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Crop yield prediction which provides critical information for management

decision-making is of significant importance in precision agriculture.

Traditional manual inspection and calculation are often laborious and time-

consuming. For yield prediction using high-resolution images, existing methods,

e.g., convolutional neural network, are challenging to model long range multi-

level dependencies across image regions. This paper proposes a transformer-

based approach for yield prediction using early-stage images and seed

information. First, each original image is segmented into plant and soil

categories. Two vision transformer (ViT) modules are designed to extract

features from each category. Then a transformer module is established to deal

with the time-series features. Finally, the image features and seed features are

combined to estimate the yield. A case study has been conducted using a dataset

that was collected during the 2020 soybean-growing seasons in Canadian fields.

Compared with other baseline models, the proposed method can reduce the

prediction error by more than 40%. The impact of seed information on

predictions is studied both between models and within a single model. The

results show that the influence of seed information varies among different plots

but it is particularly important for the prediction of low yields.

KEYWORDS

transformer, image recognition, time-series prediction, soybean yield prediction,

deep learning
1 Introduction

The increasing world population imposes significant challenges for agriculture

production due to the increasing food demand combined with limited arable land.

Accurate yield prediction can help seed companies breed for better cultivars and guide

farmers to make informed management and financial decisions. However, crop yield

prediction is exceptionally challenging due to several complex factors, e.g. seed type, seed
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treatment, soil, temperature, etc. Thus, an analytical model that can

predict crop yield accurately is essential.

Machine learning methods have been designed for crop

monitoring and yield prediction. Various models have been

proposed for crop yield prediction. For example, Kaul et al.

developed an artificial neural network model that used field-

specific rainfall data and soil rating to predict soybean yield

prediction (Kaul et al., 2005). Khaki et al. proposed a deep neural

network approach for soybean yield prediction using genetic and

environmental information (Khaki and Wang, 2019). Compared to

yield prediction using meteorological driven variables (e.g.,

temperature, sunlight, and precipitation), using the sensing

images can capture more information about the plant growing

status. For example, Rembold et al. used low-resolution satellite

imagery for yield prediction (Rembold et al., 2013); Nevavuori et al.

presented a convolutional neural network (CNN) for crop yield

prediction based on NDVI and RGB data acquired from unmanned

aerial vehicles (UAVs) (Nevavuori et al., 2019); and Pantazi et al.

built a hybrid model to associate the high-resolution soil sensing

data with wheat yield (Pantazi et al., 2016). However, there can still

be information loss in the process of using those images for yield

prediction. This is because remote sensing images only provide a

snapshot of the conditions at a particular moment in time, and may

not capture all of the relevant factors that contribute to yield. In

addition, factors such as cloud cover, shadows, and atmospheric

conditions can all affect the quality and accuracy of remote-

sensing images.

Compared to hyperspectral images, handheld devices capturing

images of the canopy can provide higher resolution and more

information due to the increased number of pixels. While higher

resolution images can provide more detailed information, using

data from a single time point may not be sufficient to accurately

predict yield. Factors such as lighting conditions, soil status, and

plant growth stage can all have a significant impact on the quality

and accuracy of the image data. These undetermined factors and

noise can confuse models in the training stage, resulting in the

deterioration of generalization ability. The incorporation of time-

series prediction is necessary for yield prediction to improve

performance (Nevavuori et al., 2020; Qiao et al., 2021).

There are two challenges for yield prediction using time-series

images, i.e., image processing and 48 time-series prediction.

Existing studies usually use the convolutional neural network

with long short term memory model (CNN-LSTM) framework

for feature extraction of time-series images. For example, Sun et al.

combined the CNN and LSTM to predict soybean yield using in-

season and out-season image data collected from Google Earth (Sun

et al., 2019). Newton et al. used 16-day remote sensing images (30m

by 30m) to predict potato yield (Newton et al., 2018). Sharifi et al.

applied different machine learning approaches to the barley yield

prediction using the time-series NDVI and environmental

information (Sharifi, 2021). However, this framework has

some drawbacks.

For image classification/recognition, although the CNNs have

outstanding performance on many tasks (Ferentinos, 2018; Jin et al.,

2018; Ma et al., 2018), the CNNs have some redundancy issues in both

computation and representations since each pixel bears varying
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importance for the target task. Recently, the transformer module has

been considered as an alternative architecture and has achieved

competitive performance on many computer vision tasks (Xie et al.,

2021). Vision transformer (ViT) is a transformer-based method that is

designed for image classification (Dosovitskiy et al., 2020). In ViT, an

image is split into fixed-size patches. Each patch is then linearly

embedded, position embeddings are added, and the resulting

sequence of vectors is fed to a standard transformer encoder.

Compared to CNN, ViT has a better global understanding of

the images.

Regarding the time-series prediction, LSTMs have been

employed to model time series in different tasks (Sundermeyer

et al., 2012; Huang et al., 2015; Zhao et al., 2017). In a LSTM, the

hidden state is updated with every new input token to remember the

entire sequence it has seen. Theoretically, this structure can

propagate over infinitely long sequences. However, in practice,

due to the vanishing gradient problem, the LSTM will eventually

forget earlier tokens (Li et al., 2019). Another drawback of the

LSTM is that it can only be implemented sequentially due to its

structure. In comparison, transformers retain direct connections to

all previous timestamps, allowing information to propagate over

much longer sequences and be processed in parallel.

To solve the aforementioned challenges, a transformer-based

method is used to predict soybean yield using time-series images

and seed information. The contribution of our work includes the

following aspects:
• A method consisting of two ViT modules and one

transformer is proposed for the feature extraction of time-

series images. Instead of using the original images directly,

the proposed method process the plant part and soil part of

the image separately to reduce the computation complexity

and improve the interpretability of the model.

• Different baseline models were compared to validate the

effectiveness of the proposed approach. The experiments

show that the proposed method can significantly improve

yield prediction accuracy.

• The impact of seed information on predictions is studied

both between models and within a single model. The results

show that the seed information play important roles in

predicting low yields.
2 Materials and methods

2.1 Data collection

This study used a dataset collected from three soybean fields in

Ontario, Canada in 2020. There are 450 plots in total. The data

includes two types of input information. The first is the time-series

images. The second part is the seed information of each plot. For

each plot, there are three images, as shown in Figure 1, collected in

three dates, on June 14, 2020, on July 13, 2020 and on August 20,

2020. The seed information is shown in Table 1. Seed treatments are

the additional material added to the seed. There are six major
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groups of seed treatments, i.e., Non-treated control, base seed

treatment control, ILEVO alone, ILEVO+Base, Saltro+Base and

other. The seed information also include seed varieties (resistant or

susceptible to soybean sudden death syndrome) and seeding rates

(for example, 110K, 140K, and 170K seeds/acre). The three seed

factors will be investigated together. There are 51 combinations of

seed varieties, treatments and seeding rates in total. The numbers of

plots for each combination are similar. The objective of this paper is

to use the time-series images and seed information to predict

the yield.

The distribution of the yield of plots is shown in Figure 2. The

distribution is a little left-skewed. The kurtosis is 3.09 and the

skewness is -1.26. Most plots have a yield between 3500 kg/ha and

5000 kg/ha.
2.2 Image segmentation

In the data processing, each image is segmented into two parts,

i.e., plant segmentation and soil segmentation, as shown in Figure 3.

This is for two reasons. First, the information extracted from plant

itself with the soil can be decoupled. Each module only needs to

calculate the same type of information, i.e., either plant or soil part,

which will reduce the redundant computation. The interaction

between plant and environment is calculated afterward. Second, it

can help reduce the influence of the diagonal camera angles. The

segmentation can directly tell the model the distance between two
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adjacent rows of plants. Thus the model can distinguish the plants

at the near-end from the plants at the far end.
2.3 Workflow of soybean yield estimation

As shown in Figure 4, the workflow can be divided into three

steps: data collection, data processing, and prediction. In the data

collection, a sensing system is built to take the images of a field at a

certain frequency. The images along the soybean growth stage and

the checked yield are stored in the database. In data processing,

some statistical analysis and image segmentation are conducted to

prepare for the following analysis. Finally, various prediction

models are designed to predict soybean yield. The models will be

evaluated by some feasible metrics so that they can be further

optimized accordingly.

The prediction is the most challenging component. The

solution needs to answer three questions. How to efficiently

extract features from a single image? How to detect the hidden

pattern in the time-series images? How to combine different sources

of information, i.e., images and seed information? This serves as the

motivation of this paper.
3 Proposed model

To address the aforementioned challenges, a wide-deep method

based on the attention mechanism is proposed. In this section, we

will focus on the prediction part of the workflow, as shown in

Figure 4, especially the design logic and module about feature

extraction of the images and seed information.
3.1 A wide-deep framework

As introduced in Sec. 2, this study considers two types of inputs:

time-series images and seed information. Thus, different modules

should be applied due to the heterogeneity of the inputs. The time-
FIGURE 1

An example image of a plot.
TABLE 1 Seed information (seed treatment, seed variety and seeding rate).

Seed treatment Number of combinations (seed variety and
seeding rate)

Non-treated control 5

Base seed treatment
control

9

ILEVO alone 2

ILEVO + Base 9

Saltro + Base 10

Other 16

FIGURE 2

Distribution of the soybean yield.
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series images have a large number of pixels. The model should be

capable of extracting the most important interactions between

pixels effectively. Thus, a high-level feature representation of the

images is needed. In contrast, the seed information only contains

one categorical variable in this study. It is not necessary to apply a

complex or extremely deep neural network. Therefore, a wide-deep

framework is proposed as shown in Figure 5.

The left tower of the proposed framework is composed of two

ViT modules and one transformer module. Two ViT modules are

used to extract features from the plant and soil, separately. The

outputs from the two ViTs are combined using a dot product

operator. Then the transformer is leveraged to deal with the time-

series features. The right tower is just a fully connected neural

network. The 51 combinations of seed information is one-hot

encoded. Then the neural network is used to further extract

information from the one-hot encoding. Finally, the wide

component (i.e., seed features) and deep component (i.e., image

features) are combined using one common FCDNN for joint

training according to Eq. 1.
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j = F((fplant · fsoil) + fseed) (1)

Where fsoil is the feature obtained from the soil segmentation of

an image, fplant is the feature extracted from the plant segmentation,

fseed is the feature extract from the seed information, i.e., seed

variety, treatment and seeding rate, j represent the predicted yield

and F denote s a one- l aye r fu l l y connec ted neura l

network (FCDNN).

It should be noted that the image features and seed features are

combined and then jointly trained. This is different from ensemble

train. In an ensemble model, individual models or weak estimators

are trained separately without any interaction during the training

process. Then their outputs are combined only at the final step (i.e.,

prediction) by majority voting or averaging. In contrast, the wide-

deep framework will jointly train all parameters simultaneously by

taking both the image features and seed features as well as the

weights of their sum into account. The training of the deep-wide

model is done by backpropagating the gradients from the output to

both the wide and deep part of the model simultaneously using
A B

FIGURE 3

Image segmentation. (A) Segmentation of plant part. (B) This is the caption for Segmentation of soil part.
FIGURE 4

Flow diagram of the data collection, processing and prediction we employed in this study for yield prediction.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1173036
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bi et al. 10.3389/fpls.2023.1173036
stochastic gradient descent (SGD) or other optimizers such as

Adam and Adagrad. By leveraging this deep-wide framework, the

training time or inference time can be significantly reduced due to

fewer parameters in the wide part.

In the following sections, we will explain the details of the

attention mechanism, transformer and ViT
3.2 Attention mechanism

Attention is a technique proposed to help the model to focus on

the most important parts of its input, rather than treating all parts

equally (Vaswani et al., 2017).

As shown in Eq. 2, for each input in a given vector a1, a2, a3…,

three matrices, i.e. queryWq, keyWk and valueWv , are employed to

generate three representation vector i.e., Q, K and V , by

multiplication. Q represents the query to match other inputs. K is

the key to be matched by others. V represents the information to be

extracted. Then the attention score between two inputs can be

calculated by Eq.3 to obtain the attention coefficients.

Q = aWq,K = aWk,V = aWv (2)

Attention (Q,K ,V) = softmax (
QKTffiffiffiffiffi

dk
p )V (3)

Where dk is the dimension of the keys and queries which is used

to scale the dot product of Q and K Specifically, we repeat the

attention for htimes and concatenate the learned embeddings as the

final representation of the inputs:

MultiHead (Q,K ,V) = Concat (head1,…, headh)W
O (4)

Where headi = Attention (QWQ
i ,KW

K
i ,VW

V
i )The attention

mechanism is the backbone of transformer and ViT.
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3.3 Vision transformer for image
feature extraction

Self-Attention is capable of understanding the connection

between inputs. However, it is challenging to apply it between the

pixels of an image. For instance, if the size of the input image is

300x300, a self-attention layer has 90K combinations to calculate. In

fact, a lot of the calculation are redundant because only part of the

connections between two pixels are meaningful. To overcome this

problem, ViT is proposed by segmenting images into small patches

(like 16x16) (Dosovitskiy et al., 2020). A patch is the basic unit of an

image instead of a pixel to efficiently tease out patterns.

In ViT, an image x ∈ RH·W·C is reshaped into N patches xp ∈
RN·P2 ·C , where (H, W) is the resolution of the original image, C is

the number of channels, P2 is the resolution of each patch. In

addition to patches, ViT also use a learnable embedding Epos for

each patch to represent the relative position. Thus, the patch

embeddings can be represented as in Eq. 5.

z0 = ½x1pE; x2pE;⋯; xNp E� + Epos , E ∈ R(P2 ·C)�D,

Epos ∈ R(N+1)�D

(5)

Assuming that there are L layers in the ViT, then in each layer,

multi-head attention and MLP is applied to the input of each layer

as shown in Eq. 6 and Eq. 7. The calculation of multi-head attention

is explained in Eq. 4.

z
0
‘ = MultiHead (LN (z‘−1)) + z‘−1, ‘ = 1… L (6)

z‘ = MLP (LN (z
0
‘)) + z

0
‘, ‘ = 1… L (7)

Where LNis the Layernorm operator (Wang et al., 2019). LNis

applied before every block, and residual connections after

every block.
FIGURE 5

A wide-deep framework for yield prediction.
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The last step is to output the image features as calculated using 8

y = LN(z0L) (8)
3.4 Transformer for time-series prediction

For time-series prediction, recurrent neural network (RNN) or

LSTM are usually the first ones to consider. However, this type of

models is hard to parallel because the models process the input of each

timestamp in sequence order. Then, some studies adopted CNN to

realize parallelization of the feature extraction. Nevertheless, CNN can

only consider the input in a limited range. For long-term dependency

modeling, CNN needs to increase the number offilters and the number

of layers. Therefore, transformers based on the self-attention

mechanism are applied for time-series prediction. It computes the

relation between two timestamps in a bi-directional manner, which

means it can be implemented in parallel.

The basic structure of a transformer used for sequence-to-

sequence tasks includes encoder and decoder parts (Wu et al.,

2020). Nevertheless, in this study, the task is to transform a

sequence to some features. Thus, only the encoder part is used

for the transformer. The encoder of the transformer is composed of

an input layer, a positional encoding layer, and a stack of multi-

head attention layers. The input layer maps the input time-series

data to a vector through a fully-connected network. Positional

encoding with sine and cosine functions is used to encode

sequential information in the time series data by element-wise

addition of the input vector with a positional encoding vector,

which is the same as Eq. 5. Each multi-head layer is to calculate the

attention coefficients between the image features of every two

timestamps. Finally, there is an output layer that maps the output

of the last multi-head attention layer to image features.
4 Baseline models and
experiment settings

To validate the effectiveness of the proposed method, we

compared it with other baseline models.
4.1 Baseline models

The three most commonly used models are implemented as the

baseline models, i.e., convolutional neural network with linear

regression (CNN-LR), CNN-LSTM, and vision transformer with

transformer (ViT-T). The processing of seed information is the

same for all baseline models and the proposed method.

4.1.1 Convolutional neural network with
linear regression

CNN is a class of deep, feed-forward artificial neural networks. It

was adopted widely for its fast deployment and high performance on

image classification tasks. CNNs are usually composed of convolutional
Frontiers in Plant Science 06
layers, pooling layers, batch normalization layers and fully connected

layers. The convolutional layers extract features from the input images

whose dimensionality is then reduced by the pooling layers. Batch

normalization is a technique used to normalize the previous layer by

subtracting the batch mean and dividing by the batch standard

deviation, which can increase the stability and improve the

computation speed of the neural networks. The fully connected

layers are placed near the output of the model. They act as classifiers

to learn the non-linear combination of the high-level features and to

make numerical predictions. Detailed descriptions on each type of

function can be accessed from Gu et al. (2018).

In CNN-LR, firstly, a CNN is built to extract features from a

single image. Then the obtained features from time-series images

are concatenated with seed features and then used as the input of a

linear regression model. Since the linear regression model cannot

detect the dependency in a time series, CNN-LR is used to show the

influence of time-series features.

4.1.2 Convolutional neural network with long-
short the memory model

Despite its popularity as a universal function approximator and

easy implementation, RNN is faced with the gradient vanishing/

exploding problem. In the training process of RNNs, gradients are

calculated from the output layer to the first layer of the RNN. If the

gradients are smaller than 1, the gradients of the first several layers will

become small throughmany multiplications. On the contrary, they will

become very large if the gradients are larger than 1. Therefore, it

sometimes causes the gradients to be almost zero or very large when it

reaches the first layers of RNNs. Consequently, the weights of the first

layers will not get updated in the training process. Therefore, simple

RNNs may not be suitable for very long time series. LSTM solves this

issue by introducing the concept of gates. A common LSTM unit is

composed of a cell, an input gate, an output gate and a forget gate. At

each timestamp, the cell adjust its state value according to the current

input and memory of previous steps. And the three gates regulate the

flow of information into and out of the cell. Therefore, LSTM can

extract features from long time series. Detailed explanations and

calculations of each function can be accessed from Hochreiter et al

(Hochreiter and Schmidhuber, 1997).

In CNN-LSTM, the first step is to extract features from a single

image. Then the extracted features of images taken at different

timestamps are treated as a time series. LSTM is employed to deal

with the time-series features. The output obtained by LSTM is

combined with seed features to get the yield prediction through a

fully connected neural network.

4.1.3 Vision transformer with transformer
In ViT-LSTM, the image is processed using a ViT module to get

the image representation. Then the time-series image features are

used as the input of the LSTMmodule. The yield prediction is made

based on the output of the transformer and the seed features.

4.1.4 Vision transformer with transformer
Different from the proposed method, in ViT-T, the image is not

segmented into soil and plant parts. Thus only one ViT module is
frontiersin.org
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utilized to read images. Then the time-series image features are used

as the input of the transformer. The yield prediction is made based

on the output of the transformer and the seed features.
4.2 Experiment settings

The module for the seed combination information processing is

the same for all baseline models. The seed combination is one-hot

encoded and then connected to three dense layers of 16 neurons.

Thus, the output embedding size of seed information is 16. Then the

seed combination embedding is concatenated with the image

embedding and the concatenated vector is connected with three

dense layers of 128 neurons each, followed by a dense layer with one

neuron to produce the final prediction. To avoid the overfitting

issue caused by limited data, all models are using early stopping and

dropout techniques. This encourages the network to learn more

robust features by preventing individual nodes from becoming too

specialized on a particular set of features. The dropout rate used for

the dense layers is 0.25, except for the output layer which uses a

linear activation function. The early stopping is used with the

patience of 10 epochs. The time-series image processing part of

the models is as follows.

In the CNN-LR model, the convolutional neural network

(CNN) module uses the VGG-16 architecture, which consists of

13 convolutional layers and 3 fully connected layers (Simonyan and

Zisserman, 2014). The linear regression module is applied with L2

norm regularization to prevent overfitting. The model expects the

input to be a three-dimensional tensor of size (128, 128, 3)

representing the image size and number of channels. The output

of each time-series image from the VGG model is flattened and

concatenated together. The concatenated image embeddings are

connected with a dense layer (i.e., the LR module) of 256 neurons to

extract features from the images. In CNN-LSTM, the CNN module

is the same as that in CNN-LR. The output of time series images

from the VGG model is processed by a LSTM module which has

two bi-directional LSTM layers. Each LSTM layers contains 128

neurons. The output from the LSTM module is 128 neurons.

In the ViT-LSTMmodel, the Vision Transformer (ViT) module

consists of two multi-head attention layers, with each layer having 3

heads. The output of the time-series images from the VGG model is

then processed by same LSTM module as in CNN-LSTM. In the

ViT-T model, the Vision Transformer (ViT) module consists of two

multi-head attention layers, with each layer having 3 heads. The

output of the time-series images from the VGG model is then

processed by a transformer module, which also has 3 multi-head

attention layers, each with 5 heads. The output from the

transformer module is 128 neurons.

The proposed method uses two ViT modules, one to process the

plant part of the image and another to process the soil part of the

image separately. The ViT modules have the same architecture as

that in the ViT-T model, with two multi-head attention layers, each

with 3 heads, and a transformer module with 3 multi-head attention

layers, each with 5 heads. The output embeddings from the plant

and soil ViT modules have the same size of 128 neurons.
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All models are trained using the mean squared error (MSE) loss

function and the Adam optimizer with a learning rate of 0.001. 344

plots are used as the train set. 38 plots are used as the validation set.

68 plots are used as the test set.

Three metrics are used to assess the model performance, i.e.,

root mean squared error (RMSE), R squared value, and mean

absolute error percentage (MAPE). The calculations are as in Eq.

9, Eq. 10 and Eq. 11.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
S(y − ŷ )2

r
(9)

R2 = 1 −
RSS
TSS

(10)

MAPE =
1
n
S(

y − ŷ
y

����
����) (11)

Where n is the number of samples, y is the ground-truth yield, ŷ

is the predicted yield, RSS is the sum of squares of residuals, and TSS

represents the total sum of squares.
5 Results

5.1 Comparisons with baseline models

The performance of CNN-LSTM and the proposed method are

compared by plotting their predicted values and the ground truth

for the test set in Figure 6. The results show that, in general, the

predicted values of the proposed method are closer to the ground

truth than those of CNN-LSTM. Moreover, it is observed that the

models tend to be conservative in making predictions. For instance,

in two plots where the ground truth values are between 2200 kg/ha

and 3000 kg/ha, both models predict values above 3140 kg/ha. The

proposed method performs better than CNN-LSTM in these two
FIGURE 6

Predicted values and the ground truth for the test set.
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plots. Additionally, while the predicted values of CNN-LSTM was

between 3900 kg/ha and 4500 kg/ha for other plots, the predicted

values of the proposed method shows more diversity, indicating its

ability to perform better in extreme cases.

Table 2 presents the test RMSE, R-squared, and MAPE values

obtained in this study. If the mean value of each combination of

seed information is used as the estimate, the test RMSE, R-squared,

and MAPE values are 570.596, 0.010, and 12.412%, respectively.

The R-squared value of 0.010 indicates that using only the seed

information yields slightly better results than using the mean values

of all train plots. However, the introduction of CNN-LR improves

t h e RMSE , R - s q u a r e d , a n d MAPE b y 1 1 . 7 h a n c e

prediction accuracy.

ViT-LSTM uses ViT instead of CNN for image representation,

which improves the RMSE by 6.2%, R-squared by 0.08, and MAPE

by 0.3%, respectively. ViT-T is an upgraded version based on the

CNN-LSTM structure with a multi-head self-attention mechanism,

resulting in an 8.9% reduction in RMSE, a 0.1 increase in R-squared,

and a 0.4% decrease in MAPE, respectively. However, the

improvement of ViT-T compared to ViT-LSTM is not significant,

possibly because of the short time series used in this study.

The proposed method, which includes two ViT modules and

one transformer, significantly reduces the RMSE by 34.0%,

increases the R-squared by 0.27, and reduces the MAPE by 2.5%.

This indicates that the proposed model outperforms the other

models and effectively captures the temporal and spatial

dependencies in the data.

To validate the effectiveness of deep learning models in feature

representation of images, this study conducts experiments on three

linear regression-based models, namely Model 1, Model 2, and

Model 3, using different input configurations. As presented in

Table 3, Model 1 solely utilizes the one-hot encoded seed

combination as the input, while Model 2 takes the latest image

(i.e., the last image in the time series) and the one-hot encoded seed

combination as input. Model 3, on the other hand, utilizes the time-

series images and the one-hot encoded seed combination as input.

In each model, all inputs are concatenated into one-dimensional
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vectors. Both Model 2 and Model 3 are linear regression models

with the L2 norm regularization technique to prevent overfitting.

The evaluation results reveal that Model 1 exhibits the poorest

performance with a test RMSE of 665.729, a Test R-squared of

-0.348, and a test MAPE of 13.346%. This performance is attributed

to underfitting, which occurs when using only one input feature. By

incorporating image data, Model 2 outperforms Model 1 and the

Aver-seed method in Table 2, achieving a 3.0% improvement in

RMSE and a 2.3% improvement in MAPE. Moreover, Model 3

further enhances performance by including time-series images,

resulting in a 2.7% reduction in RMSE, a 0.05 improvement in R-

squared, and a 0.18% improvement in MAPE. Therefore, even a

simple generalized model can benefit from time-series prediction to

improve performance. However, the performance of the linear

regression-based models is significantly lower than that of the

deep learning models presented in Table 2. This discrepancy is

primarily due to two reasons. Firstly, the use of average RGB values

may lead to significant information loss. Secondly, linear regression

cannot extract the region-level features from the extensive pixel

information like CNN or ViT. Hence, the results prove the

importance of using large computer vision models for image

processing in agriculture, which is a crucial area for future

research on large datasets for various agricultural tasks such as

disease detection, yield prediction, and plant status monitoring.
5.2 Influence of seed information

The influence of seed information (i.e., seed variety, treatment

and seeding rate) on the model’s overall performance is also

investigated. As shown in Table 4, four methods, i.e., average of

all, average with seed information, proposed method without seed

information, and the proposed method, are tested. Compared to

using the mean values of all training samples as the estimate, using

the mean values of each group can reduce the test RMSE from

585.127 to 580.59. However, the test MAPE of average with seed

information is higher, which indicates that using the average with
TABLE 2 Comparisons between baseline models and the proposed method.

Processes Module Aver-seed CNN-LR CNN-LSTM ViT-LSTM ViT-T Proposed

Image Segmentation ✓

CNN ✓ ✓

ViT ✓ ✓ ✓

Time-series LR ✓

LSTM ✓ ✓

Transformer ✓ ✓

Seed FCNN ✓ ✓ ✓ ✓ ✓

Evaluation Test RMSE 570.569 510.959 481.191 451.615 445.619 332.072

Test R squared 0.010 0.205 0.295 0.379 0.395 0.664

Test MAPE (%) 12.412 9.648 9.176 8.864 8.811 6.340
f

Aver-seed: using the mean values of each combination of seed information as the estimate.
"✓" means that the module is selected for the corresponding process in a specific method.
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seed information only performs better in reducing the variance of

the error. The improvement in R squared is 0.01. Compared to the

proposed method without seed information, the proposed method

can improve the RMSE by 13.1% and R squared by 0.11,

respectively. It shows that using the neural network to process the

seed information is more effective than just using the group average

values. Besides, the model’s prediction accuracy relies more on the

image information rather than the seed information.

To determine the effect of various seed variety, treatment and

seeding rate on yield prediction quantitatively, an experiment is

conducted by taking images of each test plot with all 51

combinations (i.e., 50 pseudo and one true combination) as the

input. Thus, there are 51 predicted values for each test plot. The box

plot is shown in Figure 7. The median value of a box can be used as

an approximation for the prediction made using only images. The

results, shown in a box plot, have interquartile ranges (IQRs) from

120kg/ha to 500kg/ha. A shorter IQR indicates the model extracts

more information from the images, indicating its robustness to

variations in seed information. This is because images taken at

different stages of growth may contain additional information about

the seed variety, treatment and seeding rate used. In other words,

the image may contain some information that overlaps with the

seed information. Comparing the true prediction with the box plot,

47 of 68 (i.e., 69.1%) test plots have true predictions within the

boxes (i.e., between the 25 percentile and 75 percentile) while 21 of

68 (i.e., 30.9%) test plots fall outside the IQRs. It means the error is

within 120kg/ha to 500kg/ha when replacing the true seed
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information with 50% pseudo combinations as the input for the

test plots.

For Plot 14, 37, 41 and 67, the true predictions are outliers

(below 1.5*IQR from the lower percentile) compared to all

predictions, indicating the model extracts more information from

the seed information for these plots. The details of Plot 14, 37, 41

and 67 are shown in Table 5. Plots 14, 37, and 41 have the lowest

ground truth and predicted yield, but this does not necessarily

indicate that “Saltro” treatments result in lower yields. It may

simply mean that the model requires more information about the

seed treatment to improve its predictions for certain plots.

It is also worth noting that for all plots, the outlier values are

below the boxes, suggesting that seed information plays an

important role in helping the model predict low yields with

downward correction.
6 Discussion

Crop yield prediction help farmers estimate yield before a field

is harvested. Additionally, it can serve as an essential tool for the

decision-makers to make plans regarding food security. However,

many factors both genetic and environmental, before and during

the season, make it challenging to obtain an accurate prediction.

Yield prediction using images recently became a popular topic

due to two reasons. The first reason is that images can store all the
FIGURE 7

Box plot of predictions using images of each plot with 51
combinations of seed variety, treatment and seeding rate. The red
dots represent the true predictions which are predicted values using
the images with the true seed combination. The box plot is the
result of predicted values using the images with all 51 combinations,
including 50 pseudo and one true combination. The 68 test plots
are numbered from 0 to 67. (Note: The true prediction is not the
ground truth.).
TABLE 3 Comparison of three linear regression-based models.

Processes Module Model 1 Model 2 Model 3

Image LR ✓ ✓

Time series LR ✓

Seed LR ✓ ✓ ✓

Test RMSE 665.729 545.619 530.489

Evaluation Test R squared -0.348 0.094 0.144

Test MAPE (%) 13.346 10.993 10.816
The “Image” row indicates whether image information is used as input, where the RGB (Red,
Green, and Blue) values of each pixel are averaged, and the images are converted into one-
dimensional vectors. The “Time series” row indicates whether time-series images are used as
input. The “Seed” row indicates whether the one-hot encoded seed combination is used as input.
"✓" means that the module is selected for the corresponding process in a specific method.
TABLE 4 Influence of seed information.

Methods Test
RMSE

Test R
squared

Test MAPE
(%)

Average of all 585.127 0 11.385

Average with seed information 570.569 0.010 12.412

Proposed method without seed
information

382.820 0.554 7.895

Proposed method 332.072 0.664 6.340
Average of all: using the mean values of all training samples as the estimate. Average with seed
information: using the mean values of each group as the estimate.
TABLE 5 Analysis of predicted values for Plot 14, 37, 41 and 67.
(Unit: kg/ha).

Plot
No.

True seed infor-
mation

Ground
truth

True pre-
diction

Box
median
value

14 Saltro: Resistant 2216.443 2470.862 3796.238

37 Saltro: Susceptible 2914.385 3219.396 3406.339

41 Saltro: Resistant 3174.018 3223.063 4140.596

67 Non-treated control:
Resistant: 110K

3972.710 3864.384 4285.763
f
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phenotype information of the plant as well as some environmental

information (i.e., soil color, light condition, etc.). The second reason

is that the development of deep learning techniques in computer

vision has facilitated information extraction from plant-level or

field-level images. Different from the research using satellite

(Rembold et al., 2013; Schwalbert et al., 2020) or UAV (Zhou

et al., 2017; Hassan et al., 2019) images, this study used high-

resolution camera images of field level. This will help to improve the

prediction accuracy since more pixels represent more information

about the plant.

Instead of using individual static imagery, the proposed

framework leverages the time-series images for yield prediction.

The time-series images can monitor the plant status of plants at

different time points and eliminate the influence of noise on the

model performance. This has been supported by many researches

(Clevers, 1997; Aghighi et al., 2018; Varela et al., 2021). In our case

study, the single image method, i.e., CNN-LR, is compared with the

time-series image method, i.e., CNN-LSTM. The results show that

time-series images can help improve test RMSE by 6.2%, R squared

by 0.9%, and MAPE by 0.5%. Since each plot only has about three

images, the improvement could be more significant if additional

images were provided. Besides, the traditional CNN-LSTM

framework (Sun et al., 2019; Nassar et al., 2020) is upgraded to

the ViT-T framework by introducing the attention mechanism.

CNNs are efficient in image information extraction compared to

fully connected neural networks due to shared kernel weights.

However, CNNs only aggregate the global information in high-

level layers. ViTs incorporate more global information than CNNs

at lower layers, leading to quantitatively different image features. In

terms of time-series prediction, although LSTM can capture the

long-term dependencies of the time series, it get inputs in sequence

and cannot be implemented in parallel. Thus, ViT-T is better in the

global understanding of images, computation efficiency and parallel

implementation. In our case, the images were taken from one side of

the plot. The information density of the image in the far end and the

near end are different. Since ViT segments images into small

patches, it can assign different weights according to the region/

patch and achieve better granularity. The comparison results show

improvements of 8.9% in test RMSE, 0.1 in R squared and 0.3%

in MAPE.

Besides, the proposed method segmented the image into the

plant part and the soil part. By using two ViT modules, the plant

status and the environmental influence can be modeled separately.

Then the two parts are multiplied to obtain soybean yield.

Compared to the one-ViT version, i.e., ViT-T, the proposed

method significantly reduces RMSE by 34.0%, increases R square

by 0.27 and reduces MAPE by 2.5%.

Another contribution of our work is the examination of the

effect of seed variety, treatment and seeding rate on predictions,

both across different models and within a single model. The results

of the group average method indicate that the statistical importance

of seed information is limited, as the test R squared is only 0.01.

However, in the proposed method, seed information contributes

0.11 to R squared compared to using the same structure without
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seed information input. It means the neural network can extract

more information from the seed information and combine it with

the image features to make predictions. The examination of the

effect of seed information within the proposed method reveals that

the influence of seed treatments varies among different plots. Seed

treatment information is particularly important for the prediction

of low yields. Additionally, the wide-deep framework can be used to

incorporate more types of input information, such as genetic

information, in the future.
7 Conclusions

Yield prediction can provide more guidelines for farmers to

decide on the management plan. The development of deep learning

techniques has facilitated the application of sensing techniques in

precision agriculture through various types of imagery. In this

study, in order to catch more global interactions between image

patches and timestamps, a transformer-based method is proposed

to extract image information and time-series changes of soybean

status. Besides, the original images are segmented into the plant part

and soil parts. A wide-deep structure is adopted to incorporate

other information, i.e., seed information, into prediction. Compared

to other baseline models, the proposed model can reduce the RMSE

by up to 40%. The effect of seed information on predictions, both

across different models and within a single model, is also examined.

This study demonstrates the potential of a large-scale computer

vision model for predicting crop yield using high-resolution time-

series images captured by a hand-held device. However, certain

limitations must be acknowledged. Firstly, the impact of time-series

length on prediction accuracy remains unexplored due to the

limited size of the dataset. While it is reasonable to expect that

increasing the number of images during the growth stages for

training would improve the model’s performance, redundant

information may also impact the model’s generalization ability or

require increased computation resources. Therefore, exploring

these factors’ trade-offs is a meaningful avenue for future

research. Secondly, the model’s input only considers limited seed

information, but could potentially benefit from the incorporation of

additional information such as genetic or soil characteristics.

Finally, while the attention score for images and time series is

calculated separately in this study, exploring the attention score

between image patches at different timestamps may improve

model performance.

Despite these limitations, the proposed large-scale computer

vision model demonstrates the potential for extension to various

applications critical to precision agriculture, including but not

limited to, disease and pest detection, weed detection and control,

and crop quality assessment. These tasks require sophisticated

models capable of capturing fine-grained details in plant leaves

and other relevant features. Addressing the aforementioned

limitations and developing more efficient multi-modal methods

for yield prediction using images and environmental information

represent promising avenues for future research.
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