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It has long been recognized that the community of organisms associated with

plant roots is a critical component of the phytobiome and can directly or

indirectly contribute to the overall health of the plant. The rhizosphere

microbial community is influenced by a number of factors including the soil

type, the species of plants growing in those soils, and in the case of cultivated

plants, the management practices associated with crop production. Vaccinium

species, such as highbush blueberry and American cranberry, are woody

perennials that grow in sandy, acidic soils with low to moderate levels of

organic matter and a paucity of nutrients. When properly maintained, fields

planted with these crops remain productive for many years. In some cases,

however, yields and fruit quality decline over time, and it is suspected that

degenerating soil health and/or changes in the rhizosphere microbiome are

contributing factors. Determining the assemblage of bacterial and fungal

microorganisms typically associated with the rhizosphere of these crops is a

critical first step toward addressing the complex issue of soil health. We

hypothesized that since blueberry and cranberry are in the same genus and

grow in similar soils, that their associated rhizosphere microbial communities

would be similar to each other. We analyzed the eukaryotic (primarily fungal) and

bacterial communities from the rhizosphere of representative blueberry and

cranberry plants growing in commercial fields in New Jersey. The data presented

herein show that while the bacterial communities between the crops is very

similar, the fungal communities associated with each crop are quite different.

These results provide a framework for examining microbial components that

might contribute to the health of Vaccinium spp. crops in New Jersey and other

parts of the northeastern U.S.
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Introduction

Highbush Blueberry (Vaccinium corymbosum L.) and large-

fruited or American cranberry (V. macrocarpon Ait.) are long-lived

woody perennials that are native to North America. Cultivars of

both species are clonally propagated. Blueberry is propagated from

hardwood or softwood cuttings or in vitro culture and rooted prior

to field planting (Mainland, 1966). Cranberry cuttings can be

pressed directly into field soil or rooted prior to transplanting

into the field (Eck, 1990). Establishment time can vary depending

on planting location, but in the northeastern U.S., it typically takes

blueberry fields 4-7 years to reach maturity. New plantings of

cranberry similarly take about 4-5 years to reach full production.

Once established, plantings may remain productive for many years.

However, the yield of mature plantings of blueberry and cranberry

sometimes declines over time. In areas where decline is prevalent,

and replanting does not solve the problem, the primary cause is

likely to be soil-related.

It is well established that long-termmonoculture can reduce soil

health (Ketcheson, 1980; Porter et al., 1997; Garside et al., 2001;

Bennett et al., 2012). This decline of soil health can be complex and

includes, but is not limited to, a buildup of salts and/or other toxic

materials, reduction in organic matter, and a buildup of detrimental

soil organisms (Tewoldemedhin et al., 2011; Mazzola and Manici,

2012). Poor performance of replanted blueberry fields, termed

Blueberry replant disease (BRD) in the southeastern U.S., was

found to be primarily due to pathogenic nematodes (Jagdale

et al., 2013), while cranberry decline in Wisconsin was associated

with Phytophthora spp. (Jeffers, 1988). In contrast, blueberry and

cranberry decline in New Jersey, does not seem to be associated with

either Phytophthora spp. or nematodes, although in some replanted

blueberry fields where experimental nematicides were tested, plant

growth improved (Oudemans, unpublished). Thus, it is likely that

the cause(s) of decline in either crop varies by locality and may be

due to complex community interactions, rather than a single

pathogenic organism.

Blueberry and cranberry naturally grow in well-drained, sandy

acidic (pH 4.0-5.5) soils that tend to be low in nutrients and with

low to moderate (2-7 percent) organic matter (Eck and Childers,

1966; Eck, 1988; Eck, 1990, Pavlis et al., unpublished). Since the soils

in which these crops grow is not typical, as compared to the soils in

which most crops are grown, the assemblage of microorganisms in

these soils is likely to be unique. While we expect to find a range of

acidophilic organisms, Fierer (2017) suggested that abiotic stressors,

including acidic conditions, can limit microbial survival and

growth. He further notes that soil bacterial communities and

abundances of specific taxa can be predicted from site

characteristics which include soil pH (Fierer, 2017).

In addition to soil type, the plants growing in the soil have a

profound effect on the rhizosphere microbiome (Costa et al., 2006;

Berendsen et al., 2012; Marschner, 2012; Chaparro et al., 2014). We

expected that because highbush blueberry and cranberry are in the

same genus (Vaccinium) and grow naturally in similar soils and

environments, that there would be significant commonalities in the

rhizosphere communities associated with these crops. However,

plant habit (1-2 m high shrub for blueberry; low-growing 0.2 -0.6 m
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high vines for cranberry) and management practices differ between

these crops and these differences might drive some distinctions in

the rhizosphere communities of these crops.

Management practices differ greatly between blueberry and

cranberry. Highbush blueberry in the northeastern U.S. is still

grown primarily in clean culture, i.e. all competing vegetation is

controlled by tilling and herbicide use (Ballinger, 1966). The plants

are pruned to remove old wood and to encourage the growth of 2-3

year old productive shoots. The plants are deciduous and go

dormant for the winter. In contrast, cranberry is grown in solid

stands of vines in beds of varying size with little or no exposed soil.

Weeds are pulled by hand or controlled with herbicides to form a

near-monoculture of cranberry vines. Cranberry plants retain most

of their leaves at the end of the growing season, but still go dormant

for the winter.

In this study, we sought to determine and compare the

rhizosphere microbiome (bacteria and fungi) of cultivated

cranberry and blueberry fields in New Jersey as a prerequisite to

exploring the cause(s) of decline. While we predicted

commonalities among the microbial communities based on

similarity of soil type and plant genus, management practices and

plant growth habit were expected to cause a divergence in at least

some aspects of the microbial communities.
Materials and methods

Plant material and collection

Blueberry rhizosphere soil samples were collected from 16 mature

(over 10 years old) fields (2 samples/field) across 4 different

commercial farms (3 in Atlantic County, NJ, USA and 1 in

Burlington County, NJ, USA), for a total of 32 samples. An

additional paired blueberry soil sample was collected from a 10-year

old research field at the P.E. Marucci Blueberry and Cranberry

Research Station (Burlington County, NJ, USA) (Table S1).

Rhizosphere soil was collected, with a small shovel, from the root

zone (between 30 and 40 cm from the crown) of 3-4 mature blueberry

plants per sample location to a depth of 16 cm and homogenized in

buckets. The homogenized soil in each bucket was considered to be

one sample. Cranberry soils from mature beds (over 10 years old)

were collected from 8 fields (4 samples/field) from a commercial farm

(E, Table S1) in Burlington County, NJ, USA (32 samples). One extra

paired sample was collected from commercial farm F (Table S1). The

34 cranberry soil samples were collected with a soil probe to a depth of

10 cm. The core, containing the roots of 3-4 samples per field were

homogenized and the roots removed before DNA isolation. All

blueberry and cranberry samples were collected on 22 or 23 July, 2015.
DNA extraction and amplification

Total DNA was extracted from the soil samples using the

PowerLyzer PowerSoil DNA Isolation kit (MoBio Laboratories,

Carlsbad, CA, USA), but with protocol modifications suggested

by the manufacturer for soils with low biomass and based on our
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own experience. Briefly, 0.5 g of each soil sample was added to the

dry glass bead tubes, followed by 500 µl Bead Solution, 200 µl of

phenol:chloroform (1:1) pH 8.0, and 60 µl of C1 solution. Samples

were processed in a TissueLyser II (Qiagen, Germantown, MD,

USA) at a frequency of 20 Hz for 2 x 5 min and the slurry was

transferred to Phase Lock Gel Light 2 ml tubes (5 Prime, Hilden,

Germany). The tubes were centrifuged at 10,000 x g for 1 min and

the supernatants were transferred to clean 2 ml tubes. The

remainder of the protocol was as per the manufacturer’s

standard protocol.

The DNA samples were processed for sequencing by Molecular

Research LP (Shallowater, TX, USA). Diagnostic portions of the

DNA were amplified using PCR. Specifically, the 16S rRNA gene V4

variable region primers 515/806 (Caporaso et al., 2011) and the

rDNA ITS region primers ITS1/4 (White et al., 1990) were used to

assay bacteria and fungi respectively.
DNA sequencing and
computational processing

All amplified DNA fragments were sequenced using the Illumina

MiSeq (Illumina, San Diego, CA, USA) platform. Operational

taxonomic unit (OTU) picking was performed by Molecular

Research LP (Shallowater, TX, USA) using an in-house pipeline

developed by the provider (Molecular Research) from protocols

described in; (Dowd et al., 2008a; Dowd et al., 2008b; Edgar, 2010;

Capone et al., 2011; Eren et al., 2011; Swanson et al., 2011). Reads were

separated by sample barcodes, followed by removal of sequences not

meeting quality criteria, including short sequences < 200bp, sequences

with ambiguous base calls, and sequences with homopolymer runs

exceeding 6bp. Singletons and chimeras were also removed. The reads

were then separated into bins and the binned sequences were clustered

into OTUs at 97% similarity. Final OTUs were taxonomically classified

from a database derived from GreenGenes (DeSantis et al., 2006),

RDPII, (http://rdp.cme.msu.edu), and NCBI (www.ncbi.nlm.nih.gov)

using BLASTn. 16S and 18S OTU tables for lowbush blueberry in Nova

Scotia, Canada were kindly provided by S. Yurgel (Yurgel et al., 2017).

18S OTU tables for cultivated grape were provided by M. Chou (Chou

et al., 2018).
Statistical analysis and graph generation

Alpha diversity was calculated using the QIIME analysis toolkit

(Caporaso et al., 2010), specifically, the alpha_diversity.py script

using the Shannon index. OTU tables for bacteria and fungi were

processed individually. Analysis of variance (ANOVA) was used to

compare alpha diversity between blueberry and cranberry for each

sample group.

Differential abundance and statistical significance (assigned at

0.05) of OTUs between blueberry and cranberry were calculated

using the Analysis of Compositions of Microbiomes (ANCOM) R

package utilizing the provided stringent correction for multiple

testing (Mandal et al., 2015). OTU tables for the bacteria and fungi

were analyzed independently. Subsequent boxplots of differentially
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abundant OTUs were generated using a python script with NumPy

and Matplotlib modules (Van der Walt et al., 2011).

Assignment of guilds for fungi was performed using a python

script to query the FUNGuild database (Nguyen et al., 2016). OTU

tables were OTU tables were parsed using python, specifying a

fungal database search. All guild assignments were filtered as being

plant-relevant unless otherwise noted.

Diversity graphs were generated with a python script utilizing

the NetworkX package (Hagberg et al., 2008) and Matplotlib

(Hunter, 2007) modules for creating the display. Each entry on

the taxonomic tree starting with an individual phylum present in

the collective OTU set is represented by a node, with nodes linked

through descent of the taxonomic hierarchy to the family rank.

Hence, following a given phylum are all of the classes that are

associated with that phylum present in the OTU table. Unique

OTUs found within a given taxon were counted and attributed to

node area. Therefore, nodes with increased diversity will be larger,

having several connecting nodes with a variety of lower taxa

associated, or with few connecting edges, indicating a large

number of less diverse taxa. Shading of the node ranged from

blue (r,g,b:0,0,1) for blueberry and red (r,g,b:1,0,0) for cranberry.

The corresponding node color was therefore a ratio of the number

of OTUs found in cranberry versus blueberry (cranberry_OTUs/

total_OTUs,0, blueberry_OTUs/total_OTUs). Taxa that are more

diverse in cranberry samples are shaded increasingly red, while taxa

more diverse in blueberry samples are shaded blue. The

arrangement of nodes for display was established by the

NetworkX fruchterman_reingold _layout method.

Circular graphs of the percent abundance of genera were

generated using GraPhiAn (Asnicar et al., 2015). The imputed

taxonomic trees were generated using the hierarchy of the OTU

assignments from each OTU table (bacterial or fungal). The

datasets were filtered to display only OTUs from the respective

kingdom that were classifiable to the genus level. Corresponding

graph values for each OTU represent the percent (as a number of

total reads assigned to that particular OTU, out of all assigned

reads) abundance of a given taxonomic level. Abundance equal to or

exceeding 0.5% was annotated for graphical representation of

contributing taxa.
Results

Fungi

The fungal analysis resulted in 1.26M reads matched to OTUs

for blueberry and 1.35M reads for cranberry, averaging 38.2K reads

and 39.7K reads per sample respectively. Both groups were

dominated by the phyla Ascomycota, 63.0% and 88.6%, and

Basidiomycota, 20.0% and 6.9%, in blueberry and cranberry

respectively (Figure 1A). The percent abundance of major

fungal phyla varied between blueberry and cranberry, and

included; Chytridiomycota, Mucoromycota, Cryptomycota,

Etomophthoromycota, and Glomeromycota (Figure 1A).

However, no significant differential abundance between blueberry

and cranberry was identified by ANCOM for any of these phyla.
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There were 753 fungal genera identified using these methods,

but the relative abundance of the majority (722) was below 1%

(Figures S1, S2). The alpha diversity, based on the Shannon Index,

was found to be significantly different between blueberry and

cranberry (Figure 2). Most of the fungi that were classified using

the FUNGuild database, at the genus level, with an abundance of

0.5% or greater, were saprotrophs (22) followed by symbionts (16),

plant pathogens (8), endophytes (7), and epiphytes (3) (Figure 3).

Within the shared (blueberry and cranberry) rhizosphere fungi,

significant differential abundance was found in the pathogenic

genera Fusarium (7.0% and 0.0%), Phoma (1.0% and 0.0%),

Rhizophydium (0.5% and 0.7%), Coniochaeta (3.6% and 0.0), and

Mollisia (3.2% and 0.0%) (Figure 4). Blueberry also contained

several fungal pathogens nearly uniquely (extremely low evidence,

below 0.1% in cranberry) in its rhizosphere microbiome, though

each represented less than 1% of the genus content. These

pathogens included Athelia (0.7%), Alternaria (0.4%) and

Cladosporium (0.3%).

Of the symbionts in the blueberry and cranberry soils (16

genera were 0.5% or greater), 4 (Phialophora 0.1% and 0.5%,

Rhizoscyphus 0.2% and 32.4%, Oidiodendron 0.0% and 0.1%, and

Hymenoscyphus 0.0% and 0.5%) are known ericoid mycorrhizae.

Nine other genera of mycorrhizal (ecto and arbuscular) fungi were

also detected at abundances of 0.5% or greater, that are not
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generally thought to be associated with ericoid plants.

Differentially abundant non-ericoid mycorrhizal fungi included

(blueberry and cranberry), Ambispora (1.2% and 0.0%), Peziza

(2.1% and 0.0%), Russula (5.3% and 0.1%), Sphaerosporella (0.1%

and 24.8%), (Figure 4). Sarcosphaera (0.4% and 0.1%) was found

most abundant in blueberry soil, but not significantly so. Endophyte

and epiphyte classified genera were also detected with significant

differential abundance including Cryptococcus (13.8% and 5.6%),

and Mollisia (3.2% and 0.0%) (Figure 4).

We also compared differential abundance between both

blueberry and cranberry soils with grape, taking note in particular

of significant pathogenic and symbiotic fungi from cranberry and

blueberry soils. Profiles of grape symbiotic fungal abundance were

also relatively low and did not trend towards either blueberry or

cranberry. The grape profile was similar to cranberry, for Russula

and similar to blueberry, for Oidiodendron and Hymenoscyphus

(Figure 5A). Of the pathogenic fungi, grape shared a similar

Fusarium profile with blueberry, having a significantly high

abundance compared to cranberry. However, the grape profile for

the pathogenic fungus Phoma, had little similarity with blueberry,

and greater resemblance to cranberry, although all three groups

were significantly different from one another (Figure 5B). Rusulla, a

genus containing ectomycorrhizal mushrooms was found to

significantly differ across all three crops (Figure 5C).
A

B

FIGURE 1

Percent abundance of fungal (A) and bacterial (B) phyla in the rhizosphere of cultivated highbush blueberry and cranberry in New Jersey (N.J.). Data
for lowbush blueberry from Nova Scotia (Yurgel et al., 2017) shown for comparison.
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Bacteria

In the bacterial analysis, 2.38M reads were matched with OTUs

in blueberry, averaging 72.1K reads per sample, and 2.31M reads in

cranberry, averaging 67.9K reads per sample. There was little

difference in the makeup of the bacterial microbiome at the

phylum level for blueberry vs. cranberry (Figure 1B). The order of

dominance, however, differed between the two (blueberry vs.

cranberry), though Proteobacteria (42.4% and 50.0%) and

Acidobacteria (19.3% and 23.1%) were the most prevalent for

both N.J. crops. High numbers of bacteria, from 5 other phyla

[Planctomyces (6.2% and 5.4%), Verrucomicobia (1.6% and 1.9%),

Bacteriodetes (4.4% and 3.5%), Firmicutes (7.6% and 5.8%), and
Frontiers in Plant Science 05
Chloroflexi (5.2% and 1.9%)] were also detected. Any unique phyla

found in either group represented less than 1% abundance in the

rhizosphere microbiome. Even at the genus level, unique taxa were

largely identified at an abundance below 1% (Figures S3, S4). Alpha

diversity was not significantly different between blueberry and

cranberry for bacteria OTUs (Figure 2).

Though no known bacterial pathogens were identified at the

genus level as being significantly differentially present between

blueberry and cranberry at any reasonable abundance,

Pseudomonas (0.2% and 0.1%), Burkholderia (0.4% and 0.3%),

Candidatus (genus 2.9% and 1.9%), Saccharimonas (0.2% and

0.3%), and Rhizobium (2.1% and 1.3%) were all found in the

rhizosphere microbiome.
FIGURE 2

Alpha diversity (Shannon index) in the rhizosphere of cultivated highbush blueberry and cranberry in New Jersey (N.J.) for fungi and bacteria
sampling. Horizontal line within each box represents the mean. Whiskers extend to the last data points that fall within 1.5 times the interquartile
range from either the first or third quartile. Asterisk indicates significant difference between samples (P < 0.001).
FIGURE 3

Boxplots of relative abundance for classified fungi in highbush blueberry (blue) and cranberry (red) in New Jersey. The vertical line within each box
represents the median value. The shaded area extends from the first through the third quartiles. Whiskers extend to the last data points that fall
within 1.5 times the interquartile range from either the first or third quartile. All data beyond these bounds are deemed outliers and are represented
by individual circles.
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Discussion

The fungi were remarkably similar at the phylum level, as there

were no notable omissions between the rhizosphere microbiome of

blueberry or cranberry. They only differed in the hierarchical

abundance within phyla groups (Figure 1A), and not significantly

so. Although blueberry had a significantly higher alpha diversity

compared to cranberry, potentially due to distinguishing

agricultural practices and possibly plant growth habit. Cranberry

is typically cultivated in wetlands and this may explain why the

chytridiomycota, a phylum common in aquatic environments

(Barr, 1990; Gleason et al., 2008), is prevalent in the cranberry

soils. In fact, the chytrid Synchytrium vaccinii is a known pathogen

of cranberry and requires free water to spread (Stretch and Carris,

2017). However, fungi from this phylum were not exclusive to

cranberry as they were also found in both the New Jersey (N.J.) and

the Nova Scotia (N.S.) blueberry soils (Figure 1A). These findings

parallel other reports of Vaccinium spp. soils, especially the

identification of ascomycota and basidiomycota as major

composition groups, though not with absolute ranking similarities

(Li et al., 2020; Morvan et al., 2020; Zhou et al., 2022).

Many fungal genera were classified that have not been

previously recognized as inhabiting the soils associated with

Vaccinium spp. in the northeastern U.S. (Figures S1, S2).

Detection of unique genera is not surprising considering; 1) that

these methods are more sensitive than traditional isolation and

culturing methods and 2) attention is typically directed toward

organisms that are pathogenic or beneficial to the crop in question,

thus, neutral organisms and those found in low abundance are often

not characterized and/or reported. We classified the fungal genera

into guilds where possible, including pathotrophs (plant, fungal,

and animal), saprotrophs, symbionts, epiphytes, and endophytes.
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While most of the detected organisms were saprotrophs, as would

be expected to colonize organic soil matter, several plant pathogens

were also identified at abundances of 0.5% or greater. The presence

of pathogens in the soil, even at low levels, may signal a potential

disease problem since these pathogens may serve as a reservoir for

an outbreak that could express under disease-conducive conditions.

Generally, of the classifiable fungal genera, blueberry contained

a higher pathogen load. For example, Coniochaeta spp. are known

to be pathogens of woody perennials and thus is a potential

pathogen of these crops (Damm et al., 2010). Athelia rolfsii causes

Southern blight of solanaceous crops, beans and many other plants,

but has not been reported as a pathogen of Vaccinium spp. (Aycock,

1961). Alternaria spp. and Cladosporium spp. are known to be

pathogens of blueberry and cranberry (Polashock et al., 2017).

Overall, N.J. blueberry contained a higher percent abundance of

the identifiable potential pathogens Coniochaeta, Fusarium,

Mollisia, and Phoma compared to cranberry, with several samples

harboring statistical outliers of pathogen abundance far above

average (Figure 4, represented as circles). In addition, Blumeria, a

species of which causes powdery mildew on grasses, was uniquely

identified in N.S. blueberries (Figure 6). N.J. cranberry however, had

a comparatively low pathogen load, and low pathogen diversity

(Figures 3, 4, 6).

Several symbionts were also identified in the rhizosphere

microbiome of N.J. blueberry and N.J. cranberry, including

ericoid, ecto, and arbuscular mycorrhizae. These may represent

important, but previously unknown, Vaccinium spp.- associated

mycorrhizae. N.J. cranberry had a particularly high average

abundance of Rhizoscyphus (note that Rhizoscyphus ericae =

Hymenoscyphus ericae, but our data generally are not able to

reach the species level and both genera are still listed in the

databases used- hence both are used in this paper), compared to
FIGURE 4

Differentially abundant fungal genera with mean read counts greater than 200 in the rhizosphere of cultivated highbush blueberry (blue) and
cranberry (red) in New Jersey, according to ANCOM. The horizontal line within each box represents the median value, the shaded area extends from
the first through the third quartiles. Whiskers extend to the last points that fall within 1.5 times the interquartile range from either the first or third
quartile. All data beyond these bounds are deemed outliers and are represented by individual circles.
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N.J. blueberry samples (Figure 3). Interestingly, it has been reported

that mycorrhizae that proliferate in response to crop monoculture,

may in fact be detrimental to that crop (Johnson et al., 1992). While

endophytes and epiphytes were also detected, their importance in

blueberry and cranberry production is not currently known. Similar

to southern highbush blueberry, neither N.J. blueberry or N.J.

cranberry carried a particularly high load of Oidiodendron,

though cranberry carried significantly more than blueberry (Li

et al., 2020 and Figure 5).

We also compared known symbionts and pathogens with

another small fruit crop grown in the northeast, grape. Similar to

blueberry, grape exhibited very low levels of both Oidiodendron sp.

and Hymenoscyphus sp., both of which are known to be ericoid

mycorhizzae (Figure 5A), though no evidence of Russula sp. was

found (Figure 5C). The analysis of pathogens showed that grape and

blueberry show a similarly high abundance of Fusarium sp.

(Figure 5B), which is shown to be a potential cause of decline in

grape (Highet and Nair, 1995; Bustamante et al., 2022).
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When compared to findings in southern highbush, as described

in Li et al. (2020), Hyaloscyphaceae, Leotiaceae, Pezoloma, and

Hyaloscypha were not found in meaningful abundance in N.J.

blueberry and N.J. cranberry.

Bacterial composition was similar between N.J. blueberry, N.J.

cranberry, and N.S. blueberry. One of the top phyla however,

chloroflexi, was found to differ significantly in abundance

between blueberry and cranberry soils. Similarity in composition

continued at the genus level, where little difference was found

between N.J. blueberry and N.J. cranberry at abundances greater

than 1.0%. Both N.J. blueberry and N.J. cranberry were also found

to have similar bacterial alpha diversity indexes. As compared to

southern highbush blueberry (Li et al., 2020), both N.J. blueberry

and N.J. cranberry contained high levels of proteobacteria,

acidobacteria, and actinobacteria making up the majority of

bacterial phyla. This trend followed other studies that identified

similarly high abundance of proteobacteria, acidobacteria, and

actinobacteria in Vaccinium soils (Li et al., 2020; Morvan et al.,
A

B

C

FIGURE 5

Differentially abundant fungal genera as a percentage of reads identified in the rhizosphere of cultivated highbush blueberry (left) and cranberry (center) in
New Jersey, and cultivated grape (right) in New York (Chou et al., 2018). Fungal genera are categorized by: ericoid mycorrhizae (A), pathogens (B), and
ectomycorrhizae (C). The horizontal line within each box represents the median value, the boxed area extends from the first through the third quartiles.
Whiskers extend to the last points that fall within 1.5 times the interquartile range from either the first or third quartile. All data beyond these bounds are
deemed outliers and are represented by individual circles. Asterisk indicates significant difference between samples (P < 0.05).
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2020; Zhou et al., 2022). However, both N.J. blueberry and N.J.

cranberry contained a heavier load of Firmicutes than southern

highbush blueberry.

Only a small number of diseases of blueberry and cranberry are

known to be caused by bacteria, with some of the agents being;

Pseudomonas syringae , Xylella fastidiosa , Burkholderia

andropogonis , Agrobacterium spp., Rhizobium spp. and

Candidatus spp. (which cause phytoplasma diseases) (Polashock

et al., 2017). At the genus level, several of these pathogens were

identified at similar abundance in N.J. blueberry and N.J. cranberry

rhizospheres including Pseudomonas, Burkholderia, Rhizobium,

and Candidatus, although generally at low average abundances

(<0.5%) (Figures S3, S4).
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Rhizophere microbiome diversity is thought to be an important

indicator of soil health (Berendsen et al., 2012; Wallenstein, 2017;

Schloter et al., 2018), and comparison in diversity can help to

elucidate potential pathogenic influences, nutritional weaknesses, or

microbial niches that have developed in differing soil samples. To

help in visualizing these complex communities, we generated

representations of microbial diversity for the largest and most

diverse bacterial and fungal phyla (Figures 7, 8). The Proteobacteria

exhibited a high level of diversity, as indicated by the relatively high

number of large hubs, of various intermediate colors, and a high level

of connectivity between nodes. There do remain, however, a few

nodes that appear to be dominated in either the cranberry or

blueberry groups, suggesting that niches have developed for
FIGURE 6

The average percent abundance of the identified plant pathogenic fungal genera in the rhizosphere of cultivated highbush blueberry (blue) and
cranberry (red) in New Jersey (N.J.). Data for lowbush blueberry (green) from Nova Scotia (Yurgel et al., 2017) shown for comparison.
A B

FIGURE 7

Diversity graphs of unique OTUs found in the bacteria, Proteobacteria (A) and Firmicutes (B), from the rhizosphere soil of highbush blueberry and
cranberry from New Jersey. Head nodes are labeled by phylum, lower nodes follow taxonomic hierarchy identified in available OTUs to the family
level. Node area is proportional to the number of unique OTUs identified. Node color is a proportion of the number of unique highbush blueberry
(blue) OTUs as compared to unique cranberry (red) OTUs.
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particular taxa, or that the ecosystem does not support the other

associated organisms. Conversely in Firmicutes, there are few

noteworthy classes that are attached to the parent phylum. Though

the phylum Firmicutes may not be as large as that of Proteobacteria,

of the two largest classes represented here, Firmicutes appears to be

more dominated by the cranberry group. This potentially indicates

that there is a lack of diversity of Firmicutes in blueberry.

Sequencing methods and bioinformatics tools are evolving

rapidly and application of this technology allows us to gain insight

into the rhizosphere microbiome, a key component of the

phytobiome that impacts plant health. The OTUs generated from

these samples were used to identify primarily fungi and bacteria that

comprise the microbial communities that are associated with the

rhizosphere of blueberries and cranberries in New Jersey. While we

found similar communities between blueberry and cranberry in New

Jersey, we noted differences between our data and that of the lowbush

blueberry rhizosphere in Nova Scotia. Although lowbush blueberry

(Vaccinium angustifolium) is in the same genus, the environmental

conditions, management practices and soil characteristics are very

different between the two locations (N.J. and Nova Scotia, Canada).

Where similarity may still occur, is in characterizing the factors

associated with poor plant performance as many of the diseases that

are known to affect these crops overlap (Polashock et al., 2017). Using

these methods, allows the detection and subsequent targeting of

specific organisms using chemical control and/or modification of

cultural practices. At the same time, enhancement of beneficial

organisms, such as ericoid mycorrhizae, can also be monitored.

Many years ago, Waksman (Waksman, 1918) stated “The

cranberry soils are so distinctly different from ordinary soils that

it was thought for a long time that no very large number of bacteria

can exist in them and that the microbial population consists

predominantly of molds”. Though the uniqueness of the soils in

which cranberries (and blueberries) holds true, we have shown that

there are many phyla of bacteria and fungi that are adapted to these
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crops and the environments in which they grow. As we further

characterize this myriad of organisms, we ultimately hope to

characterize the microorganism(s) specifically associated with

crop decline.
Data availability statement

The data presented in the study are deposited in the NCBI

Sequence Read Archive under BioProject ID: PRJNA956268
Author contributions

The project was conceived and directed by JP and PO. PO

directed field collections and JP directed all laboratory work. JK and

LE performed various data analyses and created the figures. JP and

JK wrote the manuscript draft with contributions and editing by PO

and LE. All authors contributed to the article and approved the

submitted version.
Funding

This work was, in part, supported by funding from the New

Jersey Blueberry and Cranberry Research Council and USDA-

NRCS-CIG grant 69-2B29-15-246 to P. V. Oudemans.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
A B

FIGURE 8

Diversity graphs of unique OTUs found in fungi, Ascomycota (A) and Basidiomycota (B), from the rhizosphere soil of highbush blueberry and
cranberry from New Jersey. Head nodes are labeled by phylum, lower nodes follow taxonomic hierarchy identified in available OTUs to the family
level. Node area is proportional to the number of unique OTUs identified. Node color is a proportion of the number of unique highbush blueberry
(blue) OTUs as compared to unique cranberry (red) OTUs. Notable pathogen and symbiont families mentioned in the text are also labeled.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1173023
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kawash et al. 10.3389/fpls.2023.1173023
The reviewer MD declared a shared affiliation with the authors

JP, JK to the handling editor at the time of review.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1173023/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Diversity of fungal genera from the rhizosphere soil of highbush blueberry
from New Jersey. Genera with an average relative abundance greater than

0.5% across samples are labeled. The height of the bars of the outer ring

correspond to the average relative abundance. Each color represents a
different phylum, and phyla with an average abundance greater than 0.5%
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are labeled. Tree nodes follow taxonomic hierarchy from kingdom (central) to
genus (exterior).

SUPPLEMENTARY FIGURE 2

Diversity of fungal genera from the rhizosphere soil of cranberry from New

Jersey. Genera with an average relative abundance greater than 0.5%
across samples are labeled. The heights of the bars of the outer ring

correspond to the average relative abundance. Each color represents a
different phylum and phyla with an average abundance greater than 0.5%

are labeled. Tree nodes follow taxonomic hierarchy from kingdom (central) to

genus (exterior).

SUPPLEMENTARY FIGURE 3

Diversity of bacterial genera from the rhizosphere soil of highbush blueberry

from New Jersey. Genera with an average relative abundance greater than
0.5% across samples are labeled. The height of the bars of the outer ring

correspond to the average relative abundance. Each color represents a

different phylum and phyla with an average abundance greater than 0.5%
are labeled. Tree nodes follow taxonomic hierarchy from kingdom (central) to

genus (exterior).

SUPPLEMENTARY FIGURE 4

Diversity of bacterial genera from the rhizosphere soil of cranberry from New

Jersey. Genera with an average relative abundance greater than 0.5% across

samples are labeled. The heights of the bars of the outer ring correspond to
the average relative abundance. Each color represents a different phylum and

phyla with an average abundance greater than 0.5% are labeled. Tree nodes
follow taxonomic hierarchy from kingdom (central) to genus (exterior).

SUPPLEMENTARY TABLE 1

Locations, coordinates, and soil types for blueberry and cranberry

rhizosphere soil collections.
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