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Cotton is widely grown in many countries around the world due to the huge

economic value of the total natural fiber. Verticillium wilt, caused by the soil-

borne pathogen Verticillium dahliae, is the most devastating disease that led to

extensive yield losses and fiber quality reduction in cotton crops. Developing

resistant cotton varieties through genetic engineering is an effective,

economical, and durable strategy to control Verticillium wilt. However, there

are few resistance gene resources in the currently planted cotton varieties, which

has brought great challenges and difficulties for breeding through genetic

engineering. Further revealing the molecular mechanism between V. dahliae

and cotton interaction is crucial to discovering genes related to disease

resistance. In this review, we elaborated on the pathogenic mechanism of V.

dahliae and the resistance mechanism of cotton to Verticillium wilt. V. dahliae

has evolved complex mechanisms to achieve pathogenicity in cotton, mainly

including five aspects: (1) germination and growth of microsclerotia; (2) infection

and successful colonization; (3) adaptation to the nutrient-deficient environment

and competition of nutrients; (4) suppression and manipulation of cotton

immune responses; (5) rapid reproduction and secretion of toxins. Cotton has

evolved multiple physiological and biochemical responses to cope with V.

dahliae infection, including modification of tissue structures, accumulation of

antifungal substances, homeostasis of reactive oxygen species (ROS), induction

of Ca2+ signaling, the mitogen-activated protein kinase (MAPK) cascades,

hormone signaling, and PAMPs/effectors-triggered immune response (PTI/ETI).

This review will provide an important reference for the breeding of new cotton

germplasm resistant to Verticillium wilt through genetic engineering.

KEYWORDS
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1 Introduction

Cotton is an extremely important economic crop in the world,

as it contributes about 35% of total nature fiber for the textile

industry and also serves as one of the sources of edible oil and

livestock feed (Man et al., 2022). Cotton is cultivated in more than

80 countries, of which approximately 30 regard cotton as a

commercially leading crop (Abdelraheem et al., 2019). Data from

the U.S. Department of Agriculture show that the total global cotton

production is 25.343 million tons in 2022–2023 (Meyer and Dew,

2023). China was the largest raw cotton producer, followed by

India, USA, Brazil, and Pakistan producing 6.1, 5.99, 3.06, 2.83, and

0.98 million tons, respectively (Figure 1A). The cotton genera

(Gossypium spp.) include 45 diploid species (2n = 2x = 26) and

seven tetraploid species (2n = 4x = 52). The appearance morphology

and fiber characteristics of different cotton genera are quite

different, including variable leaf shapes, different fiber

characteristics, and diverse plant architectures ranging from wild

perennial small trees and shrubs to cultivated annual herbaceous

plants (Huang et al., 2021a). Two diploid species Gossypium

herbaceum (Levant or Arabian cotton) and Gossypium arboreum

(Desi cotton) and two allotetraploid species Gossypium barbadense

(Sea Island cotton) and Gossypium hirsutum (Upland cotton) are

cultivated globally (Egan and Stiller, 2022). Among them, G.

hirsutum is the most widespread and encompasses 95% of global

cotton production and is also the main target of cotton breeding

(Baran et al., 2022; Yang et al., 2022).

Being exposed to various environmental cues, a significant

decrease in yield and fiber quality is caused by various negative

factors such as drought, salinity, temperature stress, pests,

nematodes, bacteria, viruses, and fungi (Shaban et al., 2018;

Kamburova et al., 2022). Especially, Verticillium wilt, the cancer

of cotton crops, is the most devastating disease because of its
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widespread distribution and strong pathogenicity under favorable

conditions. In 2021, the cotton losses in China caused by

Verticillium wilt accounted for 32.49% of the total losses caused

by different diseases (Figure 1B). The average loss recovery rates for

five years of Verticillium wilt were much lower than that of other

cotton diseases (except cotton boll disease) and pests (Kun and

Shuo, 2020). In recent years, Verticillium wilt has become

increasingly serious due to climatic variation, long-term

monoculture, and frequent introduction of new cotton varieties/

hybrids in various countries and regions in the world (Ranga

et al., 2020).

In the future, in response to the exploding population of the

world and global climate deterioration, the demand for food, fresh

water, fiber, and bioenergy of humans will increase significantly

(Maryum et al., 2022). Developing resistant cotton varieties through

genetic engineering is an effective, economical, and durable strategy

to control Verticillium wilt, which is critical to maintaining world

agricultural production. The detailed elucidation of the molecular

mechanism of V. dahliae-cotton interaction will help in discovering

genes related to disease resistance. Over the past five years, many

reviews have summarized the molecular mechanisms of V. dahliae-

cotton interaction. Zhang et al. have elaborated on the molecular

mechanism of microsclerotia development and systemic infection

of V. dahliae (Zhang et al., 2022e). The molecular mechanism of

cotton resistance to Verticillium wilt has also been revealed (Song

et al., 2020; Man et al., 2022). However, the detailed mechanism by

whichV. dahliae successfully colonizes the host plant and causes the

symptoms of Verticillium wilt in cotton still needs to be further

elucidated. At the same time, the molecular mechanism of cotton

resistance to Verticillium wilt also needs a comprehensive and

detailed elaboration. Therefore, we comprehensively summarized

the pathogenic mechanism of V. dahliae and the resistance

mechanism of cotton to Verticillium wilt in this review. In
A B

FIGURE 1

(A) Cotton production in major cotton-producing countries in 2022–2023. (B) Percentage of yield loss due to the major cotton diseases in China in
2021 (The data were obtained from the Agricultural Technology Extension Service Center of the Ministry of Agriculture and Rural Affairs of China).
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particular, we provide additional detail on how V. dahliae adapts to

nutrient-deficient environments of host plants, manipulates host

immunity, and causes Verticillium wilt symptoms. In addition, we

elaborated the molecular mechanism of cotton resistance to

Verticillium wilt through several aspects to facilitate readers to

systematically understand the molecular mechanism of cotton

disease resistance.
2 Verticillium wilt

Verticillium wilt is among the most devastating plant diseases

infecting a broad range of herbaceous annuals and woody

perennials, such as cotton, potato, tomato, okra, eggplant, lettuce,

spinach, alfalfa, watermelon, strawberry, oilseed rape, sunflower,

olive, maple, and smoke-tree (Fradin and Thomma, 2006; Dhar

et al., 2020; Wu et al., 2022). V. dahliae is the leading cause of

Verticillium wilt and its resting body microsclerotia can survive for

up to 14 years in the absence of a host or under adverse conditions

(Short et al., 2015). Upon sensing the signal from the root exudates

of the host plants, the microsclerotia germinate into hyphae and

infect through the root tips, lateral roots, or wounds of the host

plants (Fradin and Thomma, 2006). After reaching the xylem, the

hyphae spread systemically along the vascular system. During

the infection of the host plants, V. dahliae sequentially undergoes

the biotrophic and necrotrophic stages (Lo Presti et al., 2015). In the

biotrophic stage, V. dahliae draws its nutrients from the host plants

for the production of conidia and systemic infection. A large

number of hyphae and conidia colonize the xylem resulting in

foliar wilting and chlorosis and even death of the host plants (de

Sain and Rep, 2015; Zhang et al., 2022b). With the death of the host

plants, V. dahliae enters the necrotrophic phase and eventually

forms microsclerotia to ensure long-term survival (Figure 2).

Many environmental factors can affect the incidence of cotton

Verticillium wilt, such as the number of microsclerotia in the soil

and the diseased plant residues, photoperiod, light intensity,

temperature, humidity, irrigation methods, and cultivation
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techniques (Karademir et al., 2012; Shaban et al., 2018; Wang

et al., 2023). The symptoms of cotton infected by V. dahliae are

yellowing and necrotic leaves, browning of vessels, and wilting.

Under the favorable temperature and humidity, the V. dahliae in

infected cotton will produce white spores to promote the spread of

Verticillium wilt, resulting in the rapid death of the cotton (Fradin

and Thomma, 2006). V. dahliae can also penetrate the bolls and

seeds, and the infected seeds are conducive to the further spread of

V. dahliae. The micronaire and span length of the fiber was

seriously reduced in infected cotton (Zhang et al., 2012).
3 Pathogenic mechanism of V. dahliae

The pathogenic molecular mechanism of V. dahliae is relatively

sophisticated and controlled by multiple signaling pathways. The

main mechanism that causes symptoms of Verticillium wilt is

vascular occlusion and the production of toxins. As V. dahliae

penetrates the xylem vessels, the massive mycelium and plant

defense-driven structures and biomacromolecules produced by

parenchyma cells block the vessels, interfering with the

transportation of water and nutrients in plants (Zhang et al.,

2022b). The water imbalance occurs in the host plants and causes

wilting and yellowing of leaves and even death (Song et al., 2020). In

the toxin hypothesis, the toxins produced by V. dahliae have been

shown to act on the cell walls, plasma membrane, microfilaments,

microtubules, and other intracellular components, leading to

cytotoxicity, rapid destruction of cell walls, and disordered host

defense responses (Chen et al., 2016a; Zhao et al., 2020; Zhang et al.,

2022b). The growth and development and successful colonization of

V. dahliae are the prerequisites for the occurrence of Verticillium

wilt. In brief, both the germination and growth of microsclerotia,

attachment and infection to the host roots, degrading the host cell

walls, adapting to the nutrient-deficient environment and

competing for nutrients, manipulating and evading host

immunity, and the secretion of toxins affect the development of

Verticillium wilt.
3.1 Development and germination
of microsclerotia

The key steps of V. dahliae infection include germination of

microsclerotia, hyphae penetrating the root epidermis, invading

hyphae extending in the intercellular space of the root cortex,

colonization of hyphae in vessels, production of the conidia to

promote the vertical systemic reproduction, and the free passage of

the hyphae through the intertracheary pits to cross adjacent xylem

vessels to achieve horizontal colonization (Zhao et al., 2014; Tian

and Kong, 2022; Zhang et al., 2022b). As the long-term resting

structures, germination of microsclerotia is an important step in the

occurrence of Verticillium wilt, which is affected by the air,

temperature, humidity, soil organic matter content, and pH

(Yang et al., 2004; Shaban et al., 2018). The G protein receptors,

Ca2+, small GTPases, and cAMP were involved in the germination

and development of microsclerotia (Luo et al., 2019). VdPbs2
FIGURE 2

Infection cycle of V. dahliae in generic host plants.
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(mitogen-activated protein kinase kinase), VdSkn7 (two-

component stress response regulator), VdOCH1 (a-1,6-
mannosyltransferase), and VdAda1 (Ada1 subunit) positively

regulated the formation of microsclerotia, and the deletion of

those genes reduced the pathogenicity of V. dahliae (Tian et al.,

2016; Tang et al., 2017; Zhang et al., 2019b; Geng et al., 2022).

However, some studies suggested that the production of

microsclerotia is negatively correlated with the pathogenicity of

V. dahliae. The deletion mutant strains of V. dahliae with

DVdPKAC1 (cAMP-dependent protein kinase A), DVGB (G

protein b subunit), DVdMsn2 (C2H2 transcription factor), or

DVdPLP (patatin-like phospholipase) have increased production

of microsclerotia but reduced the pathogenicity to host plants

(Tzima et al., 2012; Tian et al., 2017; Qi et al., 2018).
3.2 Colonization in the roots of host plants

Before penetration of the roots of host plants, the secretome of

V. dahliae exerts toxicity to suppress the growth of antagonistic

bacteria in the rhizosphere environment to ensure V. dahliae

survival and eventual colonization (Snelders et al., 2020; Snelders

et al., 2021). To colonize the host plants, V. dahliae needs to

successfully adhere to and penetrate the root of the host plants.

The hyphae of V. dahliae surrounding the roots tightly adhere to the

root epidermis and then form the hyphopodium at the infection

site, which develops into penetration pegs piercing the root

epidermis and cortical cells to further infection (Zhang et al.,

2022b; Zhang et al., 2022e).

A variety of genes are involved in the infection process of V.

dahliae in host plants. The deletion strains with VdBre1 (encoding a

ubiquitin ligase) showed dramatically reduced penetration ability

and nonpathogenic symptoms in cotton (Wang et al., 2021c). The

nuclear transcription factor Som1 was crucial for adhesion and

penetration to the roots, while the nuclear transcription factor Vta3

was required in the colonization of root surfaces (Bui et al., 2019).

As a positive regulator of hyphopodium formation, VdSte11, a

homolog gene of mitogen-activated protein kinase kinase kinase,

was critical for penetrating host plants (Yu et al., 2019). The

cellophane surface-induced gene VdCSIN1 regulated the

formation of hyphopodium via the cAMP-mediated signal

pathway to promote the colonization of the host plants (Sun

et al., 2019). The sterol C-8 isomerase VdERG2 played a crucial

role in the growth and penetration of mycelium on cellophane and

knockout of the VdERG2 gene impaired the pathogenicity of V.

dahliae (Lv et al., 2022a). While the osmosensor VdSho1 regulated

the ability to penetrate the plant through the MAPK pathway (Li

et al., 2019b). The velvet protein Vel1 was required for the

formation and distribution of conidia in the xylem and for

controlling the form of hyphae during the first phases of plant

colonization (Höfer et al., 2021).

Penetration pegs are an important tool for V. dahliae to

penetrate the host roots. The plasma membrane-co-located

proteins VdNoxB (catalytic subunit of membrane-bound NADPH

oxidase) and VdPls1 (tetraspanin) mediated ROS production,

which activated VdCrz1 (calcineurin-responsive zinc finger
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hyphopodia to regulate the formation of penetration pegs (Zhao

et al., 2016). The penetration pegs further develop into the hyphal

neck, which separates the hyphopodium from the invasive hyphae

and forms a fungal-host interface to facilitate the delivery and

secretion of small secreted proteins (Jin et al., 2021). The

cytoskeleton protein VdSep5 was critical to the septin-ring-

organized hyphal neck, while the vesicular trafficking factors

VdSec22 and VdSyn8 and the exocyst subunit VdExo70 positively

regulated the delivery of the secreted proteins to the hyphal neck.

The virulence of VdDsep5, VdDsec22, VdDsyn8, and VdDexo70
mutants was significantly reduced to cotton roots (Zhou

et al., 2017).
3.3 Degradation of the plant cell walls

The plant cell walls, consisting predominantly of cellulose,

hemicelluloses (especially xylan), pectin, lignin, and minor

structural proteins, are a dynamic structure that plays an

important role in preventing the invasion of pathogens (Mielke

and Gasperini, 2019; Ishida and Noutoshi, 2022). The cell walls

degrading enzymes produced by the pathogens are essential for the

colonization of the host plants. Analysis of the genome sequence of

V. dahliae suggested that there are a large number of cell wall

degrading enzymes, including pectinase, xylanase, cellulase, and

protease (Chen et al., 2016a). The sucrose nonfermented protein

kinase gene VdSNF1 and the specific secreted protein gene VdSSP1

positively regulated the activities of cell walls degrading enzymes

and were essential for the virulence of V. dahliae on host plants

(Tzima et al., 2011; Liu et al., 2013). Besides, pathogenesis-related

genes VdPR1 and VdPR3 affected the pathogenicity of V. dahliae by

regulating cellulase activity (Zhang et al., 2015; Zhang et al., 2016b).

The polygalacturonase VdPG1 and the xylanase VdXyn4 digested

pectin and xylan respectively in the cell walls to enhance the

pathogenicity of V. dahliae to cotton (Liu et al., 2017a; Wang

et al., 2021a). Further, the transcription factor VdFTF1 and N-

ethylmaleimide-sensitive factor attachment protein receptors

VdSec22 and VdSso1 regulated the vesicle trafficking and

translocation of pectinases, cellulases, and xylanases (Wang et al.,

2018a; Zhang et al., 2018).
3.4 Adapting to the nutrient-deficient
environment and competing
for the nutrients

After penetration to the roots, the invasive hyphae of V. dahliae

enter the xylem vessels from the intercellular space of the root

cortex and rapidly reproduce and invade the vascular bundles. In

responding to plant defense responses, V. dahliaemust adapt to the

nutrient-deficient intracellular environment and compete with the

host for its nutrients. The glutamate-rich protein VdGARP1 sensed

the infertile conditions to promote the transformation of V. dahliae

from a saprophytic state to microsclerotia for long-term survival

(Gao et al., 2010). VdAsp1, encoding an inositol polyphosphate
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kinase, regulated the transition of invasive hyphae from vegetative

growth to asexual reproduction to adapt to the nutrient-deficient

environment (Tian et al., 2022). The bZIP transcription factor

VdAtf1 participated in virulence via the regulation of inorganic

nitrogen utilization in V. dahliae (Tang et al., 2020b). As

participants in the acquisition of thiamine, VdThit, VdThi4, and

VdThi20 were required for the pathogenicity of V. dahliae to host

plants (Hoppenau et al., 2014; Qi et al., 2016; Qin et al., 2020).

Besides, two M35 family metalloproteinases VdM35-1 and

VdASPF2 were involved in the utilization of carbon sources (Lv

et al., 2022b). The ferric reductase FreB of V. dahliae reduced

environmental ferric iron to bioavailable ferrous iron to obtain iron

from plant cells and maintained its pathogenicity (Rehman et al.,

2018). While VdHapX, a bZIP transcription factor, played a crucial

role in iron homeostasis in response to iron-deficient and iron-

excess conditions and was involved in the full virulence in V.

dahliae (Wang et al., 2018b). Under the iron-deficient

environment of the xylem, Asp-type small cysteine-rich secretory

proteins VdSCPs sequestered ferric iron that further aggravated the

deficiency of ferric iron in the xylem, thereby reducing the disease

resistance of host plants (Wang et al., 2022a).
3.5 Manipulation and suppression of the
immune responses of host plants

To successfully colonize and rapidly infect host plants, V.

dahliae employs complex molecular mechanisms to manipulate

and suppress the immune responses of host plants. Two superoxide

dismutases VdSOD1 and VdSOD5 were nonessential for the

normal vegetative growth of V. dahliae, but regulated the

detoxification of both extracellular ROS generated from the host

and intracellular ROS produced by the normal metabolism of V.

dahliae (Tian et al., 2021a; Tian et al., 2021b). Besides, Chr2g00380

(cytochrome P450 monooxygenases), VdDpb4 (histone-fold

protein of the ISW2 chromatin remodeling complex), and three

transcription factors VdAtf1, VdYap1, and VdSkn7 were involved

in responding to ROS stress produced by the host plants (Tang

et al., 2020a; Wang et al., 2020c; Zhang et al., 2022c). During the

infection, the nonribosomal peptide synthetase VdNPS suppressed

the expression of PR genes, production of ROS, and SA-mediated

signaling of host plants to enhance the pathogenicity of V. dahliae

(Luo et al., 2020). While the Alt a 1 family protein PevD1 from V.

dahliae inhibited the antifungal activity of the pathogenesis-related

protein GhPR5 to overcome the host defense system (Zhang et al.,

2019c). The polysaccharide deacetylase VdPDA1 enhanced the

deacetylation of chitin oligosaccharides, leading to impaired

ability of host plants to recognize chitin oligosaccharides, thereby

inhibiting the host plant immune response (Gao et al., 2019). As a

candidate effector, VdCE11 contributed to pathogenicity in cotton

and Arabidopsis by enhancing the accumulation and activity of the

aspartic proteases, which were negative regulators of immunity

from cotton and Arabidopsis (Li et al., 2023).

The small RNAs (sRNAs) can deliver between filamentous

pathogens and host plants to trigger transkingdom RNA silencing

or RNA interference (RNAi) in recipient cells, thereby altering plant
Frontiers in Plant Science 05
defenses and pathogen virulence (Huang et al., 2019; Zhao et al.,

2021). The small RNA VdrsR-1 modulated the floral transition of

host plants and prolonged the vegetative growth of host

plants thereby favoring the propagation of V. dahliae (Zhang

et al., 2022a). The secretory silencing repressor VdSSR1 from V.

dahliae can translocate to the plant nucleus and inhibite the

nucleocytoplasmic shuttling of sRNA. VdSSR1 increased the

virulence of V. dahliae in plants by suppressing the accumulation

of mobile plant miRNAs in fungal cells to prevent subsequent

transkingdom silencing of virulence genes (Zhu et al., 2022a).
3.6 Leading to necrosis, wilting, and
defoliation

Although some studies have shown that the crude extracts of V.

dahliae can cause the collapse of microfilaments and microtubules

in plant cells, the physiological and biochemical mechanism leading

to wilting and defoliation of the host plants is still unclear. Previous

studies have shown that the necrosis- and ethylene-inducing-like

protein VdNLP caused foliar necrosis in host plants (Wang et al.,

2004). The proposed mechanism was that VdNLP interacted with

glycosylinositol phosphorylceramide (GIPC) sphingolipids to form

complexes with terminal monomeric hexose moieties of GIPCs that

insert into the plant plasma membrane (Lenarčič et al., 2017). Now,

VdNEP (VdNLP1) was suggested as a sensitive molecular marker to

distinguish the defoliating and nondefoliating V. dahliae strains

(Triantafyllopoulou et al. , 2022). A cytochrome P450

monooxygenase VdCYP1 regulated at least 14 kinds of secondary

metabolites syntheses in V. dahliae and among them, sulfacetamide

could induce necrosis and wilting symptoms in cotton

(Zhang et al., 2016a). As a homologous protein of N-

acylphosphatidylethanolamine-hydrolyzing phospholipase D,

VdDf7 was involved in the generation of N-lauroylethanolamines

(NAEs). Excessive synthesis of NAEs in V. dahliae induced the

overexpression of fatty acid amide hydrolase and disrupted NAEs

metabolism in cotton, finally causing defoliation by altering

sensitivity to abscisic acid (Zhang et al., 2019a). While the elicitor

PevD1 can target the NAC transcription factor ORE1 in

Arabidopsis or cotton to manipulate ethylene biosynthesis that

triggered V. dahliae-induced leaf senescence (Zhang et al., 2021).
4 Molecular mechanisms of cotton
resistance to Verticillium wilt

In response to V. dahliae infection, various physiological and

biochemical characteristics in cotton will change accordingly to

ensure the plants survive under such stressful conditions. Both the

physiological and biochemical resistance is mediated by the

complex molecular mechanism. In recent years, with the rapid

development of molecular biotechnology, breakthroughs have been

made in the study of the molecular mechanism of the interaction

between V. dahliae and cotton. The molecular mechanisms of

cotton resistance to Verticillium wilt mainly include the following

aspects, such as modification of tissue structures, accumulation of
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antifungal substances, homeostasis of ROS, secretion of

oxidoreductase and hydrolase, production of receptor-like

proteins and kinases, regulation of transcription factors,

activation of hormone signaling, and induction of hypersensitive

response (HR) and the development of systemic acquired resistance

(SAR) (Figure 3) (Song et al., 2020; Wu et al., 2022). Different

defense signals are regulated by different resistance-related genes,

and multiple defense signals are often intertwined into a complex

signaling network.
4.1 Modification of tissue structures

To protect cell walls from being degraded by V. dahliae, cotton

will modify the cell walls or inhibit the cell wall degrading enzymes

from V. dahliae by defense-related protein. As the main component

of the cell walls, pectin is involved in the plant defense responses

against V. dahliae. The polygalacturonase VdPG1 could digest the

pectin of cell walls, while the polygalacturonase-inhibiting protein

GhPGIP1 inhibited the activity of VdPG1 to ensure the integrity of

the cell walls and enhanced the resistance of cotton to V. dahliae

(Liu et al., 2017a; Liu et al., 2017b). Pectin methylesterase GhPME2/

GhPME31 catalyzed the demethylation of pectin, resulting in pectin

being more easily hydrolyzed by VdPG1. The pectin methylesterase

inhibitor GhPMEI3 inhibited the activity of GhPME2/GhPME31

and enhanced the degree of methyl esterification of pectin thereby

protecting the cell walls from degradation (Liu et al., 2018).

Moreover, the long non-coding RNA lncRNA7 and its regulating

gene GbPMEI13 positively regulated the accumulation of high-

methyl esterified pectin in cell walls and enhanced cotton resistance

to V. dahliae (Zhang et al., 2022d). Chang et al. verified that the

galactosyltransferase gene GhRFS6 positively regulated cotton

resistance to Verticillium wilt through involvement in pectin and

cell wall synthesis (Chang et al., 2023). Proteomic analyses on xylem

sap suggested that the stem mechanical strength and accumulation
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of cell wall-related proteins significantly enhanced in the resistant

cotton varieties after V. dahliae infection, but not in the susceptible

varieties (Yadav et al., 2020).

During the infection of V. dahliae, the deposition of lignin,

callose, and suberin occur rapidly to limit or delay the invasion of V.

dahliae. The lignin and callose deposition increased in resistant and

susceptible cotton varieties after V. dahliae infection, but the

increase was more pronounced in resistant cotton varieties (Xu

et al., 2011; Zhang et al., 2017). It has been reported that GhBOP1

(BLADE-ON-PETIOLE1), the laccase GhLAC15, the ribosomal

prote in L18A GhARPL18A-6 , the c innamyl a lcoho l

dehydrogenases GhCADs, the nonspecific lipid transfer protein

GhnsLTPsA10, and transcription factors GbERF1-like,

GhWRKY1-like, and GhODO1 enhanced the cotton resistance to

V. dahliae through functioning as the positive regulators of lignin

biosynthesis (Guo et al., 2016; Zhang et al., 2019d; Zhang et al.,

2019e; Zhang et al., 2019; Chen et al., 2021a; Hu et al., 2021; Li et al.,

2022; Zhu et al., 2022b). Suberin is deposited in the cell walls of root

endodermis, outer cortex, periderm, and other marginal tissues,

forming another physical barrier to resist the invasion of pathogens

(Xin and Herburger, 2021). GbCYP86A1-1, a cytochrome P450

fatty acid w‐hydroxylase, was involved in the formation of suberin

and positively regulated the resistance of cotton and Arabidopsis to

V. dahliae (Wang et al., 2020a). Overexpression of the

pathogenesis-related protein gene GbPR10.5D1 in cotton

enhanced the resistance to V. dahliae, accompanied by the

activation of genes involved in suberin biosynthesis (Guo

et al., 2022).
4.2 Accumulation of antifungal substances

The antifungal substances including phytoalexins, phenolics, and

flavonoids of cotton accumulate to inhibit the spore germination and

germ tube elongation of V. dahliae. As the toxic phytoalexins, the

deoxyhemigossypol (dHG), hemigossypol (HG), desoxy-6-

methyoxyhemigossypol (dMHG), and 6-methoxyhemigossypol

(MHG) played a vital role to kill the conidia and mycelia as well as

inhibited the sporulation ofV. dahliae (Wagner et al., 2015). Silencing

two major melatonin biosynthesis genes GhSNAT1 (serotonin N-

acetyltransferase) and GhCOMT (caffeic acid O-methyltransferase)

compromised cotton resistance to V. dahliae accompanied by

reduced gossypol levels (Li et al., 2019a). Phenolics such as caffeic

acid and ferulic acid significantly inhibit the growth of V. dahliae

colony, while the flavonoids such as naringenin, quercetin, and

dihydroquercetin could inhibit the growth of V. dahliae mycelia

(Hu et al., 2018a; Xiong et al., 2021a). Compared with the control

cotton variety S78, the spontaneous mutant cotton with red

coloration (S156) has increased resistance to V. dahliae due to the

increased flavonoid content and gene expressions of flavonoid

biosynthesis (Long et al., 2019). Luo et al. found that the

biosynthetic pathway of flavonoids was activated under phosphate-

deficient conditions, thereby enhancing the resistance of cotton to V.

dahliae (Luo et al., 2021). Moreover, GhWRKY41 positively regulated

the cotton resistance to V. dahliae by enhancing the accumulation of

flavonoids (Xiao et al., 2023).
FIGURE 3

Molecular mechanisms of cotton resistance to V. dahliae infection.
Upon V. dahliae infection, a series of physiological and biochemical
responses regulated by the sophisticated molecular mechanism was
activated, thereby initiating the resistance to Verticillium wilt in
cotton plants.
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4.3 PAMP- and effector-triggered
immunity

To defend against pathogen invasion, plants can employ the

innate immune system to sense specific molecules and initiate

subsequent resistance responses. The first tier is based on the cell

surface pattern recognition receptors (PRRs) to recognize pathogen/

microbe-associated molecular patterns (PAMPs/MAMPs), resulting

in PAMPs-triggered immune response (PTI) (Ramirez-Prado et al.,

2018). A growing amount of PAMPs/MAMPs has been identified,

such as bacterial flagellin, lipopolysaccharides, elongation factor Tu,

peptidoglycan, fungal chitin, xylanase, and oligogalacturonides

derived from the plants (Zhu et al., 2022c). Successfully invaded

pathogens have evolved to generate diverse effector proteins to

inhibit PTI. While plants can perceive effectors from pathogens

through transmembrane or intracellular receptors (R proteins) to

initiate the second tier of defense, which is called effector-triggered

immunity (ETI) (Ramirez-Prado et al., 2018). Activation of PTI or

ETI triggers numerous overlapping cell signaling events, including

Ca2+ fluxes, production of ROS, MAPK cascades, transcriptional

reprogramming, and hormone biosynthesis (Köster et al., 2022).

As a typical PAMP, chitin released from fungal cell walls by plant

chitinases can trigger the plant immune responses (Ramirez-Prado

et al., 2018). The infection of V. dahliae triggered the secretion of

chitinases to degrade the fungal cell wall and the cotton chitinases 23,

28, 32, and 47 have been shown to positively regulate resistance to

Verticillium wilt (Xu et al., 2016; Han et al., 2019). To suppress the

chitin signaling pathway, the serine protease VdSSEP1 secreted from

V. dahliae could hydrolyze chitinase 28. While the cysteine-rich

repeat protein CRR1 protected chitinase 28 from cleavage by

VdSSEP1. Thus, silencing either chitinase 28 or CRR1 in cotton

reduced resistance to Verticillium wilt, whereas overexpression of

CRR1 in cotton enhanced its resistance (Han et al., 2019).

Receptor-like proteins (RLPs) and receptor-like kinases (RLKs)

are important PRRs with distinct extracellular domains for the

perception of different ligands (He et al., 2018c). As the leucine-

rich repeat receptor-like protein (eLRR-RLP), Ve1 is responsible for

resistance to Verticillium spp in tomato, Arabidopsis, tobacco, and

cotton (Fradin et al., 2011; Song et al., 2018). The Ve homologous

genes GbVe1, GbaVd1, GbaVd2, Gbvdr3, Gbvdr5, and Gbvdr6 also

conferred resistance to Verticillium wilt in Arabidopsis and cotton (Li

et al., 2015; Chen et al., 2016b; Chen et al., 2017; Yang et al., 2017).

Another large class of receptor-like proteins is nucleotide-binding

site-leucine rich repeat (NBS-LRR) proteins that contain a central

NBS and a C-terminal LRR domain. According to the diversity of N-

terminal structures, NBS-LRR proteins are further divided into CC-

NBS-LRR (CNL) and TIR-NBS-LRR (TNL) families. The CNL genes

GbRVd and GbCNL130 promote resistance to Verticillium wilt by

activating the SA signaling pathway and strong accumulation of ROS

(Yang et al., 2016; Li et al., 2021). While another CNL gene GbaNA1

mediated resistance toV. dahliae by activating the production of ROS

and activation of the Eth signaling pathway (Abreu et al., 2018).

Furthermore, the transfer of TNL gene GhDSC1 to dsc1 A. thaliana

mutant conferred resistance to V. dahliae and this resistance was

coupled with ROS accumulation and activation of the JA signaling

pathway (Li et al., 2019d).
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As another important PRRs, RLKs are divided into more than 21

subfamilies according to the extracellular ligand binding domain,

including leucine-rich repeats (LRRs), lectin, lysin motif (LysM),

cysteine-rich receptor-like kinases (CRKs), and wall-associated

kinases (WAKs) (Feng et al., 2021). Many pieces of literature have

confirmed that receptor-like kinases are involved in the defense

response of host plants to V. dahliae. The defense-related RLK

GbSOBIR1 could phosphorylate GbbHLH171 and play a critical role

in cotton resistance to V. dahliae (Zhou et al., 2019). While the lysin-

motif receptor kinases Lyk1, Lyk2, Lyk7, Lyp1, and LysMe3 played

important roles in chitin perception and positively regulate cotton

resistance to V. dahliae through chitin signaling (Gu et al., 2017; Xu

et al., 2017). Two cysteine-rich receptor-like kinases CRK5 and CRK22

played positive regulators in defense responses to V. dahliae toxins in

Arabidopsis plants by mediating the MPK3/6-WRKY70-TGA2/6-

NPR1/3/4-SA signaling pathways (Zhao et al., 2022). In addition,

the WAKs also positively regulated cotton response to V. dahliae

infection (Wang et al., 2020b; Feng et al., 2021; Yang et al., 2021).
4.4 Homeostasis of ROS

ROS plays a crucial role in the initial stages of abiotic and biotic

stress sensing and contributes to the establishment of subsequent

defenses, such as the reinforcement of cell wall structures, hormonal

signaling, HR, and SAR (Qi et al., 2017; Mittler et al., 2022). Plant

NADPH oxidases (NOXs), also known as respiratory burst oxidase

homologs (rbohs), play a predominant role in the metabolic

network of ROS. GbRboh5/18 and GhRbohD have been reported

to activate ROS production and enhance cotton resistance to

Verticillium wilt (Chang et al., 2020; Huang et al., 2021b).

However, excessive ROS impairs many cellular functions by

altering the structure and function of multiple proteins and

causing oxidative damage to DNA, RNA, and membrane lipids

(Phua et al., 2021; Mittler et al., 2022). The antioxidative enzymes of

plants can scavenge ROS and maintain homeostasis of ROS,

including superoxide dismutase (SOD), peroxidase (peroxidase,

POD), glutathione S-transferase (glutathione S-transferase, GST),

glutathione peroxidase (GPX), and thioredoxin (TRX) (Shaban

et al., 2018; Phua et al., 2021). GST, POD, and SOD were

involved in the homeostasis of ROS during V. dahliae infection so

that cotton can prevent itself from being damaged due to excessive

accumulation of ROS when initiating defense responses (Li et al.,

2019c; Li et al., 2019e; Pei et al., 2019). Moreover, the thioredoxin

GbNRX1 regulated the rapid balancing of redox to maintain the

homeostasis of apoplastic ROS after infection of V. dahliae, which

was important for the apoplastic immune response of cotton (Li

et al., 2016). Besides, the microRNAmiR398b mediated the cleavage

of mRNAs of genes that function in ROS homeostasis and caused

excessive ROS accumulation, thereby reducing the resistance to V.

dahliae in miR398b-overexpressing cotton (Miao et al., 2022). As an

important antioxidant, anthocyanins also have an effect to maintain

the homeostasis of ROS. The silencing of the anthocyanin synthase

gene GbANS reduced the anthocyanin content in cotton, resulting

in excessive accumulation of H2O2 and attenuating cotton

resistance to V. dahliae (Long et al., 2018).
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4.5 Ca2+ signaling

The Ca2+ signaling is an important messenger of the plant

immune system and builds an extremely complicated network of

many interconnected nodes, transferring external or internal

danger signals to activate multiple defense responses (Jiang and

Ding, 2023). The MYB transcription factor GhMYB108 positively

regulated cotton resistance to V. dahliae by interacting with the

major Ca2+ sensor GhCML11 (calmodulin-like protein). Further

analysis found that Ca2+ was beneficial for GhCML11 to enhance

the transcriptional activity of GhMYB108, indicating that Ca2+

played an important role in the defense response against V.

dahliae mediated by GhMYB108-GhCML11 (Cheng et al., 2016).

Recently, Sun et al. demonstrated that PAMPs activated the

expression of the calcium sensor TOUCH 3 (TCH3, also named

CML12), which interfered with the auto-inhibitory region of

calcium-dependent protein kinases5 (CPK5) and promoted

CPK5-mediated phosphorylation of CAM-BINDING PROTEIN

60-LIKE G (CBP60g). The phosphorylation of CBP60g enhanced

its transcription factor activity and positively regulated the defense

against V. dahliae (Sun et al., 2022). In addition, the accumulation

of Ca2+ induced by V. dahliae promoted the acetylation of the

calmodulin GhCaM7, thereby activating JA and ROS defense

signaling pathways and changing cell osmotic potential to

enhance cotton resistance to Verticillium wilt (Zhang et al., 2023a).
4.6 MAPK cascades

MAPK cascades are highly conserved in eukaryotes and widely

used to amplify and translate environmental and developmental

signals into complex physiological and biochemical reactions. The

rapid activation of MAPK cascades typically relays and amplifies

PTI/ETI-induced downstream signals, such as transcriptional

recombination and hormone signaling (Zhang and Zhang, 2022).

The typical MAPK cascades are composed of MAPKs (MPKs),

MAPK Kinases (MAPKKs/MKKs/MEKs), and MAPK Kinase

Kinases (MAPKKKs/MEKKs). Previous studies have shown that

silencing of GhMKK2, GhMKK4, GhMKK6, GhMKK9, GhMPK9,

GhMPK13, and GhMPK25 compromised cotton resistance to the

infection by V. dahliae, whereas silencing of GhMKK10 increased

resistance to V. dahliae (Gao et al., 2011; Zhang et al., 2014; Meng

et al., 2018). Moreover, the phosphorylation of the MPK homolog

GhNTF6 activated ROS production, callose deposition, and the JA

signaling pathway to increase the resistance to V. dahliae infection

(Zhou et al., 2022). While the overexpression of GbMPK3 in cotton

activated the SA signaling transduction but reduced resistance to V.

dahliae (Long et al., 2020).
4.7 Hormone signaling

Upon pathogen attack, phytohormone signaling is the primary

perception of plants and then the subsequent defense signaling

network was activated or repressed, including the elicitation of PR

genes, the reinforcement of cell wall, production of phytoalexins,
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induction of SAR, ROS, and MAPK cascades (Dhar et al., 2020;

Billah et al., 2021). Salicylic acid (SA), jasmonic acid (JA), ethylene

(Eth), auxin (AUX), cytokinin (CTK), gibberellic acid (GA), abscisic

acid (ABA), brassinosteroids (BR), and strigolactones (SLs) have

been documented in plant defense responses (Shaban et al., 2018;

Dhar et al., 2020). These plant hormones form complex signaling

networks that integrate environmental cues and respond to diverse

pathogens. There is a complex synergy and antagonism between

different hormone signals in response to the invasion of diverse

pathogens. While SA and JA are the main players against V. dahliae,

and their roles are well-established (Table 1).

4.7.1 SA signaling in resistance to Verticillium wilt
SA, one of the major defense-related hormones, plays an

important role in the activation of the expression of PR genes and

establishment of the long-lasting and broad-spectrum disease

resistance SAR (Shaban et al., 2018). Although SA has been

implicated in defense responses against a wide range of biotrophic

and hemibiotrophic pathogens, it plays an auxiliary role against

necrotrophic pathogens (Dhar et al., 2020). As a hemibiotrophic

pathogen, V. dahliae behaves as a biotrophic pathogen during the

early stages of infection but it switches to a necrotrophic lifestyle

during the later infectious stages. Thus, the SA signaling pathway

was required to confer resistance against V. dahliae.

The enhanced disease susceptibility 1 (EDS1) gene is a core genetic

component in SA-mediated defense responses and is critical for

resistance against biotrophic and hemibiotrophic pathogens (Chen

et al., 2021c). Silencing ofGbEDS1 in cotton significantly decreased the

accumulation of SA and enhanced the susceptibility of cotton to V.

dahliae (Yan et al., 2016). In plants, the enzymatic reactions for the

synthesis of salicylic acid are mainly mediated by phenylalanine lyase

(PAL) and isochorismate synthase (ICS). The teosinte branched1/

Cincinnata/proliferating cell factor (TCP) transcription factor

GhTCP4-like interacted with GhNPR1 to promote GhICS1

expression, leading to accumulation of SA, which was sensed by

NPR1 to increase cotton resistance against V. dahliae (Jia et al., 2022).

As a key player in the elicitation of SA biosynthesis, indole enhances

the expression of genes involved in SA defense signaling pathways.

Knock-down of GbTSA1 (tryptophan synthase a) and GbTSB1

(tryptophan synthase b) enhanced the accumulation of indole,

thereby activating SA biosynthesis and defense signaling pathways

and improving cotton resistance to V. dahliae (Miao et al., 2019).

Moreover, the miR530-GhSAP6 module in cotton leaves responded

remotely toV. dahliae infection from roots via SAR, and then enlarged

SA signaling at locations farther from the injection sites, leading to

enhanced resistance of cotton plants to V. dahliae (Hu et al., 2023).

Moreover, the complex metabolic pathways of plant secondary

products often intersect with SA signaling. Gong et al. confirmed

that glutathione S-transferase GaGSTF9 positively regulated cotton

resistance to V. dahliae by maintaining the low-level accumulation

of ROS and then affecting SA content (Gong et al., 2018). The S-

adenosylmethionine decarboxylase gene GhSAMDC encoded key

rate-limiting enzymes of spermine biosynthesis, and the

constitutive overexpression of GhSAMDC in Arabidopsis

improved resistance against V. dahliae through activating SA

signaling (Mo et al., 2016). Additionally, the silencing of succinate
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TABLE 1 Genes implicated in the SA, JA, and Eth defense signaling in response to V. dahliae infection.

Hormones Gene name Regulatory mechanism Cotton
species

Resistance/Susceptibility References

SA↑ GbEDS1 Enhanced SA accumulation G. barbadense Enhanced resistance to V. dahliae strain
Vd991

(Yan et al.,
2016)

SA↑ GhTCP4-like Promoted SA biosynthesis by activating
GhICS1 expression

G. hirsutum Enhanced resistance to V. dahliae strain
Vd991

(Jia et al., 2022)

SA↑ GbTSA1 Activated SA synthesis G. barbadense Enhanced resistance to V. dahliae strain
Vd991

(Miao et al.,
2019)

SA↑ GhSAP6 Activated SAR and enlarged SA signaling G. hirsutum Enhanced resistance to V. dahliae strain
Vd991

(Hu et al.,
2023)

SA↑ GaGSTF9 Regulated SA accumulation G. arboreum Enhanced resistance to V. dahliae strain
Vd07038

(Gong et al.,
2018)

SA↑ GhSAMDC Regulated SA signaling G. hirsutum Enhanced resistance to V. dahliae strains
T5

(Mo et al.,
2016)

SA↑ GhSDH1-1 Involved in SA signaling G. hirsutum Enhanced resistance to V. dahliae strain
V080

(Zhang et al.,
2020)

SA↑ GhSSI2s Induced PAL-mediated SA signaling G. hirsutum Enhanced resistance to V. dahliae strain
Linxi 2-1

(Mo et al.,
2021)

SA↑/JA↓ GhVLN4 Enhanced the SA signaling but suppressed JA
signaling

G. hirsutum Enhanced resistance to V. dahliae strain
Vd991

(Ge et al., 2021)

SA↑/JA↓ GhWRKY70 Activated the SA signaling but suppressed JA
signaling

G. hirsutum Increased susceptibility to V. dahliae strain
Vd991

(Xiong et al.,
2019)

SA↑/JA↓ GhGDH2 Activated the SA signaling but suppressed JA
signaling

G. hirsutum Increased susceptibility to V. dahliae strain
Vd991

(Xiong et al.,
2021b)

SA↑/JA↑ GhGPA Activated the SA and JA signaling G. hirsutum Enhanced resistance to V. dahliae strain
Linxi 2-1

(Chen et al.,
2021b)

SA↑/JA↑ GhRPS6 Activated the SA and JA signaling G. hirsutum Enhanced resistance to V. dahliae strain
Vd080

(Zhu et al.,
2021a)

SA↑/JA↑ GhPLDd Activated the SA and JA signaling G. hirsutum Enhanced resistance to V. dahliae strain
Vd991

(Zhu et al.,
2022c)

JA↓ GhCYP82D Suppressed the LOXs-mediated biosynthesis
of JA

G. hirsutum Increased susceptibility to V. dahliae strain
Vd991

(Sun et al.,
2014)

JA↑ GhLOX2 Activated the JA defense signaling G. hirsutum Enhanced resistance to V. dahliae (Shaban et al.,
2021)

JA↑ GhlncLOX3 Enhanced the JA defense signaling G. hirsutum Enhanced resistance to V. dahliae strain
Linxi 2-1

(Wang et al.,
2021b)

JA↑ GhPLP2 Positively regulated the JA biosynthesis G. hirsutum Enhanced resistance to V. dahliae strain
Vd991

(Zhu et al.,
2021b)

JA↓ GhCPK33 Suppressed the biosynthesis of JA G. hirsutum Increased susceptibility to V. dahliae strain
Vd991

(Hu et al.,
2018b)

JA↓ GhJAZ2 Suppressed the JA defense signaling G. hirsutum Increased susceptibility to V. dahliae (He et al.,
2018b)

JA↑ GhbHLH171 Activated the JA defense signaling G. hirsutum Enhanced resistance to V. dahliae (He et al.,
2018b)

JA↓ HDTF1 Suppressed the JA signaling G. hirsutum Increased susceptibility to V. dahliae strain
Vd991

(Gao et al.,
2016)

JA↓ GhHB12 Suppressed the JA defense signaling G. hirsutum Increased susceptibility to V. dahliae (He et al.,
2018a)

JA↓ GhBLH7-D06 Suppressed the JA defense signaling G. hirsutum Increased susceptibility to V. dahliae strain
Vd991-GFP

(Ma et al.,
2020)

(Continued)
F
rontiers in Plant
 Science
 09
 frontiersin.org

https://doi.org/10.3389/fpls.2023.1174281
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2023.1174281
dehydrogenase gene GhSDH1-1 in cotton led to decreased

resistance to V. dahliae because of the severe damage to the SA-

signaling pathway (Zhang et al., 2020). The soluble fatty acid

desaturase stearoyl-ACP desaturase regulates the desaturation of

fatty acids and produces the monounsaturated fatty acid oleic acid

(18:1) in the plastids. Suppressing the expression of GhSSI2s

(encoding stearoyl-ACP desaturases) reduced the 18:1 level in

cotton and autoactivated PAL-mediated SA defense response,

thereby enhancing cotton resistance to V. dahliae (Mo et al., 2021).

Studies have reported the antagonism interaction between SA

and JA/Eth signaling pathways. Overexpression of the actin

cytoskeleton gene GhVLN4 in Arabidopsis enhanced resistance to

V. dahliae by enhancing the SA defense signaling but suppressing

JA defense signaling (Ge et al., 2021). The silence of GhWRKY70 or

GhGDH2 (encoding glutamate dehydrogenase) led to the

suppression of the SA signaling pathway and initiation of the JA

signaling pathway, which consequently enhanced the cotton

resistance against V. dahliae (Xiong et al., 2019; Xiong et al.,

2021b). Interestingly, SA and JA signaling pathways are not

always antagonistic to each other but also have mutual synergy.

The G-protein a-subunit GhGPA positively regulated the resistance

of cotton and Arabidopsis plants to V. dahliae by activating both SA

and JA signaling pathways (Chen et al., 2021b). Knockdown of the

ribosomal protein gene GhRPS6 resulted in decreased SA and JA

content and suppressed a series of defensive responses in cotton

(Zhu et al., 2021a). The phospholipase GhPLDd played a positive

role in the tolerance to Verticillium wilt through the activation of JA

and SA signaling pathways (Zhu et al., 2022c).

4.7.2 JA signaling in resistance to Verticillium wilt
Jasmonates (JAs) is the collective name for JA and its derivatives

and belongs to the family of oxylipin compounds, which were

produced through oxidation and further conversions of

polyunsaturated fatty acids by lipoxygenases (LOXs) and a-LOXs
(Cook et al., 2021). JAs play crucial roles in plant responses to biotic

and abiotic stresses, especially in defense responses against

herbivores, insect pests, wounding, and pathogens (Wasternack

and Strnad, 2016; Ghorbel et al., 2021). The JA signaling pathway

has been extensively studied in the interaction between V. dahliae

and cotton. The cytochrome P450 CYP82D (SSN) competed for fatty

acids with LOXs and suppressed the LOXs-mediated JA biosynthetic

pathway in cotton, thereby weakening the resistance to V. dahliae
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(Sun et al., 2014). Knockdown of GhLOX2 and GhlncLOX3

suppressed the expression of JA-related genes and increased cotton

susceptibility to V. dahliae (Shaban et al., 2021; Wang et al., 2021b).

GhPLP2, encoding the patatin-like protein, regulated the fatty acid

metabolism pools for JA biosynthesis and activated the JA signaling

pathway, thereby enhancing the resistance of cotton and Arabidopsis

plants to V. dahliae (Zhu et al., 2021b). The calcium-dependent

protein kinase GhCPK33 phosphorylated the 12-oxophytodienoate

reductase GhOPR3, leading to destabilization of GhOPR3, which

limited the biosynthesis of JA and decreased cotton resistance to V.

dahliae (Hu et al., 2018b). Jasmonate-ZIM-domain protein GhJAZ2

inhibited the activity of GhbHLH171, a positive regulator of the JA

signaling pathway, resulting in attenuated resistance of GhJAZ2-

overexpressed cotton to V. dahliae (He et al., 2018b).

Many studies have explored the roles of transcription factors

involved in the defense system of cotton by modulating JA

signaling. As a homeodomain transcription factor, HDTF1

negatively regulated cotton resistance to V. dahliae by inactivating

the JA-mediated signaling and JA accumulation, but not affecting

SA signaling (Gao et al., 2016). Overexpression of the

homeodomain-leucine zipper (HD-ZIP) transcription factor

GhHB12 increased the susceptibility of the cotton to V. dahliae,

which was associated with the repression of genes expression in JA

defense signaling (He et al., 2018a). Silencing of the BEL1-like

transcription factor GhBLH7-D06 enhanced the tolerance of cotton

to Verticillium wilt, which was mainly attributed to the activation of

lignin biosynthesis and JA defense signaling pathways (Ma et al.,

2020). Moreover, the knock-down of the GSK3-like kinase gene

BIN2 (brassinosteroid insensitive 2) significantly enhanced the

resistance of Arabidopsis and cotton to V. dahliae by regulating

the endogenous content of JA and the expression of JA-responsive

marker genes (Song et al., 2021). Recently, Zhang et al. identified a

new WRKY70 (highly homologous to GhWRKY70D02 sequence),

which activated the JA defense signaling pathway by interacting

with GhAOS, a key enzyme in the biosynthesis of JA, to enhance the

tolerance of cotton to Verticillium wilt (Zhang et al., 2023b).

4.7.3 Other hormone signaling in resistance to
Verticillium wilt

The ET and JA signaling pathways usually cooperate to defend

against V. dahliae infection. Silencing of GhWRKY70D13 led to the

increased accumulation of JA, JA-Ile, and ET synthesis precursor
TABLE 1 Continued

Hormones Gene name Regulatory mechanism Cotton
species

Resistance/Susceptibility References

JA↓ GhBIN2 Reduced JA content and suppressed the JA
signaling

G. hirsutum Increased susceptibility to V. dahliae strain
Vd07038

(Song et al.,
2021)

JA↑ GhWRKY70 Activated the JA signaling by interacting with
GhAOS

G. hirsutum Enhanced resistance to V. dahliae strain
linxi2-1

(Zhang et al.,
2023b)

JA↓/Eth↓ GhWRKY70D13 Reduced the content of JA, JA-Ile and ACC G. hirsutum Increased susceptibility to V. dahliae strain
Vd991

(Xiong et al.,
2020)

Eth↑ GhMPL28 Activated the Eth defense pathway G. hirsutum Enhanced resistance to V. dahliae strain
Vd991

(Yang et al.,
2015)
Upward arrows represent the positive regulation of hormone signaling by genes, while downward arrows represent the negative regulation of hormone signaling by genes.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1174281
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2023.1174281
ACC and enhanced resistance of cotton to V. dahliae (Xiong et al.,

2020). By enhancing the transcriptional activity of the ethylene

response factor GhERF6, the defense-related major latex protein

GhMPL28 activated the ET defense pathway to enhance cotton

resistance to V. dahliae (Yang et al., 2015). However, there are

studies indicating that ET seems to promote the development of

Verticillium wilt symptoms. Pantelides et al. confirmed that the

perception of ethylene via ethylene receptor ETR1 was required in

Arabidopsis infection by V. dahliae (Pantelides et al., 2010).

Overexpression of AtCTR1 (a negative regulator of ethylene

signaling) in cotton led to reduced sensitivity to ethylene but

increased resistance to V. dahliae (Wang et al., 2022b). The

elicitor PevD1 manipulated ethylene biosynthesis in Arabidopsis

and cotton and triggered V. dahliae-induced leaf senescence (Zhang

et al., 2021). Collectively, these results indicated that ET plays a dual

role in resistance as well as the development of wilt symptoms.

In the hormone defense signaling network of plants against V.

dahliae, there are often complex relationships between SA/JA and

other hormones. During the infection of V. dahliae, the Aux/IAA

protein GhIAA43 was a negative regulator of cotton immune

response and played a major role in the connection between SA

defense signaling and auxin signaling in cotton plants (Su et al.,

2022). The APETALA2/ETHYLENE RESPONSIVE FACTOR gene

GhTINY2 positively regulated the resistance of cotton and

Arabidopsis plants to V. dahliae. Further studies determined that

GhTINY2 fine-tuned the trade-off between immunity and growth

by indirectly linking the WRKY51-mediated SA signaling and

BZR1-IAA19-regulated BR signaling (Xiao et al., 2021). The

carotenoid cleavage dioxygenases GbCCD7 and GbCCD8b

positively regulated the accumulation of strigolactone and

consequently activated the JA and ABA signaling. The positive

feedback loop of ABA and the negative feedback loop of JA could

regulate the homeostasis of strigolactone and maintain the balance

among these three hormones, thereby improving the tolerance of

cotton to Verticillium wilt (Yi et al., 2023).
5 Conclusions and perspectives

Since there is a conserved co-evolutionary relationship between

plants and pathogens in nature, revealing the pathogenic

mechanism of pathogens and the resistance mechanism of host

plants will help to improve plant disease resistance. Elucidating the

molecular mechanisms of V. dahliae-cotton interaction is a key step

for the durable and efficient control of cotton Verticillium wilt.

However, only a few key molecular mechanisms have been well

elucidated. With the release of the genome sequence of V. dahliae

and cotton, scientific researchers have focused on the molecular

mechanisms of V. dahliae-cotton interaction, giving us a deep

understanding of the complex mechanisms. In this review, we

provide a broader picture of the new insights into the interaction

between V. dahliae and cotton. V. dahliae have evolved a variety of

approaches to infect cotton, while cotton has developed various

defense mechanisms to cope with the threat of Verticillium wilt.

In V. dahliae, the molecular mechanism of pathogenicity that

has been revealed so far can be roughly divided into five aspects:
Frontiers in Plant Science 11
(1) germination and growth of microsclerotia; (2) infection and

successful colonization; (3) adaptation to the nutrient-deficient

environment of cotton and competing with cotton for its

nutrients; (4) suppression and manipulation of cotton immune

response; (5) leading to wilting and defoliation of cotton through

rapid reproduction of V. dahliae and secretion of toxins. To deal

with V. dahliae, cotton has evolved a complex defense system,

mainly including modification of tissue structures, accumulation of

antifungal substances, homeostasis of ROS, induction of Ca2+

signaling, the MAPK cascades, hormone signaling, and PTI/ETI.

As V. dahliae is a hemibiotrophic pathogen generally it is perceived

that the defense mechanism of cotton against V. dahliae is relatively

complex. There are differences in the defense signals dominated by

different resistance-related genes and multiple defense signals

intersect into a complex signal network.

The pathogenic mechanism of V. dahliae and the resistance

mechanism of cotton were comprehensively analyzed in this review,

providing the target gene resources for effective control of cotton

Verticillium wilt. With the development of multi-omics integrative

analyses and molecular biology technology, it is possible to mine

more key genes in the interaction between cotton and V. dahliae,

which will be contributed to obtaining cotton varieties that are

resistant to Verticillium wilt through genetic engineering and

breeding technology.
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