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Plants are a rich source of bioactive compounds and a number of plant-derived

antiplasmodial compounds have been developed into pharmaceutical drugs for the

prevention and treatment of malaria, a major public health challenge. However,

identifying plants with antiplasmodial potential can be time-consuming and costly.

One approach for selecting plants to investigate is based on ethnobotanical

knowledge which, though having provided some major successes, is restricted to

a relatively small group of plant species. Machine learning, incorporating

ethnobotanical and plant trait data, provides a promising approach to improve the

identification of antiplasmodial plants and accelerate the search for new plant-

derived antiplasmodial compounds. In this paper we present a novel dataset on

antiplasmodial activity for three flowering plant families – Apocynaceae,

Loganiaceae and Rubiaceae (together comprising c. 21,100 species) – and

demonstrate the ability of machine learning algorithms to predict the

antiplasmodial potential of plant species. We evaluate the predictive capability of a

variety of algorithms – Support Vector Machines, Logistic Regression, Gradient

Boosted Trees and Bayesian Neural Networks – and compare these to two

ethnobotanical selection approaches – based on usage as an antimalarial and

general usage as a medicine. We evaluate the approaches using the given data

and when the given samples are reweighted to correct for sampling biases. In both

evaluation settings each of the machine learning models have a higher precision

than the ethnobotanical approaches. In the bias-corrected scenario, the Support

Vector classifier performs best– attaining amean precision of 0.67 compared to the

best performing ethnobotanical approach with a mean precision of 0.46. We also

use the bias correction method and the Support Vector classifier to estimate the
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potential of plants to provide novel antiplasmodial compounds. We estimate that

7677 species in Apocynaceae, Loganiaceae and Rubiaceae warrant further

investigation and that at least 1300 active antiplasmodial species are highly

unlikely to be investigated by conventional approaches. While traditional and

Indigenous knowledge remains vital to our understanding of people-plant

relationships and an invaluable source of information, these results indicate a vast

and relatively untapped source in the search for new plant-derived

antiplasmodial compounds.
KEYWORDS

malaria, traditional and indigenous knowledge, machine learning, botany, ethnobotany,
sampling bias, antiplasmodial activity, ethnopharmacology
1 Introduction

Malaria is a life-threatening disease that affected 247 million people

globally in 2021, with a disproportionately high number of cases (95%)

occurring in Africa (WHO, 2022b). Although global case incidence,

deaths and mortality rates for malaria have fallen over the past two

decades, this downward trend has plateaued since 2015 and there were

an estimated 619,000 malaria deaths in 2021 (WHO, 2022b). The two

main treatments for the most prominent malaria-causing species,

Plasmodium falciparum and P. vivax, are chloroquine and

artemisinin-based combination therapies (involving artemisinin or

derivatives). In 2008, due to chloroquine resistance, the World

Health Organisation (WHO) recommended that P. falciparum

infections should be treated with artemisinin-based combination

therapies instead of chloroquine (WHO, 2008), but chloroquine

resistance still persists (Ocan et al., 2019). Resistance to existing

antimalarial drugs is an escalating challenge for eliminating malaria,

indeed, there is concerning evidence of strains partially resistant to

artemisinin emerging in Africa (Uwimana et al., 2020). As a result, the

WHO recommends that research into antimalarial medicines should

be accelerated as part of an effort to reach global malaria targets

(WHO, 2022b).

Plants have provided or inspired the development of numerous

pharmaceutical drugs (Howes et al., 2020; Newman and Cragg, 2020),

including those on the WHO’s Model List of Essential Medicines

(WHO et al., 2021). In the context of malaria, both chloroquine and

artemisinin are derived from plants – chloroquine being a synthetic

analogue of quinine, fromCinchona L. species (Rubiaceae: Gentianales)

(Meshnick and Dobson, 2001) while artemisinin is extracted from

sweet wormwood, Artemisia annua L. (Asteraceae: Asterales)

(Qinghaosu Antimalaria Coordinating Research group, 1979).

Furthermore, the antimalarial drug atovaquone was inspired by the

chemical lapachol, which occurs in Tabebuia Gomes ex DC. species

(Bignoniaceae: Lamiales) (Milliken et al., 2021). These are excellent

examples of the natural solutions offered by plants and motivate the

search for further plant-derived antimalarial drugs, particularly in the

context of emerging resistance to existing antimalarials.
02
The predominant plant selection approach in the search for new

antiplasmodial compounds has been an ethnobotanical one, that is,

plants are investigated pharmacologically based on a history of

traditional usage for malaria or other fever-causing diseases. This

approach has provided some major successes, for example, the

development of both quinine and artemisinin arose from traditional

ethnobotanical knowledge (Qinghaosu Antimalaria Coordinating

Research group, 1979; Meshnick and Dobson, 2001). However, this

approach is restricted to a relatively small group of plant species and is

limited in terms of reliability. It is therefore timely to assess whether

emerging technologies, such as machine learning, could be used to

more reliably harness the potential of plants as sources of new lead

compounds for drug development.

Here we investigate the potential of three flowering plant families

from the order Gentianales –Apocynaceae, Loganiaceae and Rubiaceae

– selected based on numerous taxa being sources of chemically diverse

alkaloids, a compound class of particular pharmaceutical relevance

(Daley and Cordell, 2021). Some examples of antiplasmodial alkaloids

from these families are given in Figure 1. Antiplasmodial activity in

these families has been relatively well studied, in part due to the

presence of the potent antiplasmodial alkaloids, quinine and the isomer

quinidine, from the Cinchona genus. The phytochemistry of these

families has also been relatively well studied, including numerous

reports on the presence of alkaloids, for example, (Muhammad et al.,

2003; Suksamrarn et al., 2003; Federici et al., 2009; Wong et al., 2011;

Daley and Cordell, 2021). Furthermore, from an ethnobotanical

perspective, these families contain many species which are used

traditionally to treat malaria (Milliken et al., 2021).

Our first aim is to assess whether machine learning models can be

trained on plant trait data to predict the antiplasmodial activity of

plants. To achieve this, we present a dataset for the three study plant

families, quantifying the known antiplasmodial activity of species as

well as a broad range of potentially salient predictors of activity, which

we will use to train and test machine learning models. We compare the

performance of the machine learning models with two ethnobotanical

approaches. Our second aim is to highlight the potential of plants to

provide novel antiplasmodial compounds.We address this by using the
frontiersin.org
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collected data to estimate the number of active antiplasmodial species

in the three families and we also explore methods for correcting

existing data biases, in order to infer a clearer picture of

antiplasmodial activity in Apocynaceae, Loganiaceae and Rubiaceae.
1 https://www.wikipedia.org/ accessed on 14 Apr. 2022
2 Materials and methods

2.1 Data collection

Here we use the term ‘trait’ in a broad sense that encompasses a

variety of plant properties and characteristics. We collected a wide

range of traits including morphological , biochemical ,

environmental and geographic features, along with abstract

features relating to medicinal usage and common knowledge of

plant species. In the following, we provide detail of each of the

collected traits. A summary of the collected data and detail of the

data collection methods is given in the Supplementary Material.

2.1.1 Taxonomy
We extracted accepted names of all species of the three families

according to the World Checklist of Vascular Plants (WCVP) V7
Frontiers in Plant Science 03
(Govaerts et al., 2021), totalling 21,111 species – 6,495, 496 and

14,120 from Apocynaceae, Loganiaceae and Rubiaceae respectively.

We use Genus and Family names as categorical traits.

2.1.2 Ethnobotanical data
Due to the documented link between traditional medicinal

usage and bioactivity, evidenced in, for example, (Krettli, 2009),

we collected binary traits documenting the presence and absence of

known antimalarial usage (Antimalarial Use) and general medicinal

usage (Medicinal). To compile these data we conducted a

comprehensive literature review of medicinal usage in the three

plant families, along with data provided by the Medicinal Plant

Names Services (MPNS, 2022) and references to medicinal usage on

the Plants of the World Online (POWO, 2022).

As an extension of the ethnobotanical data, we included binary

traits to capture whether a plant is commonly known – which we

approximated by recording the presence of a Wikipedia1 page (Wiki

Page) and the existence of a common name (Common Name). The

existence of Wikipedia pages for species is determined by searching
FIGURE 1

Examples of active antiplasmodial compounds in Apocynaceae, Loganiaceae and Rubiaceae. (A) Aspidocarpine from species in the genus Aspidosperma
Mart. & Zucc. (Apocynaceae). (B) Strychnogucine B found in species of the highly diversified genus, Strychnos L. (Loganiaceae). (C) Quinine, the well-known
antimalarial, found in the genus Cinchona L. (Rubiaceae). Photos by Cássia Bitencourt (A), Lucas Marinho (B) and Alexandre Antonelli (C).
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all species, subspecies and varieties (and their synonyms). Common

name data are compiled from a variety of sources, outlined in the

Supplementary Material, with the majority of the data coming from

MPNS and the United States Department of Agriculture Plants

Database (USDA, 2022b).
2.1.3 Phytochemistry
There is much evidence of the pharmacological and

pharmaceutical importance of plant-derived alkaloids (Cordell

et al., 2001; Dey et al., 2020; Howes et al., 2020; Daley and

Cordell, 2021) and we have therefore collected binary traits on

their presence/absence. These data were collected through a

comprehensive literature review as well as metabolite data

compiled from KNApSAcK (Afendi et al., 2012).

Though the coverage of the alkaloid data is relatively good (980

species with reported presence or absence), for the vast majority

(97%) of these species, reports indicate a presence of alkaloids

compared to 3% where alkaloids are absent. This may be the result

of reporting bias, where publications are focused on species found

to contain alkaloids and absences of alkaloids are not published. To

assess the prevalence of the reporting bias, we contacted 11 authors

of papers after the year 2000 that solely reported presences to ask if

they had found any absences which they did not publish. We

received responses from three authors detailing three species where

alkaloids had been tested for and not found. Rather than being an

issue of reporting bias, it may be the case that the vast majority of

species in these families produce alkaloids. There is some evidence

for this from studies testing large numbers of species for alkaloids

where both presences and absences are reported e.g. (Soto-Sobenis

et al., 2001). In either case, current data on the presence of alkaloids

are relatively uninformative and so is not included in the following

analysis. Instead, we use the collected data on alkaloids to catalogue

which species have been tested for alkaloids. We use these data to

create a binary trait (Tested for Alkaloids) which we use to analyse

the relationship between phytochemical knowledge and knowledge

of antiplasmodial activity.

An important plant trait indicating potent bioactivity is the

degree to which a plant is toxic. As we aim to capture bioactivity in a

broad sense, we compiled data on toxicity to any vertebrate and

invertebrate animals. We have included this as a binary trait

(Poisonous). Poison data were compiled from numerous sources

detailing plants considered to be poisonous, outlined in the

Supplementary Material, with the majority of the data coming

from the LitTox resource (Royal Botanic Gardens, Kew, 2021).
2 https://www.gbif.org/what-is-gbif
2.1.4 Morphology
As a major putative role of certain phytochemicals is to protect

plants from herbivores (Maldonado et al., 2017), it is plausible that

other defence mechanisms have a relation to bioactivity.

Furthermore, certain biologically active compounds (e.g. some

diterpene alkaloids) are biosynthesised in part icular

morphological structures (e.g. plant trichomes/hairs) of certain

plants (Tomlinson et al., 2022). Here we assess the presence of

emergences (hairs or spines) which we include as a binary trait

(Emergence). Emergence data have been collated by Gentianales
Frontiers in Plant Science 04
specialists, supplemented by the TRY plant trait database (Kattge

et al., 2020) and POWO.

Another morphological trait we consider is plant life-form,

which may correspond to occurrences of specific phytochemicals

(de Almeida et al., 2005). To facilitate collection and coverage of

morphological data, and as life-forms and presence of emergences

are often well conserved within genera in these families, we include

these traits by using the predominant state at the genus level. As

multiple life-forms may appear within a single genus, the life-form

data are one-hot encoded giving a set of binary traits (herb, liana,

succulent, shrub, subshrub, tree). Life form data were initially

retrieved from the WCVP and Flora do Brasil (Jardim Botânico

do Rio de Janeiro, 2022), then reviewed and modified by

Gentianales specialists.

2.1.5 Geographic regions with malaria
To examine the relationship between prevalence of malaria in a

given geographic area and the number of tested species, we collected

data indicating which species are found in regions where malaria

transmission occurs. We identified those regions from various

sources, including the World Health Organization Database

(WHO, 2022a) and the World Bank Development Indicators

(The World Bank, 2022) (see Supplementary Material for full

details). Regions indicated in these sources were then mapped

onto the World Geographical Scheme for Recording Plant

Distributions (Level 3) (Brummitt et al., 2001). We then used the

WCVP distribution data to identify which species occur in these

malarial regions (either native or introduced), assigned to each

species as a binary trait In Malarial Region.

2.1.6 Environmental
There is some evidence of environmental impacts on bioactive

metabolite concentrations and diversity, for example, (Defossez

et al., 2021). To characterise the environmental niche of species,

we followed the methodology of Zu et al. (2021). We first extracted

geographic occurrence records from the Global Biodiversity

Information Facility (GBIF)2 for each species using the rgbif

package (Chamberlain et al., 2022) in R. Occurrence data from

GBIF contain many inconsistencies (Meyer et al., 2016). Initially we

cleaned the data by removing: records collected before 1945, records

with no given coordinates or impossible coordinates, records with

coordinate uncertainty over 20km, records with rounded

coordinates and records where the quantity of species occurrences

(individual counts) is zero. Next, using the CoordinateCleaner

package in R (Zizka et al., 2019) we removed: records with zero

longitude or latitude, records with equal longitude and latitude,

records outside reported country, records within country or

province centroids, records in country capitals, records with

institutional coordinates and records with GBIF Head Quarters

coordinates. Finally, we discarded occurrences where species were

reported to be outside of their native or introduced botanical

regions according to the WCVP.
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We quantified species’ environmental conditions using a set of

17 soil, climate, and topographic variables essential to plant

survival, growth and reproduction. We extracted five soil traits

(nitrogen content, pH, organic carbon stock (ocs), water capacity)

from the SoilGrids database (Hengl et al., 2017; Poggio et al., 2021),

which were averaged over a 30cm depth, as well as soil depth to

bedrock. The eight bioclimatic traits we used were (bio1, bio4, bio10,

bio11, bio12, bio15, bio16, bio17); representing temperature (mean

annual, seasonality, daily mean of the warmest quarter, daily mean

of the coldest quarter), precipitation (annual amount, seasonality,

mean monthly amount of the wettest quarter, mean monthly

amount of the driest quarter). These were extracted from the

CHELSA database V2.1 (Karger et al., 2017; Karger et al., 2021).

We also extracted the Köppen-Geiger climate classification (kg

mode) from GloH2O (Beck et al., 2018). Elevation and breakline

elevation were extracted from GMTED2010 (Danielson and Gesch,

2011) and slope was calculated from the elevation data using the

terra package in R (Hijmans, 2022).

To match the resolution of the occurrence records, all

environmental rasters were upscaled to 10 arc-minutes (c. 20 km)

using the aggregate function of the terra package and environmental

traits were extracted for each species occurrence using the extract

function. For the continuous traits, median values were then

calculated across all occurrences of each species and for the

categorical variable kg mode the mode of all occurrences of each

species was used. To capture coarse spatial information we also

included median latitude and longitude for each species, calculated

from the occurrence records.

2.1.7 Classifying activity
To generate a comprehensive dataset of antiplasmodial activity,

we conducted a thorough literature review for details of

antiplasmodial tests in Apocynaceae, Loganiaceae and Rubiaceae

and assigned activity labels to species based on the available reports

of in vitro and in vivo studies. As with many biological datasets

(Bender and Cortes-Ciriano, 2021), providing class labels is a

nontrivial problem as there are many variations on the

experiments and methods used for reporting activity. A detailed

summary of the designated classification scheme we chose is given

in the Supplementary Material. In general, for in vitro studies

testing activity against Plasmodium parasites, the potency of IC50

values for crude extracts follows the definitions given in

(Rasoanaivo et al., 2004a) i.e. < 10mg/ml is active and ≥ 10mg/ml

is inactive. For tests of isolated compounds, according to the

Medicines for Malaria Venture3 compounds with IC50 values < 1

µM are designated as active and of interest for further investigation,

thus we use this threshold in our data. For fractions, we use a

threshold of 5 mg/ml, which in general corresponds with published

author decisions of activity categories. For in vivo studies, we use the

published author decisions regarding activity.
3 https://www.mmv.org/20th-call-proposals accessed on 30 Aug. 2022.
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2.1.8 (Pseudo)absences
For some traits and datasets, presences are commonly reported

but absences are not. For example, there are various datasets listing

poisonous plants but published data on ‘safe’ plants are sparse. In

many cases, this is likely a result of reporting bias, however there are

multiple possible reasons for this. For certain traits there are

presence biases e.g. in the case of poisons, once a plant has been

found to be poisonous it can be reported as such; however if a plant

is assessed for its toxicity, there are various caveats which limit the

ability to confidently say the plant is safe. Examples of such caveats

include the effect of extraction or preparation method on toxicity,

the specific plant part tested, and which organisms the plant is toxic

to. These variables exist in addition to methodological differences in

assessing toxicity and also that in vitro studies may not correlate

with effects in vivo (Houghton et al., 2007).

Where missing data give a strong indication of a genuine

absence, i.e. for Common Name, Poisonous, Medicinal, Wiki Page,

Antimalarial Use, Emergence, we take these pseudoabsences to be

absences and fill missing values with 0. Missing values for other

traits are left as NA and, where necessary, will be imputed.
2.2 Analysing and correcting sampling bias

An obstacle to our analysis is the significant sampling bias in the

data. In part this has been created by the ethnobotanical approach to

drug discovery. In this approach, researchers carry out (or rely on)

ethnobotanical surveys that document traditional medicinal uses of

plants. Plants used traditionally for malaria are then investigated to

determine whether there is any scientific basis (e.g. antiplasmodial

activity) that could explain the traditional use. As a result, plants

traditionally used for malaria are significantly over-represented in

the data on antiplasmodial activity of plant species.

In this section we outline the methods used to evidence the

existence of the sampling biases as well as a method we use for

correcting sampling bias, which may allow for a better picture of

antiplasmodial activity and may be applied when training and

evaluating machine learning models. Throughout this paper we

use labelled to indicate species which have been classified as Active

or Inactive following the scheme described in Section 2.1.7. We use

unlabelled to indicate species with unknown antiplasmodial activity.

The underlying population refers to all species in Apocynaceae,

Loganiaceae and Rubiaceae.

Firstly, we compare the labelled data with the underlying

population by highlighting common choices made by researchers

when selecting plants to test for antiplasmodial activity. We then

statistically verify the differences using the Chi-squared test

(Pearson, 1900) for the discrete traits and the Kolmogorov–

Smirnov 2-Sample test (Smirnov, 1939) for the continuous traits.

In order to account for the repetition of multiple tests and the

associated family-wise error rate, we adjust the significance

thresholds using the Holm-Bonferroni method (Holm, 1979).

Before describing the bias correction method we have

implemented, we first outline our assumptions about the nature

of the bias. Let s be a binary variable denoting the sampling decision
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i.e. 1 indicates a sample is in the labelled data and 0 indicates a

sample is unlabelled. Given a species with traits x and activity label

y, we assume that the sampling decision, P(sjx, y), is independent of
y given x, P(sjx, y) = P(sjx) i.e. plants are tested without a priori

knowledge of their activity, y, but based on traits, x, that might

increase the probability of active compounds compared to random

sampling. This is commonly known as the missing at random

(MAR) assumption (Zadrozny, 2004).

As described by Cortes et al. (2008), we can correct for sampling

bias by reweighting the sampled (labelled) data using the inverse of

the sampling probability for each sample, 1=P(sjx)4, a technique

often referred to as Inverse Probability Weighting. Under this

procedure, the reweighted data will resemble the underlying

population if P(sjx) is accurately estimated. As an example in the

context of the current study, species which are traditionally used for

malaria have a relatively high probability of being tested and as a

result are over-represented in the available sample i.e. P(sjx) is large
for these species and so the assigned weight is small.

To predict P(sjx), we use a regularised Logistic Regression

model, implemented in the scikit-learn Python library (Pedregosa

et al., 2011) which we refer to as the Correction Model. We use such

a model to limit overfitting and as Logistic Regression models are

generally well calibrated. Given a sample (labelled) dataset and

underlying population, instances in the sample dataset are labelled

s = 1 and instances not in the sample are labelled s = 0. The

Correction Model is trained to predict s from the given traits such

that, assuming good calibration, the probability estimates given by

the model correspond to P(sjx).
Prior to training the model, the categorical traits Genus, Family

and kg mode are target encoded in the preprocessing step using the

category_encoders library (Micci-Barreca, 2001). The traits are then

scaled by removing the mean and scaling to unit variance. Finally,

we use the scikit-learn (Pedregosa et al., 2011) k-Nearest Neighbor

imputer to impute any missing values. Missing values of a trait from

a given sample are imputed by assigning the mean trait value of the

five samples nearest to the given sample, where nearness between

two samples is measured with the Euclidean distance using the traits

that neither sample is missing.

To verify the accuracy of this bias correction approach, we

calculated the mean Brier score (Brier, 1950) of the predicted

probabilities in 10 iterations of 10-fold stratified cross validation.

The Brier Score measures the difference between the predicted

probability given by the model and the actual label (s = 0 or 1). We

also visualise the accuracy of the bias correction approach by

comparing the means of the traits in the labelled data, underlying

population and the bias-corrected labelled data.
2.3 Machine learning models

To explore the success of different plant selection approaches

and motivate a machine learning based approach to the problem,

we train Support Vector (SVC), Logistic Regression (Logit)
4 The constant P (s = 1) is omitted.
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(Pedregosa et al., 2011), XGBoost (XGB) (Chen and Guestrin,

2016) and Bayesian Neural Network (BNN) (Silvestro and

Andermann, 2020) classifiers and compare these with two

ethnobotanical approaches: selection based on traditional

antimalarial use and selection based on traditional medicinal use

not specific for malaria.

As the cost of false positives is relatively high – resources will be

misallocated in trying to find antiplasmodial compounds in inactive

species – we aim to maximise precision of the models i.e. the

proportion of species which are predicted to be active that are

correctly predicted. Of course, recall (the proportion of active

species predicted to be active) is still important as a large list of

antiplasmodial species provides more opportunities for finding new

antiplasmodial compounds. However, even with very low recall the

models will still generate very large lists of antiplasmodial species

from the 21,111 species in Apocynaceae, Loganiaceae and

Rubiaceae. As a result, we aim to maximise the F-score with b =

0.5 (F0.5), i.e. the harmonic mean of precision and recall with more

importance given to precision. We evaluate the models with this

score along with precision, and also provide precision-recall curves.

We evaluate the models using 10 iterations of 10-fold stratified

cross validation in two settings. Firstly, we analyse model

performance in the usual case, where the models are trained and

tested on folds of the given data. We also attempt to estimate model

performance on the underlying population by assigning sample

weights to the labelled data, using the method discussed in Section

2.2, such that the given labelled data is more representative of the

underlying population. In this case, sample weights are used in both

training and testing.
2.3.1 Preprocessing
In the preprocessing step, the categorical traits Genus, Family

and kg mode are target encoded. The traits are then scaled by

removing the mean and scaling to unit variance. We then use the

scikit-learn (Pedregosa et al., 2011) k-Nearest Neighbor imputer,

trained using the training data and the unlabelled data, to impute

any missing values. Finally, we use Principal Component Analysis

(PCA), implemented in scikit-learn, to reduce the dimensionality of

the highly colinear continuous environmental traits. The PCA is

trained using the training data and unlabelled data and the number

of components used in the PCA is selected such that at least 80% of

the variance is explained by the components. The traits In Malarial

Region and Tested for Alkaloids were collected for the analysis of

sampling bias rather than as predictive traits and so are not included

in the machine learning models.
2.3.2 Training
The Logit, SVC and XGB classifiers are trained as follows. Given a

set of training folds and a test fold, hyperparameters of the models are

tuned via cross validation on the training data using GridSearchCV

(Pedregosa et al., 2011). In this step, F0.5 is used as the evaluationmetric

and we tune a basic list of hyperparameters in order tominimise under/

overfitting and to maximise F0.5. For the Logit and SVC classifiers, we

tune the regularisation parameter C, as well as the class_weight

parameter. For the XGB classifier, we tune the max_depth
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parameter. Once the best hyperparameters for the models have been

generated the models are retrained on all the given training data (with/

without sample weights depending on the evaluation setting).

For the BNN classifier, we use two layers of 10 and 5 nodes,

respectively, and tanh activation function. We train the model through

100,000 Markov chain Monte Carlo iterations, as implemented in

npBNN (Silvestro and Andermann, 2020), with/without sample

weights depending on the evaluation setting. We use 1,000 posterior

samples of the parameters when generating predictions.
2.4 Assessing activity in the study families

In order to motivate further exploration of these three plant

families as potential sources of new pharmaceuticals, we use the

collected data to estimate the antiplasmodial activity of the families

in two ways. Firstly, we summarise the proportion of active species

in each family using the collected labelled data. As this is likely to be

unrepresentative due to the sampling biases, we also provide a

summary of the labelled data when the bias is corrected using the

method discussed in Section 2.2.

We also use the estimation of P(sjx), discussed in Section 2.2, to

analyse the existing sampling decision and highlight the wealth of

potentially active species that are currently overlooked. First, we

compare P(sjx) for the known active and inactive species in the

labelled data. We then analyse species that are highly unlikely to be

tested according to the existing sampling decision and we take these

to be species for which P(sjx) is below the median value in the

unlabelled data. We check the known activity of these species and

use the machine learning model with the highest precision to

provide a conservative estimate of how many of these species are

active in the underlying population. The estimate of the number of

active species given by the model is corrected using an estimate of

the model precision. The model precision estimate is generated

from the mean precision given in the cross-validation evaluation

and we calculate a 95% bootstrap confidence interval from the

precision scores given in each fold of the cross-validation.

3 Results

3.1 Data summary

3.1.1 Labelled data
Following the scheme for classifying activity described in

Section 2.1.7, we designated 132 species as active and 150 species

as inactive, providing 282 labelled species from the 21,111 species in

Apocynaceae, Loganiaceae and Rubiaceae. In these labelled data, all

species are given trait values for each of the traits except for those

trait values which rely on GBIF occurrence records where data are

missing for five species.
3.1.2 Trait relations
Figure 2 provides a brief overview of the collected data,

summarising relationships between some of the traits from all the

collected data. The heatmap gives a visualisation of the co-occurrences
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of the binary traits, and the given values correspond to the mean

values of traits in the y axis when traits in the x axis are present, while

‘All Species’ provides a comparison with mean values of traits in the

underlying population. For example, 1% of all species are used

traditionally for malaria while 18% of poisonous species are used

traditionally for malaria. Similarly 10% of all species are used as

traditional medicines while 77% of poisonous species are used as

medicines. With regards to activity, the first column provides mean

trait values for active species which indicate stark differences with the

underlying population (e.g. 52% of active species are poisonous

compared to 3% in the underlying population). However, these

differences are more a reflection of the sampling biases rather than

any strong relationships between the traits and antiplasmodial activity.

3.2 Sampling bias

3.2.1 Comparing the labelled data with the
underlying population

The most common feature motivating the selection of plants to

test for antiplasmodial activity is traditional knowledge of use for

malaria, for example (Andrade-Neto et al., 2003; Bourdy et al., 2004;

Bertania et al., 2005; Ramalhete et al., 2008; Ezike et al., 2016; Taek

et al., 2021). We found that 48% of labelled species are traditionally

used for malaria while only 1% of species in the underlying

population are traditionally used for malaria. Similarly, plants are

frequently tested based on more general traditional medicinal usage

(not specific to malaria), e.g. (Kaushik et al., 2013; Mothana et al.,

2014; Singh et al., 2015; Satish et al., 2017). 77% of labelled species

are traditionally used as medicines while 10% of species in the

underlying population are traditionally used as medicines.

As previous successes in finding plants with antiplasmodial

activity have linked their alkaloid content to the antiplasmodial

activity, tests of antiplasmodial activity are often conducted on

plants known/expected to contain alkaloids. For example (Wright

et al., 1992; Solis et al., 1995; Likhitwitayawuid et al., 1999; Weniger

et al., 2001; Mitaine-Offer et al., 2002; Federici et al., 2009).

Moreover, in many reports where plants are tested for

antiplasmodial activity, those studies also include tests for (and

find) alkaloids e.g. (Likhitwitayawuid et al., 1999; Muhammad et al.,

2003; Suksamrarn et al., 2003; Wong et al., 2011). As a result, 69% of

labelled species and 82% of active species have been tested for

presence of alkaloids, while only 5% of species in the underlying

population have been tested for presence of alkaloids.

Another potential factor influencing sampling is the geographic

location of species, i.e. plants occurring in regions with malaria are

commonly selected to test for antiplasmodial activity, for example

(Rasoanaivo et al., 2004b; Bertania et al., 2005; Al-Musayeib et al.,

2012; Kantamreddi and Wright, 2012; Taek et al., 2021). As a result,

99% of labelled species are found in malarial regions compared to

89% in the underlying population. In fact, there is only one tested

species which is not found in a malarial region (Gardenia urvillei

Montrouz. (Rubiaceae) which is native to New Caledonia) and three

Ochrosia Juss. (Apocynaceae) species (native to Fiji, Tonga and New

Caledonia) whose activity is known through the presence of

antiplasmodial compounds (not themselves explicitly tested)

which are not found in malarial regions.
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It is also common to test plants taxonomically related to known

antiplasmodial plants (Weenen et al., 1990; Frédérich et al., 2002;

Philippe et al., 2005; dos Santos Torres et al., 2013; Brandão et al.,

2020). For example, some genera known to contain active species

are frequently tested e.g. Aspidosperma (Apocynaceae: Gentianales)

(18 labelled species) and Strychnos (Loganiaceae: Gentianales) (36

labelled species).

For almost all the quantitative traits, the difference between the

labelled data and underlying population (as measured by Chi-squared

test for the discrete traits and the Kolmogorov–Smirnov 2-Sample test

for the continuous traits) is significant (corrected p values < 0.05) with

the exception of life-forms (lianas and succulents). The most diverging

traits are Antimalarial Use and Tested for Alkaloids (corrected p values

= 0, Chi-squared statistic 3137 and 2218 respectively). We can

therefore conclude that the labelled data significantly differ from the

underlying population. Overall, it is apparent that the approaches used

to select plants for antiplasmodial tests have biased the available data on

antiplasmodial activity.
3.2.2 Bias correction
When testing the Correction Model in 10 iterations of 10-fold

stratified cross validation, the mean Brier score was 0.0097 (SD =

0.001), indicating an accurate fit to the data and so, a reliable

prediction of the selection probability. A visual comparison of the

bias-corrected data and the underlying population is given in

Figures 3, 4. For readability, the mean values of the continuous

traits are rescaled between 0 and 1 using the MinMaxScaler from

scikit-learn (Pedregosa et al., 2011). We can see that for the majority

of the traits, the mean values of the corrected data closely resemble

the underlying population compared to the values in the labelled data.
3.3 Comparing plant selection approaches

Given the quantification of antiplasmodial activity, we may now

analyse the effectiveness of different approaches for plant selection –
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random selection, selection based on traditional antimalarial use

(Ethno (M)) and selection based on general traditional medicinal

use not specific for malaria (Ethno (G)). Table 1 provides a

summary of the precisions of these methods on the biased and

corrected datasets. When plants are selected based on a history of

use for malaria or general medicinal usage, they are more likely to

be active than selecting plants at random (both in the biased and

corrected cases). This result provides some validation for the

ethnopharmacological approach and agrees with the findings of

(Krettli et al., 2001). However, in Apocynaceae, Loganiaceae and

Rubiaceae, only 281 species have a history of antimalarial usage and

2109 have a history of general medicinal usage which limits the

search for new compounds to a relatively small group of plants.

Considering the sampling decision more generally, in the

uncorrected case, the value for the ‘Random’ approach reflects the

mean activity of all tested species and provides some quantification of

the overall precision of the existing plant selection approach i.e.

species selected for testing by researchers have a probability of being

active of 0.47, while the estimate of the mean activity of the
FIGURE 2

Co-occurrence heatmap summarising collected binary traits.
FIGURE 3

Mean values of binary traits in biased and corrected datasets.
FIGURE 4

Scaled mean values of continuous traits in biased and corrected
datasets.
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underlying population is 0.36. Similarly, the mean value of P(sjx, y)
for active species in the labelled dataset is 0.53, while for inactive

species this value is 0.31.
3.3.1 Machine learning evaluation
3.3.1.1 Without bias correction

In Figure 5, we see the performance of the machine learning

models compared to the two ethnobotanical approaches. Overall

the mean scores of the machine learning models improve on both

approaches and indicate that antiplasmodial activity can be

predicted relatively accurately from the collected traits (mean

precisions – BNN: 0.66, XGB: 0.66, Logit: 0.62, SVC: 0.65, Ethno

(M): 0.57, Ethno (G): 0.50). The Precision-Recall curves in Figure 6,

generated using all test instances in the cross validation, show how

varying the classifier thresholds can improve precision at the cost of

recall, for example, by increasing the threshold of the models we can

achieve a precision of over 0.8 with a recall of approximately 0.2.
3.3.1.2 Corrected performance

Figures 7, 8 show the estimated performance of the models on

the underlying population. Again, though there is higher variance in

model performance due to the weights used on the train and test

samples, the machine learning models improve on the

ethnobotanical approaches. Moreover, above we estimated that

the precision of the existing plant selection approach of the field

as a whole was 0.47, and our models again compare well with this

(mean precisions – BNN: 0.59, XGB: 0.63, Logit: 0.66, SVC: 0.67).
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3.4 Antiplasmodial potential of
Apocynaceae, Loganiaceae and Rubiaceae

In Table 2, we provide a summary of the proportion of active

species in each family. The given labelled data suggest a high level of

activity in the families (47%), though when we estimate the activity

of the underlying population by correcting for the sampling biases,

the proportion is lower (36%). Nevertheless, this estimate indicates

that there are approximately 7677 species in these families that may

warrant further investigation.

3.4.1 Surprises
For those species that we deem highly unlikely to be tested,

(P(sjx) < 0:0014) only 2 such species are in the labelled data where

one is known to be active, while 9997 are in the unlabelled data.

When the SVC model is trained on all the available data and used to

predict the activity of these species in the unlabelled data, 2358 are

estimated to be active. This gives a 95% confidence interval of 1300

– 1522 active species when the model precision is accounted for.

Note that this is a conservative approximation as we are only

considering species that the model predicts to be active and

correcting for the estimated false positives. However, as visible in

the Precision-Recall curves, recall of the models is not perfect and it

is highly likely that there are also a significant number of species

that the model predicts to be inactive species which are in

fact active.
4 Discussion

In this study we have shown that machine learning models

based on plant traits can be effective at selecting active

antiplasmodial plants. Moreover, as the machine learning models

output a classification confidence for each sample, researchers

searching for active species may select samples which are labelled

as active with most confidence by the models. The Precision-Recall
TABLE 1 Precision of selection strategies.

Uncorrected Corrected

Random 0.47 0.36

Ethno (G) 0.50 0.42

Ethno (M) 0.56 0.42
FIGURE 5

Model performance in stratified cross validation without bias correction.
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curves in Section 3.3.1 indicate that such an approach could yield a

large number of active species with a precision of at least 0.8.

We have also extensively considered sampling biases in the data,

an issue that exists in botany (Meyer et al., 2016; Visscher et al.,

2022) and biological sciences more generally (Bender and Cortes-

Ciriano, 2021). We have used a bias correction method to provide a

more accurate representation of the properties of the underlying

data and a more robust evaluation of plant selection methods. We

hope that by tackling sampling bias in our particular context we

raise awareness of this issue in botany more widely and highlight

potential solutions to this problem.

Our results suggest that there are a large number of species

(approximately 7677) in Apocynaceae, Loganiaceae and Rubiaceae

with antiplasmodial potential while only 281 species have a history

of antimalarial usage. Furthermore, of those species we deem highly

unlikely to be investigated, we estimate at least 1300 untested species to
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be active. These results indicate a vast and relatively untapped source to

accelerate the search for new plant-derived antiplasmodial compounds.

We have so far explored the potential of machine learning in

predicting antiplasmodial activity. However, activity is not the only

metric to evaluate useful medicinal plants. For example, useful active

compounds found in plants will ideally also be more selective for

Plasmodium parasites and less toxic to human cells. Plants used

traditionally as oral preparations, which have a long history of use,

may give some indication of their safety and/or possible selectivity,

which is a potential benefit of selecting traditionally used plants.

Moreover, our machine learning approach does not yet provide any

indication of which plant parts contain the active compounds, and

which extraction methods optimise their concentrations; in contrast to

traditional preparations that specify plant parts and methods for their

preparation. Nevertheless, finding active antiplasmodial plants is still a

critical step in the search for new antiplasmodial plant-derived

compounds with potential lead structures/pharmacophores to

facilitate future drug discovery for malaria. The urgent need to find

new antimalarial drugs exists against a backdrop of escalating resistance

to existing antimalarial drugs (Uwimana et al., 2020), and in the

context that the WHO’s Global Technical Strategy for Malaria (2016 –

2030) aims to ensure universal access to malaria prevention, diagnosis

and treatment, an aim that is supported through harnessing innovation

and expanding research (WHO, 2017).

In summary, we show that trait data-based machine learning

models can outperform existing ethnobotanical plant selection

approaches to find species with antiplasmodial activity, and

provide a novel approach underpinning future work to predict

the bioactivity of plant species. Plants are a known source of lead

compounds for pharmaceutical drug development (Howes et al.,

2020; Newman and Cragg, 2020) and more strategic and efficient

approaches are needed to facilitate future drug discovery,

particularly considering that there are an estimated 343,000

known vascular plant species (Govaerts et al., 2021) that remain

largely unexplored scientifically. This study highlights the potential
FIGURE 6

Precision-Recall Curves in stratified cross validation without bias
correction.
FIGURE 7

Model performance in stratified cross validation with bias correction of training and testing samples.
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of integrating ethnobotanical knowledge with technological

advances. While such integration creates promising opportunities,

we stress the need that any material and non-material benefits are

shared fairly and equitably with knowledge holders and stewards of

plant diversity around the world (Antonelli, 2023). By exploring

sustainable uses of biodiversity, societies are more likely to reach the

ambitious goals and targets set under the recently established

Kunming-Montreal Global Biodiversity Framework.
4.1 Related work and novelty

In this paper we have presented and evaluated a novel approach

based on plant traits to predict the antiplasmodial activity of plants.

Though there is some related work, e.g. predicting antiplasmodial

activity of compounds (Egieyeh et al., 2018; Danishuddin et al.,

2019; Bosc et al., 2021), predicting potential antiplasmodial plants

using traditional antimalarial usage as a proxy (Pellicer et al., 2018;

Milliken et al., 2021), predicting other related measures of

bioactivity (Rønsted et al., 2012; Maldonado et al., 2017;

Holzmeyer et al., 2020); we believe ours is the first to predict

antiplasmodial activity of plants directly based on a combination of

plant trait data.

In order to predict the antiplasmodial activity of plants, we have

generated a comprehensive resource of plant traits and documented

antiplasmodial activity for plants in the Apocynaceae, Loganiaceae
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and Rubiaceae families. With regards to antiplasmodial activity, the

closest available datasets we were able to find detailing

antiplasmodial plants were the metabolite and biological activity

data from KNApSAcK (Afendi et al., 2012) and Dr. Duke’s

Phytochemical and Ethnobotanical Databases (DPED) (USDA,

2022a). In an attempt to utilise the KNApSAcK data, we

extracted information on known antiplasmodial metabolites from

KNApSAcK and using the KNApSAcK database, were able to

match these to plants which contain these compounds. Similarly,

we downloaded the list of antiplasmodial plants in DPED and

filtered the results to the study families. We found these data to be

limited. Firstly, in both cases, the data are limited to antiplasmodial

activity of specific compounds rather than antiplasmodial fractions

or extracts from plants. Secondly, the coverage of the data is poor

(from KNApSAcK: one active species in Apocynaceae, one in

Loganiaceae and four in Rubiaceae; from DPED: 19 active species

in Apocynaceae, one in Loganiaceae and ten in Rubiaceae). Also,

though KNApSAcK and DPED provide references to the original

research, it is not clear exactly what criteria are used to determine

when a compound is an active antiplasmodial and in DPED many

of the cases of ‘active’ species were due to presence of compounds

with weak activity (e.g. lupeol, rutin, quercetin and betulinic acid).

Finally, from these kind of data, it is difficult to ascertain with

confidence which plants are inactive.
4.2 Future work

We have shown that the collected trait data can be used to predict

antiplasmodial activity with machine learning approaches and basic

preprocessing steps. However, though we have used a bias correction

method to improve evaluation of the plant selection approaches, we

recognise that the models must be tested on the underlying population

in order to obtain a true measure of model performance. We hope to

address this in future work by using the machine learning models to

predict active species in the underlying population and assessing the

activity of these predicted species in new antiplasmodial assays.

Regarding training of the models, as we have seen, the

antiplasmodial activity is known for only 282 species, resulting in a

relatively small dataset for training machine learning models. We

believe that small improvements in the existing data could further

improve performance of the machine learning approaches, and, where

possible, we therefore encourage further testing of species that are

currently underrepresented in the existing data.
FIGURE 8

Precision-Recall Curves in stratified cross validation with bias
correction of training and testing samples.
TABLE 2 Estimated proportions of active species.

Uncorrected Corrected

Apocynaceae 0.57 0.51

Loganiaceae 0.30 0.12

Rubiaceae 0.41 0.34

All 0.47 0.36
f
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