, compared to

the previous version which uses Spatial Pyramid Pooling (SPP)

structure. SPPF modifies the 9 × 9 and 13 × 13 sized MaxPool layers

into two and three 5 × 5 sized MaxPool layers, respectively. The

modified network achieves the same result but is two times faster.

The weed segmentation component is composed of four parts: crop

image, 2G-R-B (ExG feature segmentation), maximum between-

cluster variance (OSTU), and rectangle.

In this study, the YOLOV5 network model was first used to

process the images captured by the camera to determine the

locations of the Peucedani Radix plants (Output1). The Peucedani

Radix plants were then separated from the original image by

cropping the minimum external rectangular box. Next, the

cropped image was fed into the 2G-R-B (ExG) algorithm to

obtain the foreground image of the weed after separation of the

weed from the soil. Subsequently, the foreground image of the weed

was grayed out and adaptive binarization was implemented using

OSTU. The connectivity domain of the binarized image was

processed by operations such as erosion expansion to obtain a

reasonable weed connectivity domain. Finally, morphological

center extraction and minimum outer rectangle drawing were

performed on the weed connectivity domain to detect the weed

and Peucedani Radix plants and their corresponding locations.

The training platform used a host containing an Intel Core i7-

11700F (2.5 GHz) octa-core CPU, an NVIDIA RTX3060 (1,876

MHz) GPU, and 32 GB of RAM, running on Windows 10. The

software tools included CUDA 11.4, CUDNN 8.2.2, and Python 3.8

and the experiments were implemented in the Pytorch framework.
2.4 Weed trajectory planning

YOLOV5 combined with the ExG feature segmentation

algorithm was used to detect Peucedani Radix and weeds and
FIGURE 2

Schematic of the intelligent Peucedani Radix weeding agricultural
robot structure.
FIGURE 1

Semiannual morphological parameters of Peucedani Radix growth.
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obtain their coordinate information under the robot coordinate

system. To avoid collision of the end-effector of the robot arm with

Peucedani Radix plants, an optimal motion path needs to be found

for the specified coordinates of the start and end points of the end-

effector motion to achieve efficient seedling avoidance and

weed spraying.

The process of moving the end-effector from the current weed

position to the next weed position is first defined as a weeding cycle.

As shown in the red curve in Figure 5, the trajectory of the end-

effector was designed in one weeding cycle and the center of the

end-effector moves along the curve to achieve precise weeding and

avoid spraying herbicide onto the crop surface. To reduce the

overall vibration of the robotic arm during the transition phase

and crop avoidance, Particle Swarm Optimization and third-order

Bezier curves combined with crop morphology parameters were

used to generate the optimal transition trajectory for the end-

effector movement in the vertical to horizontal direction.

As shown in Figure 6, S and E are the starting and ending points

of the trajectory, respectively, corresponding to the coordinates of

the weed. The “∩” type trajectory of seedling avoidance and weeding
was established in the vertical plane N of the SE line segment (Yang

et al., 2021). For analysis, the plane N was rotated to the O-XZ

plane, and the point S was set as the origin. To facilitate the

calculation, a Peucedani Radix plant was regarded as a cylinder

with constant height and changing diameter and the height h2 of the
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cylinder was set to 150 mm using numerous statistics. The radius of

the cylinder was set to w2 and the distance from the center of the

cylinder bottom circle to the point S was w1 + w2. S ! P0 is

the ascent phase with height h1, P0 ! P1 ! P2 ! P3 is the

transition phase designed using a third-order Bezier curve with

height h2, P3 ! P4 is the horizontal shift phase, P4 ! P5 is

the transition phase designed using a third-order Bezier curve,

and P5 ! E is the descent phase. In Figure 6, P0, P3 are the starting

and ending points of the Bezier curve, respectively, and P1, P2 are

the first and second control points, respectively. The shape of the

third-order Bezier curve is adjusted by adjusting the position of the

P1, P2 points to ensure that the end-effector of the robot arm avoids

the crop as it moves along the Bezier curve to the M point.

The Bezier curve equation is as follows:

P(t) =o
n

i=0
PiBi,n(t), t ∈ ½0, 1� (1)

Bi,n(t) = Ci
nt

i(1 − t)n−i½i = 0, 1,…, n� (2)

According to equations (1) and (2), the third-order Bezier curve

calculation equation (3) can be obtained:

B(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3, t

∈ ½0, 1� (3)
TABLE 1 Main parameters of YOLOV5 network dataset.

Name Quantity (No.) Peucedani Radix number (No.)

Preferred dataset 2,347 4,823

Image augmentation 9,388 19,297

Training dataset 7,577 15,439

Test dataset 1,811 3,858
FIGURE 3

Schematic of the Peucedani Radix weeding process.
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k(t) =
x:iy

:
i − x:iy

:
ij j

(x:i
2 + y:i

2)
3
2

, ½i = 0, 1,…, n� (4)

In equation (4), k(t) is the curvature of the path point, (x(t), y

(t)) is the third-order Bezier curve obstacle avoidance path, and x
:
ˎ

y ˎ:x
:
ˎy
:
is the first- and second-order derivative of the path point

(x(t), y(t)) on the X and Y axes.

To ensure that the third-order Bezier curve curvature k(t) is

smooth in the definition domain and there is no singularity,
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curvature smoothing constrained Bezier curve planning was used.

In this planning, the first control point P1 moves in the direction of

SP0
�!

and the length of P0P1does not exceed 0:8h2, and the second

control point P2 moves in the P4P3
��!

direction and the length of P2P3
does not exceed 0:8(w1 + w2). A particle swarm algorithm (eq. 5)

based on the shortest path was established to solve the optimal path

with the constraint that the vertical distance of point M from the

horizontal plane is greater than h3. An adaptive adjustment factor

(eq. 6) based on the inverse tangent function was established so that

the particle search range decreased with the number of iterations.
FIGURE 4

Crop and weed identification model structure.
FIGURE 5

Schematic of end-effector weeding trajectory. Schematic diagram of
the seedling avoidance and weeding trajectory of the end-effector.
FIGURE 6

Bezier weeding trajectory execution paths and their corresponding
control points.
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vn+1i = w � vni + c1 � R1 � (Pbesti − xni ) + c2 � R2 � (Gbesti − xni )

xn+1i = xni + r � vn+1i

(

(5)

r = 1 − tanh
n

1 + nmax
(6)

where i is the particle number, n is the number of iterations, w is

the inertia factor, c1, c2 is the learning factor of the particle, r is the

adjustment factor, R1,R2 is a random number between 0 and 1, v is

the velocity of the particle, x is the position of the particle, Pbest is

the historical best position of particle i, and Gbest is the historical

best position of the particle population.
3 Evaluation of detection and
trajectory planning

3.1 Evaluation of
Peucedani Radix detection

For the evaluation of Peucedani Radix detection, this study used

three evaluation metrics to assess the performance of the YOLOV5

network: precision, recall, and mean Average Precision (map). The

Intersection over Union (IOU) is the ratio of the overlap area

between the predicted bounding box and the true bounding box to

the area contained in the predicted and true bounding boxes (eq. 7).
Frontiers in Plant Science 06
IOU = (
A1 ∩ A2

A1 ∪ A2
) (7)

where A1 is the area of the predicted bounding box and A2 is the

area of the real bounding box.

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

where TP, FP, and FN are the number of true positive cases,

false positive cases, and false negative cases, respectively.

The datasets of Peucedani Radix plants collected in April, June,

and August were fed into the model training and validation and the

validation results are shown in Table 2. The validation results for

the June and August datasets were better than those for the April

dataset. Although the precision of the April dataset was high, the

recall rate was only 76.3%. There are several reasons for the poor

detection results of the April dataset: compared to the June and

August datasets, the number of April datasets was relatively small

and the model did not produce reliable results for the extraction of

Peucedani Radix features in April. In addition, as shown in Figure 7,

Peucedani Radix plants in April were smaller and less distinctive

than those in June and August. As shown in Table 2, the validation

effect improved as Peucedani Radix grew, with an accuracy of

99.2%, recall of 91.6%, and map (IOU=0.5) of 95.8% for the

August dataset when the plants were largest.
TABLE 2 Results of validation detection in April, June, and August.

Period TP FP FN Precision (%) Recall (%) Map (IOU=0.5) Map (IOU=0.5:0.95)

April 720 11 224 98.5 76.3 87.8 83.1

June 1,349 20 111 98.5 92.4 95.5 91.5

August 1,327 11 122 99.2 91.6 95.8 95

All 3,399 45 454 98.7 88.2 93.8 91.1
FIGURE 7

Peucedani Radix plants in different months.
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3.2 Evaluation of weed split

As previously described in Figure 4, after extracting Peucedani

Radix using YOLOV5, weeds of varying sizes were segmented by the

ExG feature algorithm. To verify the validity of the method, a test set of

Peucedani Radix field pictures with different weed sizes and densities

was used for testing. Figure 8 shows the results of multiple images with

different weed sizes and densities on the ExG feature algorithm for

weed segmentation labeling. In Figures 8A–C, and d are the test images

in order of increasing weed density. The minimum weed volume

segmented by the ExG feature marker increased as the minimum

connected domain size (MCDS) increased, as shown in the white

boxed area in Figure 8D. When MCDS=50, the weed segmentation

rate can attain over 95%. This means that the model can be adjusted to

segment the minimum connected domain size according to the actual

growth size state of the weed to achieve accurate weed identification.

To verify the development of the weed segmentation model, the

weed identification model of YOLOV5 combined with ExG feature

segmentation proposed in this study was compared with the
Frontiers in Plant Science 07
YOLOV5 direct weed identification algorithm and validated. First,

the dataset that was labeled with Peucedani Radix crops was

secondarily labeled with all the weed samples in the dataset. The

annotated dataset was enhanced in the same way. The composition of

the enhanced weed Peucedani Radix dataset is shown in Table 3.

Then, the dataset was fed into the YOLOV5 model for training.

Finally, the two algorithms were tested independently using

Peucedani Radix field images with different weed sizes and densities.

As shown in Figure 9, the five images present gradually

increasing weed density from left to right. By comparing the

experimental results, we found that the direct method of using

YOLOV5 to identify weeds and Peucedani Radix crops could only

identify some weeds with larger size and distinct features, but not all

of them. However, combining YOLOV5 with ExG to first identify

the Peucedani Radix plants and then perform weed segmentation

allowed us to accurately segment most weeds despite the gradual

increase in weed density. The strategy of combining YOLOV5 with

ExG to identify Peucedani Radix plants and weeds showed superior

performance compared to the direct use of YOLOV5 alone.
B

C

D

A

FIGURE 8

Results of weed segmentation at different minimum connected domain sizes (MCDS).
TABLE 3 Composition of weed dataset.

Name Quantity (No.) Graminaceae Broadleaf Sauraceae

Preferred dataset 2,347 3,472 2,889 1,236

Image augmentation 9,388 13,888 11,556 4,944

Training dataset 7,577 11,110 9,244 3,955

Test dataset 1,811 2,778 2,312 989
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3.3 Evaluation of weed trajectory planning

The simulation was performed using the proposed PSO-Bezier

trajectory generation method as described previously. In the

simulation, the particle swarm number was set to 5 and the

maximum number of iterations to 200. The height of the sample

Peucedani Radix plants was h3 = 150 and trajectory planning height

was h1 + h2 = 170. The distance between the horizontal center of

Peucedani Radix and the starting point of the trajectory was set as

SO = 100, where w1 = 60. The Bezier curve generated by the particle

swarm is shown in Figure 10A. Where the Bezier trajectory (black

dashed envelope) intersects with Peucedani Radix is shown using a

red dashed envelope. The collision-free Bezier trajectory curve

(Figure 10B) generated by the particle swarm was obtained by

establishing the obstacle avoidance constraint through the height

relationship between points M and A2 in Figure 6.

As shown in the yellow dashed box in Figure 11A, the Bezier

trajectory generated only by the height relationship between pointsM

and A2 shows a large change of direction at the end of the trajectory

and the connection point P3 of the horizontal movement stage, which

leads to a large vibration of the robot arm when it passes through this
Frontiers in Plant Science 08
point at high speed. After introducing the curvature constraint (eq. 4),

the first control point P1 moves in the SP0
�!

direction, the length of

P0P1 does not exceed 0:8h2, the second control point P2 moves in the

direction P4P3
��!

, and the length of P2P3 does not exceed 0:8(w1 + w2).

The effect of the curvature constraint is shown in the yellow dashed

box indicated by the arrow in Figure 11B. Compared with Figure 11A,

the end of the trajectory is smoother at the connection point P3
between the end of the trajectory and the horizontal moving stage

after the curvature constraint, and the vibration of the frame will be

significantly reduced when the robot arm moves at high speed.

The global obstacle avoidance trajectory planned with obstacle

avoidance and curvature constraints is shown in Figure 12A. As

shown in Figure 12B., the global obstacle avoidance trajectory is

inverse kinematically solved by establishing the inverse kinematic

inverse solution model of the parallel robotic arm in Python. The

global obstacle avoidance trajectory is discretized into 100 trajectory

points, and the angle that the three motors of the parallel robot arm

need to rotate is obtained by solving the difference of the pose angle

of the robot active arm corresponding to two adjacent trajectory

points, and the robot arm end-effector moves along the planned

trajectory through equal interpolation.
FIGURE 9

Schematic diagram comparing the effectiveness of the YOLOv5 and YOLOv5+ExG methods in identifying Peucedani Radix plants with weeds.
BA

FIGURE 10

(A) Cluster of Bessel trajectories generated by PSO. (B) Cluster of seedling avoidance Bezier trajectories generated by PSO.
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4 Weeding experiments

4.1 Introduction of the
experimental system

The machine used for the Peucedani Radix weeding experiment

consisted mainly of an industrial camera, a computer, a control

layer device, and a controlled layer device, as shown in Figure 13.

The control layer contained the microcontroller STM32F407, the

LORA communication module, the motor driver, and the relays.

The controlled layer contained geared motors and drive wheels,

Delta parallel manipulators, and end spray actuators. The Delta

parallel manipulator was designed and made by our team (Zhang

et al., 2023) and the repeat positioning accuracy was 4 mm.

In Figure 13, the robot first captures images of the crop and weeds

on the monopoly using a camera mounted at an angle of 90° to the

horizontal plane, and the computer identifies and locates the positions

of the Peucedani Radix plants and weeds in real time. Subsequently,

the computer performs PSO-Bezier trajectory planning for the end-

effector of the robot arm based on the position and morphological

parameters of the Peucedani Radix plants and the positions of the

weeds. Then, the computer sends commands to the STM32

microcontroller to control the robot to advance a fixed distance

based on the horizontal fixed distance between the origin of the

camera coordinate system and the origin of the robot arm coordinates.

Finally, the computer discretizes the planned trajectory and sends it to

the STM32 microcontroller in sequence through the serial port. After
Frontiers in Plant Science 09
receiving the signal from the serial port, the STM32 microcontroller

generates an interrupt and the number of pulses required for motor

rotation in the interrupt service program. When the robot arm runs

through all trajectory points and reaches above the weeds, the relay is

activated, and the end-effector pump starts working to spray the

herbicide. Through these steps, the robot achieves the function of

spraying herbicide with precise seedling avoidance.

All algorithms were executed on a portable computing device

(Lenovo) equipped with an Intel i5-7300HQ processor and 16 GB of

RAM, operating on a Windows 10 64-bit system. The Peucedani

Radix detection algorithm was implemented based on a

modification of the YOLOV5 code open-source library (https://

github.com/ultralytics/yolov5). The weed ExG feature segmentation

algorithm was implemented based on a modification of the open-

source Computer Vision library (OpenCV, https://opencv.org/).

The PSO-Bezier optimal trajectory generation algorithm for

seedling avoidance and weeding was designed and written by our

team and deployed using Python. The STM32F407 hardware was

programmed using the official firmware library (https://

stmicroelectronics.com.cn) and the relevant code was written in

the MDK compiler using the C language.
4.2 Results of weeding experiments

The weeding experiment was conducted on a sunny day in

August 2022 at Nongcui Garden, Anhui Agricultural University,
BA

FIGURE 11

(A) Bezier trajectory before curvature constraint. (B) Bezier trajectory after curvature constraint.
BA

FIGURE 12

(A) Optimal Bezier curve path profile planned. (B) Schematic diagram of the inverse spatial state kinematic solution of the global obstacle avoidance
trajectory.
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Anhui Province, China (Figure 14). In the experiment, Peucedani

Radix was first identified by the YOLOV5 algorithm and the weeds

were then segmented by the ExG feature segmentation algorithm to

obtain the Peucedani Radix size parameters and the corresponding

coordinates of Peucedani Radix and weeds. The trajectory of the

manipulator arm end avoidance was generated by PSO-Bezier and

the joint rotation angle of the parallel manipulator arm at each step of

the interpolation was obtained by inverse solution of the kinematics

of the avoidance trajectory by aliquot interpolation. The angle of joint

rotation was converted into motor operation drive parameters and

sent to the STM32 microcontroller via RS232 communication, which

controlled the motor driver and drove the equipment to the specified

position. The end-effector started spraying herbicide when it reached

above the weed to complete a spraying operation. Fifty plants were

selected for 100 spraying operations to verify the accuracy of the

algorithm and the results were as follows:
Fron
(1) A total of 161 weeds were successfully and accurately

sprayed out of 100 spraying operations, with 39 weeds

not successfully sprayed; therefore, the success rate of

accurate herbicide spraying was 80.5%.

(2) In the precision spraying operation, the end-effector made

four collision contacts with the Peucedani Radix plants

when moving according to the generated PSO-Bezier

trajectory. Therefore, the success rate of seedling

avoidance for the PSO-Bezier trajectory motion of the

end-effector was 96%.

(3) The failure of agricultural robots to accurately spray

herbicides on weeds was partly due to failure in
tiers in Plant Science 10
accurately identifying Peucedani Radix and weeds, and

partly due to failure in accurately locating the weeds.

(4) The main reason for the collision contact between the end-

effector of the agricultural robot and the Peucedani Radix

plants was the differing heights of Peucedani Radix plants

and the variable height of the terrain.
The results showed that the time to identify and locate

Peucedani Radix and weeds in one frame was 0.75 s on average.

The average time to generate the end-effector PSO-Bezier seedling

avoidance motion trajectory was 0.35 s. The end-effector movement

time increased with the linear distance between the weeds at the

ends of the trajectory. The average time for the end-effector to

execute the planned PSO-Bezier trajectory was 2.8 s when the weed

linear spacing was 30 cm. In summary, the total time for precision

herbicide spraying by the developed agricultural robot was 3–5 s,

meaning that it takes an average of 2 s per weed to accurately spray

herbicide. Therefore, the proposed method for precise seedling

avoidance spraying of herbicides can be effectively applied to an

agricultural robot platform.
5 Discussion

In the validation experiments of Peucedani Radix recognition,

the accuracy of early Peucedani Radix recognition was relatively low

because the dataset of April Peucedani Radix plants was small and

plant morphology was not obvious compared with June and

August. To improve this problem, we plan to add more images to
FIGURE 13

System of the Peucedani Radix weeding robot.
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the April Peucedani Radix plant dataset. In the ExG feature

segmentation weed experiment, we achieved over 95% accuracy of

weed segmentation at MCDM=50. In addition, through

comparison experiments, the YOLOV5 method proposed in this

study for identifying Peucedani Radix combined with ExG feature

segmentation of weeds was able to maintain a higher recognition

accuracy under different weed density conditions compared to the

YOLOV5 direct weed recognition method. In particular, the ability

to segment weeds with smaller targets indicates that the method is

robust for weed recognition. Compared with the maize and weed

detection algorithm proposed by Quan et al. (2022), the method

proposed in this study eliminates the weed labeling work and

significantly reduces the workload of crop and weed detection.

However, as shown in the orange dashed box in Figure 8A, the

segmented connected domain becomes larger when weeds are

present in adhesion, which causes the center of the connected

domain morphology to deviate from the center of the single weed

morphology, thus leading to ineffective spraying of herbicides onto

the weed foliage during subsequent spraying. To solve this problem,

in the future, we will explore how to extract single weeds based on

the weed skeleton line based on the ExG segmentation to achieve

the accurate positioning of single weed centroids.

In the PSO-Bezier trajectory simulation experiments, the

trajectory profile generation time was only 0.35 s. Moreover, our

proposed end-effector motion trajectory can save 10–15% of the

motion distance with the same start and end points compared to the

Lamé3 type motion trajectory proposed by Yang et al. (2021), which

effectively reduces energy consumption. This demonstrates the

superior performance of our algorithm. In addition, our proposed
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PSO-Bezier trajectory can be adaptively parameterized according to

plant characteristics, and this adjustment can enable this trajectory

to be used for weeding operations of other important cash crops

such as tomatoes and eggplants. However, in our study we idealized

a fixed height of the Peucedani Radix plant, which in practice will

lead to collisions between the end-effector and some of the taller

Peucedani Radix seedlings, thus causing some damage to the

Peucedani Radix crop. The reason for this phenomenon is that

the camera cannot effectively obtain the exact height of the

Peucedani Radix plants, a disadvantage of the camera capturing

the ground image vertically. To improve this problem, we plan to

use an RGB-D (Xu et al., 2017) depth camera to combine depth and

image information to obtain information such as height and pose of

Peucedani Radix plants.

In the actual trial, a total of 39 weed plants were not successfully

sprayed with herbicide. This was attributed to two main reasons:
(1) The actual experiment was conducted using Peucedani

Radix plants in August, and the weather on the day of the

experiment was sunny with sufficient sunlight at noon. The

overexposure of direct sunlight on the foliage of some of the

Peucedani Radix plants and weeds caused serious loss of

color features of Peucedani Radix in the images, and the

Peucedani Radix plants and weeds could not be identified

accurately. There were eight times that the Peucedani Radix

plants and weeds could not be identified in the experiment.

To improve this problem, in the future, we will take field

images at midday and add overexposed images to increase

the diversity of our samples to increase the generalization
FIGURE 14

Agricultural robot field weeding experiment site.
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performance of the model. In addition, we will also explore

the use of shades or creation of a stable lighting

environment to improve the recognition accuracy of

Peucedani Radix plants and weeds.

(2) Due to the linear distance between the camera coordinate

system and the origin of the parallel robot arm coordinate

system, the agricultural robot platform needs to travel a fixed

distance for accurate spraying operation after the camera

identifies the Peucedani Radix and weeds. In this process,

ground topography has a large influence on the Peucedani

Radix and weed positioning. As shown in Figure 15, the

ground is not flat and the camera plane is not parallel to the

ground, which leads to a large deviation in positioning and

makes it difficult for the nozzle at the end of the robot arm to

accurately locate the weeds. Therefore, in the future, we will

explore the use of a depth camera to identify and locate crops

and weeds, and measure the deviation of the image position

from the actual position by the angle A between the camera

plane and the monopoly plane through the on-board altitude

sensor, which can be used to compensate the position to

achieve accurate spray positioning.
In summary, in this study, we applied the YOLOV5 deep learning

network with ExG feature segmentation to a Peucedani Radix crop

and weed detection system for the first time. We transformed crop

and weed recognition into a binary classification problem, thus

avoiding tedious weed labeling and improving the overall

recognition accuracy, especially for small target weeds. In addition,

our proposed PSO-Bezier weed avoidance trajectory better

incorporated the biological characteristics of the Peucedani Radix

plants compared to existing trajectories, saving the robot arm 10–15%

of the movement distance, which will significantly reduce the energy

consumption of the robot’s work in practical applications. However,

there remain limitations to our research, such as the inability to

accurately identify Peucedani Radix plants and weeds under high

exposure conditions and the lack of accuracy in herbicide spraying

due to changes in the robot’s body position. In future work, we plan

to address these issues by expanding the image dataset for high

exposure conditions, using RGB-D depth cameras, and building a

position error compensation model.
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6 Conclusions

An intelligent agricultural robot was designed to accurately

spray weeds in Peucedani Radix fields with herbicide. The

agricultural robot identified Peucedani Radix plants and weeds in

the field using YOLOV5 combined with the ExG segmentation

algorithm, used the PSO-Bezier algorithm to plan the optimal

seedling avoidance spraying path, and executed this based on

Peucedani Radix growth parameters obtained by identification.

We evaluated the performance of the agricultural robots and

algorithms through simulation validation combined with real-

world operations. The following specific conclusions can be drawn:
(1) The overall precision and recall of Peucedani Radix

detection in the Peucedani Radix field environment used

for the experiment were 98.7% and 88.2%, respectively, and

the map was 93.8% at IOU=0.5. When the MCDS was 50,

the ExG feature segmentation algorithm can achieve 95%

segmentation rate for weeds. In addition, the study

evaluated the results of Peucedani Radix testing at

different periods and found that the best results were

obtained in August, when the plants were the largest.

(2) The study introduced a novel scheme for precise herbicide

spraying by seedling avoidance, which used the PSO-Bezier

algorithm to effectively achieve precise herbicide spraying

in combination with the growth characteristics of

Peucedani Radix. Compared with the Lamé3 transition

trajectory, the trajectory generated by the arm running

the PSO-Bezier algorithm can reduce movement distance

by 10–15%, which effectively reduces the energy

consumption required for arm operation.

(3) The effectiveness of the proposed algorithm was verified in

actual field weeding experiments. The results showed that

the success rate of field precision seedling avoidance

herbicide spraying was 80.5%, the collision rate between

the robotic arm end-effector and Peucedani Radix was 4%,

the average detection time of the proposed algorithm for

weeds and Peucedani Radix was 0.75 s per image, the

average generation time of a single PSO-Bezier motion
FIGURE 15

Reasons for the positioning error in camera recognition.
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trajectory was 0.35 s, and the robotic arm could precisely

spray a single weed an average of every 2 s.
Overall, the herbicide spraying method proposed in this study

for precise seedling avoidance in a Peucedani Radix field was

effective. The detection time of the proposed algorithm for weeds

and the generation time of weeding trajectories are reasonable for

agricultural robots. Also, this research can be widely applied to weed

control in fields of tomato, eggplant, and other important crops

worldwide. However, uneven terrain and large areas of weeds

sticking between monopolies negatively impact weed center point

positioning and accurate spraying. In addition, the precise timing of

herbicide spraying in the field was not satisfactory. In future work,

we will continue to study the above-mentioned points, improve the

productivity of agricultural robots based on actual weeding

operation scenarios, and contribute to the development of

agricultural automation and precision agriculture.
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