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Editorial on the Research Topic

Signal transduction of plant organ senescence and cell death
The senescence of plant organs, the final stage of organ development, is a form of

programmed cell death (Miao and Zentgraf, 2007). It is characterized by the functional

transition from nutrient assimilation to nutrient remobilization, which is crucial for plant

fitness and affects crop yield, quality, and horticultural performance (Guo and Gan, 2005;

Lim et al., 2007). Although it has been reported that leaf senescence impacts

photosynthesis, nutrient mobilization, stress responses, and productivity (Guo et al.,

2021), the contributions of a myriad of natural parameters, such as organ age,

coordination between different regulatory pathways, source-sink relationships, nutrient

remobilization, and anterograde/retrograde signal transduction during organ senescence,

remain to be unraveled.

This Research Topic compiles a total of ten articles, four reviews, and six research

studies, covering five topics: i) New discoveries in the multiple layers of regulation of leaf

senescence; ii) Recent progress in the regulation of leaf senescence by classical and peptide

hormones; iii) Novel signaling components regulating organ senescence; iv) New

mechanisms for nutrient deficiency-induced leaf senescence; and v) Latest

breakthroughs in leaf senescence research methods and techniques.

Leaf senescence is a systematic physiological process that involves several tiers of

regulation, including at the level of chromatin remodeling, as well as at the transcriptional,

translational, and post-translational levels, as revealed by multi-omics analyses. (Woo et al.,

2013; Woo et al., 2019) Miao’s team reported that histone acetylation (H3K9ac)

enrichment accompanied the transcriptional induction of senescence-associated genes

(SAGs) during leaf senescence in Arabidopsis and rice (Huang et al., 2018; Zhang et al.,
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2022a; Huang et al., 2022). In Arabidopsis, histone deacetylase 15

(HDA15) interacting with an ssDNA-binding protein WHIRLY1

acts as a repressor of downstream gene transcription, leaf

senescence, and flowering (Huang et al., 2022). Zareen et al.

reported that histone deacetylase 9 (HDA9) and POWERDRESS

(PWR) complex recruiting a transcriptional corepressor HIGH

EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15

(HOS15) acts as a positive regulator to promote leaf senescence

upon aging and dark stress by repressing the histone acetylation at

several gene loci, such as NPX1, APG9, and WRKY57. However,

many unidentified mechanisms at the epigenetic modification level

still need to be clarified.

Long non-coding RNAs (lncRNAs) are a type of non-coding

RNAs that are emerging as hidden players in many biological

processes (Statello et al., 2021). In this Research Topic, Kim et al.

performed comprehensive analyses of RNA-seq data representing

all leaf developmental stages to determine the genome-wide

lncRNA landscape during Arabidopsis leaf aging, providing a

valuable resource of age-related (AR) lncRNAs and proposing a

potential gene regulatory network of leaf senescence that links the

function of protein-coding mRNAs and AR-lncRNAs. Recent

advances in the fields of non-coding RNAs, epigenetic

modifications, and alternative splicing in the regulation of leaf

senescence have all been reviewed (Guo et al., 2021; Zhang et al.,

2021; Miryeganeh, 2022).

Protein phosphorylation/dephosphorylation plays a crucial role

in the l ea f senescence proces s . Contro l l ed pro te in

dephosphorylation by protein phosphatases is vital to containing

the extent of senescence. Several protein phosphatases that

positively or negatively influence the induction or progression of

this process have been identified (Zhang and Gan, 2012; Xiao et al.,

2015; Durian et al., 2020). Protein kinase, in turn, functions in

signal transduction via the phosphorylation of downstream

signaling components to activate the regulatory network (Ahmad

and Guo, 2019). Miao et al. reported that MITOGEN-ACTIVATED

PROTEIN KINASE (MAPK) KINASE KINASE1, MEKK1, can take

a shortcut and directly phosphorate the WRKY53 protein as well as

activate WRKY53 gene expression and leaf senescence (Miao et al.,

2007). Wu et al. show that MPK3 and MPK6, two Arabidopsis

MAPKs, and their two upstream MAPK kinases, MKK4 and

MKK5, act via the MKK4/5, MPK3/6, and MATRIX

METALLOPROTEINASE (MMP) At2/At3 cascade as key

regulators of leaf senescence. Yang et al. reviewed the recent

progress in plant leaf senescence-related kinases and summarized

the current understanding of the function of kinases in senescence

signal perception and transduction.

The role of classic phytohormones, such as abscisic acid (ABA),

ethylene, jasmonic acid (JA), salicylic acid (SA), brassinolide (BR),

gibberellin (GA), and auxin indole-3-acetic acid (IAA) that function

as important signaling molecules in plants and contribute to the

onset and progression of leaf senescence, has been well documented

(Guo et al., 2021). Increasing evidence now shows that peptide

hormones CLAVATA3/ESR-RELATED (CLEs), Phytosulfokine

(PSK), and INFLORESCENCE DEFICIENT IN ABSCISSION
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(IDA) or IDA-like (IDLs) peptides are also involved in the

regulation of leaf senescence, expanding the repertoire of

signaling molecules that control leaf senescence (Zhang et al.,

2022b; Zhang et al., 2022c). In this issue, Guo et al. reported that

the IDL6 peptide is a positive regulator of leaf senescence. Huang

et al. presented recent advances in our understanding of leaf

senescence regulation by classical and peptide hormones.

Organ senescence, a type of programmed cell death, leads to the

massive retrieval of nutrients from senescing organs to the rest of

the plant (Rogers, 2013; Schippers et al., 2015). In addition to

carbohydrate and energy remobilization during leaf, petal, and seed

senescence (Chrobok et al., 2016; Huang et al., 2020; Zhang et al.,

2021; Zhu et al., 2022), many macronutrients, such as magnesium

(Mg), iron (Fe), and nitrogen (N), also get recycled and channeled

into essential cellular processes such as an extensive range of

metabolic, regulatory, and structural activities (Guo et al., 2015;

Guo et al., 2021). The deficiency or excess of these nutrients

seriously affects plant growth and development (Shi et al., 2012;

Tanoi and Kobayashi, 2015; Yang and Udvardi, 2018). For example,

Mg as a constituent of magnesium porphyrin plays a role in

retrograde signaling and ABA-induced senescence (Koussevitzky

et al., 2007). In this issue, Kocourkova et al. showed that in

PHOSPHOLIPASE Da1-deficient mutant plants, plda1-1, higher
accumulation of ABA and JA, and impaired homeostasis of Mg,

potassium, and phosphate were observed under high-Mg2+

conditions. Furthermore, high Mg2+ also led to an increase in

starch and proline content in Arabidopsis plants. PLDa1 was

concluded to act as a negative regulator of high-Mg2+-induced

leaf senescence. Finally, in this article collection, Sakuraba et al.

reviewed the current understanding of the molecular mechanisms

associated with N starvation-induced leaf senescence.

Given that senescence is affected by numerous developmental

and environmental signals, such as biotic and abiotic stresses (Guo

et al., 2021), research on organ senescence requires systematic

approaches and sophisticated experimental designs. Plant

scientists are searching for rapid experimental systems to reveal

the molecular regulatory mechanisms of leaf senescence controlled

by multiple factors. Protoplasts are an effective experimental system

for employing rapid and systematic cellular approaches to dissect

gene function in Arabidopsis (Tyurin et al., 2020) and to perform

genetic manipulation in crops (Ghogare et al., 2021). In this issue,

Kim et al. established a transient gene expression assay in

Arabidopsis protoplasts and validated this system by monitoring

the differential expression of LUCIFERASE-based reporters driven

by the promoters of SAGs (SEN4-LUC and SAG12-LUC) (Doan

et al., 2022). This approach provides a valuable system for studying

senescence at the cellular and molecular levels in various species.

This article collection is a testament to the notion that, even

though impressive progress has been made in the identification and

functional analysis of a large number of SAGs in plants, many

urgent scientific questions remain in this field, such as when plant

senescence is initiated or how senescence signals are transmitted

between organelles, cells, tissues, and organs, as well as how to best

address the molecular mechanisms underlying cell senescence.
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With the application of single-cell multi-omics analysis and gene-

editing technologies, such as CRISPR/Cas9, the precise mechanisms

governing cell senescence will be deciphered, and a wide variety of

genome-modified stay-green crops will be developed and

commercialized in the foreseeable future.
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