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Drought stress can significantly affect plant growth and development. Biochar

(BC) and plant growth-promoting rhizobacteria (PGPR) have been found to

increase plant fertility and development under drought conditions. The single

effects of BC and PGPR in different plant species have been widely reported

under abiotic stress. However, there have been relatively few studies on the

positive role of PGPR, BC, and their combination in barley (Hordeum vulgare L.).

Therefore, the current study investigated the effects of BC from Parthenium

hysterophorus, drought tolerant PGPR (Serratia odorifera), and the combination

of BC + PGPR on the growth, physiology, and biochemical traits of barley plants

under drought stress for two weeks. A total of 15 pots were used under five

treatments. Each pot of 4 kg soil comprised the control (T0, 90% water), drought

stress alone (T1, 30% water), 35 mL PGPR/kg soil (T2, 30% water), 2.5%/kg soil BC

(T3, 30% water), and a combination of BC and PGPR (T4, 30% water). Combined

PGPR and BC strongly mitigated the negative effects of drought by improving the

shoot length (37.03%), fresh biomass (52%), dry biomass (62.5%), and seed

germination (40%) compared to the control. The PGPR + BC amendment

treatment enhanced physiological traits, such as chlorophyll a (27.9%),

chlorophyll b (35.3%), and total chlorophyll (31.1%), compared to the control.

Similarly, the synergistic role of PGPR and BC significantly (p< 0.05) enhanced the

antioxidant enzyme activity including peroxidase (POD), catalase (CAT), and

superoxide dismutase (SOD) to alleviate the toxicity of ROS. The

physicochemical properties (N, K, P, and EL) of the soils were also enhanced

by (85%, 33%, 52%, and 58%) respectively, under the BC + PGPR treatment

compared to the control and drought stress alone. The findings of this study have
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suggested that the addition of BC, PGPR, and a combination of both will improve

the soil fertility, productivity, and antioxidant defense systems of barley under

drought stress. Therefore, BC from the invasive plant P. hysterophorus and PGPR

can be applied to water-deficient areas to improve barley crop production.
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1 Introduction

Barley (Hordeum vulgare L.) is an important winter cereal crop

of the Poaceae family, grown in the arid and semi-arid regions of

West Asia and North Africa (Hafez et al., 2020), and is a well-

known quality food crop worldwide (Hafez et al., 2016).

Approximately 25% of the world’s barley crop is malted or used

as human food and 75% is used as animal feed (El-Hashash and El-

Absy, 2019: Newton et al., 2011). Barley crops cover an area of 0.047

billion ha worldwide, and the cultivation of this plant produces

approximately 0.147 billion tons (Scheitrum et al., 2020). It has a

short life cycle, is resistant to saline and drought stress, and is

ranked as the 4th most widely grown cereal crop after wheat, rice,

and maize (Akhtar et al., 2021). Barley is a suitable crop for areas

where irrigation is limited and is highly tolerant to many other

biotic and abiotic stresses (Wiegmann et al., 2019), making it

suitable for cultivation in challenging environments (Feiziasl, 2022).

One of the life threating and environmental stresses that effects

plant growth, soil quality, and water availability is known as drought

stress (Kilic, 2014). Drought presents a severe threat to humans and

agriculture, with approximately 53 million people worldwide being

affected by limited water availability (Elakhdar et al., 2022). Water

scarcity and high temperatures are worldwide issues affecting the

survival of agricultural crops and sustainable food production

(Mertz-Henning et al., 2018). Severe drought stress results in

inhibition of photosynthesis, metabolic disturbance, chlorosis,

necrosis, and tissue damage (Jaleel et al., 2009). Drought stress

reduces transpiration in plants, which is required for nutrient

uptake from the soil and results in growth retardation and

development (Çakmakçi et al., 2007). Plant turgidity, metabolism,

and osmoregulation are inhibited in response to water-deficit

conditions, leading to decreased crop production and development

(Gordon et al., 2019). Crop response to drought stress is a critical

issue. Therefore, there is a strong need to develop new methods to

increase tolerance mechanism in plants (Ashoub et al., 2015). Two

approaches are currently used to reduce the negative effects of

drought stress on plant growth, that is, the application of plant

growth-promoting rhizobacteria (PGPR) and biochar (BC) to soils.

Both approaches are fast-growing, eco-friendly, and inexpensive in

enhancing plant productivity under abiotic stress (Ullah et al., 2020).

Plant growth-promoting rhizobacteria are endophytic bacteria

present in plant roots that promote plant growth and interact

positively with plant and soil microorganisms (Forni et al., 2017).
02
PGPR colonize the rhizosphere of plants to increase plant growth

via direct or indirect mechanisms (Santoyo et al., 2021). Direct

mechanisms include nutrient acquisition such as nitrogen fixation,

P solubilization, and production of phytohormone. Meanwhile,

indirect mechanisms inhibit the function of other pathogenic

organism through biocontrol agents (Frampton et al., 2012)

PGPR acts as a fertilizer for crop protection, soils structure,

decomposition of organic matter and recycling of essential

nutrients under abiotic stress, that is, drought stress (Kasim et al.,

2016; Gouda et al., 2018). Under water deficit condition, PGPR

promote root development in the soils (Kasim et al., 2016). In

maize, it has been found that the application of PGPR is effective for

plant growth and protection under drought stress (Khan et al.,

2021), with positive roles in increasing crop production and yield

(Akhtar et al., 2021). Akhtar et al. (2015) reported that PGP and BC

enhanced physiological and reproductive responses in maize under

saline conditions.

In agriculture, biochar (BC) is also known as “black gold” because

it is produced from fossils and dead plant tissues. It increases essential

minerals in the soil, including nitrogen (N), sulfur (S), phosphorous

(P), carbon (C), and potassium (K) (Sánchez-Reinoso et al., 2020;

Ullah et al., 2020). BC is used on farmlands to boost carbon and

nitrogen levels (Pérez-Cabrera et al., 2022) and may sequester

atmospheric carbon dioxide (CO2) (Feng et al., 2021). According

to the EPA (2010), approximately 40% of greenhouse gases generated

by of the addition of chemical fertilizers to soils can be reduced by

adding BC (Schmidt et al., 2014). The highly porous structure and

surface area of BC can alleviate the effects of drought because of its

water retention capacity owing to adhesion and cohesion forces

(Dempster et al., 2012). BC promotes water use efficiency because its

structure consists of an oxygen functional group that stores more

moisture in the soil (Suliman et al., 2017) Recently, it has been used to

increase cowpea plant productivity, nutrient uptake, and antioxidant

activity under drought stress (Farooq et al., 2021). Some reports have

suggested that BC from Parthenium hysterophorus can be used as

green muck, compost, and in soil bioremediation to enhance the

physiological and biochemical characteristics of plants (El-Naggar

et al., 2015; Tefera et al., 2022).

Parthenium hysterophorus is native to America, but has become

invasive inAsia, Australia, andAfrica (Javaid, 2010).P. hysterophorus

was first introduced to India in 1955 and was later transported to

Pakistan (Khan et al., 2012). This weed is among the top 10 plants

that are harmful to agricultural systems (Rout and Callaway, 2012),
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and toxic to humans (Khan et al., 2012). Therefore, the positive

management of this weed and biochar production are alternative

ways to use it in the environment. However, BC production from this

weed could be a useful strategy for controlling environmental

stressors in agroecosystems (Masulili et al., 2010; Kumar et al.,

2013). Biochar from P. hysterophorus can significantly enhance

crop productivity and increase soil nutrients (Ahmad et al., 2021).

Barley plants were found to be tolerant to salt stress following the

application of BC and PGPR (Cardinale et al., 2015). The combined

effect of PGPR and BC holds potential for Brassica napus in

alleviating the toxic effects of drought, directly or indirectly, to

promote physiological and biochemical responses (Lalay et al.,

2022). Ain et al. (2023) observed a positive effect from P.

hysterophorus biochar on the growth traits, physicochemical

properties, and antioxidant activities of rice and wheat. Therefore,

PGPR and BC may interact to enhance plant productivity and

tolerance to various stressors. To date, no studies have yet reported

the effects of the interactions between PGPR and BC on soil fertility

or barley growth productivity. Therefore, the present study was

conducted to investigate the effects of BC from P. hysterophorus

and PGRP on the growth, physiology, and reproductive output of

barley under drought stress conditions. We also evaluated the

positive effects of PGPR and BC on soil fertility and nutrient

uptake by barley under drought stress.
2 Materials and methods

2.1 Plant materials, soils analysis and
treatment

This experiment was conducted at the PMAS Arid Agriculture

University, Rawalpindi, Pakistan. Barley seeds were obtained from

the Crop Science Institute, National Agricultural Center (NARC),

Islamabad, Pakistan. The experimental design was completely

randomized, with three replicates. Sodium hypochlorite (5%

solution) was used for seed surface sterilization, and then the

seeds were washed thoroughly with distilled water two to three

times. The sterilized seeds were planted in pots containing soil

collected from the botanical garden of the university. The soils were

analyzed before and after the experiment using a protocol following
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the work of Akhtar et al. (2021). This included a suspension of water

and soil at a 1:1 ratio, which was stirred and retained for 28 min.

One hour later, the pH of the solution was measured using a

pH meter.

To determine the total soil organic matter (SOM), 1.2 g of soil

was mixed with K2Cr2O7 (10 mL) and 15 mL H2SO4

(concentrated). After 40 min, 250 mL of deionized water was

added along with 8 mL of H3PO3 and 14 drops of

phenolphthalein indicator for color (Ullah et al., 2020). Total

nitrogen (N) was determined using the salicylic acid method.

Total potassium (K) was determined by mixing 3 g of soil with

30 mL of ammonium acetate and shaking the mixture shaken for 5–

8 min. The mixture was then centrifuged at 12000 rpm for 5 min.

The supernatant was diluted with ammonium acetate, and readings

were recorded on a flame photometer. The Olsen P method was

used to determine the (P) (Ullah et al., 2020; Akhtar et al., 2021).

The average soil pH ranged from 7 to 7.6, electrical conductivity

(EC) 45 dS·m−1, total nitrogen in the form of nitrate, and organic

content 0.55 mg·kg−1, available K 45 mg·kg−1, and available P 32

mg·kg−1 (Table 1).

Biochar was extracted from an invasive plant (P. hysterophorus)

collected from the Bannu district, Slaima Sikander Khail Issaki,

Bannu, KPK, Pakistan. Fresh biomass (leaves and stems) of P.

hysterophorus was cut into small pieces, washed two to three times

with distilled water and placed in a dryer for 3–5 d. The dry biomass

were placed inside a furnace (350–450 °C) for 60 min and biochar

obtained using the pyrolysis method (Mondal et al., 2016; Ain et al.,

2023) (Figure 1). The physicochemical properties of the prepared

biochar are listed in Table 1. We used a known drought-tolerant

PGPR strain (accession number KC425221, Serratia odorifera) that

had already been screened in the study by Bangash et al. (2013). The

bacterial strain was grown in LB media (Luria–Bertani) and

incubated for 3 d at 30 °C. The optical density was measured

using a spectrophotometer at 530 nm (BMS VIS), and uniform

colony forming units (108 CFU/mL) were obtained for seed

inoculation (Ullah et al., 2020).

2.2 Study design

Five treatments were used to test the effects of PGPR and BC

application on the barley seedlings. A total of 15 pots were used in
TABLE 1 Physicochemical characteristics of soils and biochar.

Characteristics of soils Value Characteristics of biochar Value

Texture Loamy Ash content (%) 18.5

PH 7.5 PH 9.3

EC (dS-1) 45 EC (dS-1) 6.45

K(mg/kg-1) 45.4 Total N (%) 1.9

N (mg/kg-1) 0.55 Total P (g/kg-1) 2

P (mg/kg-1) 32 Total K (g/kg-1) 10

TOM (%) 0.74
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this study. Three pots were used for each treatment and every pot

was filled with 4 Kg soil. 4 kg soil mixed with 2.5% (100 g) ground

biochar, and the PGPR strain was added during the inoculum

method 35 mL/kg soil (108 CFU/mL), excluding the control and

drought stress treatments. Barley seeds (15–20) were sown in each

pot, with three replicates per treatment. Plants were watered with

tap water and a standard NPK solution was applied as a fertilizer

(Hafez et al., 2020). One month later, barley plants were subjected

to drought conditions (30% water) for two weeks, except the three

control pots (90% water) (Della Torre et al., 2021; Khan et al., 2021).

The growth condition of the greenhouse were maintained at 20–25 °

C, relative humidity 45–50%, with a controlled light environment at

14/10 h (Akhtar et al., 2021).

The experimental design consisted of 5 treatments × 3 replicates =

15 pots. The different treatments were organized as follows (Figure 1)

(Tanveer et al., 2023). T0, control (no PGPR or BC); T1 = Drought (no

PGPR or BC); T2, 35 mL PGPR/kg soil only; T3, 2.5% BC only; T4,

2.5% BC + 35 mL PGPR/kg soil. After treatment, all the plants were

photographed, harvested, and stored at −80 °C for further analysis.
2.3 Growth and reproductive traits

For the seed germination assay, the germination percentage of

barley plants was calculated using the following equation:

Germination ( % )

= ½total seeds germinated=total number of seeds planted� � 100 :
Frontiers in Plant Science 04
Different morphological parameters were measured for each

plant, including the root length, shoot length, whole-plant fresh

biomass, and whole-plant dry biomass (Rono et al., 2021).

2.4 Measurement of electrical conductivity

To measure the membrane stability index (MSI), leaf discs of

each plant were placed in 10 mL of distilled water and heated in a

water bath at 40 °C for 30 min. The electrical conductivity (EC) was

measured for the same sample after being heated to 100 °C for 10

min (C1). The EC was then measured after the sample had been

heated (C2). The MSI of each plant was calculated using the

following formula (Khan et al., 2021):

M : S : I = ½1 − (C1=C2)� � 100
2.5 Assessing the total chlorophyll content

Chlorophyll a, chlorophyll b, and total chlorophyll were assessed

for each plant using the method described by Khan et al. (2020) and

optimized by Arnon et al. (1949), with slight modifications. Fresh

leaves were ground in 10 mL of 100% acetone and were then filtered

usingWhatman paper to collect the filter extract in a separate test tube.

The filtrates were retained at 28 °C for 2–3 d in the dark and the

absorbance were checked at 645 nm and 663 nm wavelengths

respectively in the spectrophotometer (Thermo Scientific, EVO

60, Germany).
FIGURE 1

Schematic diagram for preparation of biochar from P. hysterophorus by pyrolysis method and detailed experimental design with treatments and
control. T0 indicate control, T1 (only drought), T2 (drought and PGPR), T3 (drought and biochar) and T4 (drought combined with biochar and PGPR).
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Chlorophyll a, chlorophyll b, and total chlorophyll were

determined using the following formula (Khan et al., 2020):

Chlorophyll a = 12:7(A663) − 2:7(A645),  Chlorophyll b

= 22:9(A645) – 4:7(A663)

Total chlorophyll = Chlorophyll a + Chlorophyll b
2.6 Antioxidant enzyme activity

To examine the antioxidant enzyme activity for each plant

treatment, we followed the protocol of Khattak et al. (2022) with

slight modifications. Fresh barley leaves (0.4 g) from each treatment

were ground with Tris buffer (NaH2PO4) and Na2HPO4 (pH 7) and

mixed well before being placed in the centrifuge at 13000 rpm for 17

min at 4 °C. The pellets were removed and the supernatant was then

used for enzyme extraction for various assays (POD, CAT, and

SOD). The peroxidase (POD) activity was determined

spectrophotometrically (Thermo Scientific, EVO 60) at 470 nm,

with reaction mixture (1 mL 0.3% H2O2, 0.95 mL 0.2% guaiacol, 1

mL 50 mM PBS and 100100 μL). The enzyme activity was recorded

every 30 s and at least six readings were obtained. The catalase (CAT)

activity was assessed as described by Akhtar et al. (2021) with slight

modifications. The reaction mixture contained 0.3% H202, 1.9 mL

water, and 100 μL enzyme extractmixed together and recorded at 240

nm. For superoxide dismutase (SOD) activity, the protocol of

Zulfiqar et al. (2022) was used. The reaction mixture contained 3

mL including PBS buffer (50 mM), nito-blue tetra azolium (70 μM),

and methionine (13 mM) was mixed with 0.1 μM (EDTA) + 0.1 mL

enzyme extract to forma solution. The absorptionwas checked at 560

nm using a spectrophotometer (Thermo Scientific, EVO 60).
2.7 Statistical analysis

Statistical analysis of the soil physicochemicals were analyzed

using one-way ANOVA with Tukey’s test (p< 0.05) (IBMS, Amos,

21). The student’s t-test (p< 0.05) was used for pairwise

comparisons among treatments with the control. All experimental

data were obtained in triplicates. Significant differences at different

p values (p< 0.05, one asterisk; p< 0.01 indicate double asterisk),
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standard deviations, and mean separations were conducted. Origin

Pro 8 was used to design all the figures in this study.

3 Results

3.1 Physical and chemical properties of
post harvested soils

The physical and chemical properties of the soils changed in

response to the addition of BC, PGPR, or their combination. The

pH and electrical conductivity (EC) of the soils increased with the

addition of BC and PGPR (Table 2). All the soil nutrients, that is,

total N, total P, and total K, significantly increased in the soils

treated with BC alone, PGPR alone, and the combination of

PGPR and BC. However, these essential nutrients decreased

under drought conditions compared with the control (Table 2).

The total organic matter (OM) of the post-harvested soils also

showed a similar trend, because it significantly increased with the

addition of biochar and PGPR but decreased under drought

stress alone.
3.2 Effects of PGPR, biochar, and drought
on growth and reproductive traits in barley

The growth of barley significantly increased with the

amendment of PGPR, BC, and combined BC + PGPR compared

to the control. However, it significantly decreased under drought

alone (Figure 2A). Shoot length in barley was significantly elongated

under the PGPR, BC, and PGPR + BC treatments, which was

37.03% higher in the PGPR + BC treatment than the control

(Figure 2B). The shoot length of barley was significantly inhibited

by drought treatment in the absence of PGPR and BC. The root

length of the barley plants was substantially higher (35%) under the

treatment with PGPR alone treatment compared to the control.

However, there was no significant difference in the other

treatments (Figure 2C).

Fresh biomass of the barley plants was significantly (p< 0.05)

higher than the control by 20%, 24%, and 52% in the PGPR, BC,

and PGPR + BC treatments, respectively. However, it decreased by

20% under drought stress alone (Figure 2D). A similar trend was

observed for plant dry biomass, which was significantly higher
TABLE 2 Physicochemical properties of the post harvested soils.

Treatments pH EC
(dsm-1)

NO3-N (mg/kg-1) P (mg/kg-1) K
(mg/kg-1)

OM
(mg/kg-1)

CK 7.25 b 0.17 b 2.75 c 34 c 45 c 0.48 c

DR 6.55 c 0.12 c 1.80 d 25 d 30 d 0.30 d

BC 7.40 ab 0.22 a 4.99 ab 50 a 50 b 1.9 ab

PGPR 7.20 b 0.2 ab 3.65 b 43 ab 52 ab 1.45 b

BC+PGPR 7.58 a 0.27 a 5.1 a 52 a 60 a 2.3 a
Different letters indicate significantly differences among treatments at P< 0.05 (Tukey’s test).
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under PGPR + BC treatment by 62.5% compared to the control.

However, it decreased under the treatment with drought stress

alone (Figure 2E).

The seed germination rate in the soils treated with BC was

significantly higher by 42.4% (p< 0.05) that of the control (Figure 3).

The second-highest seed germination rate was recorded in the BC

combined with PGPR treatment (Figure 3). The seed germination

rate in the PGPR alone treatment was slightly higher than that of

the control (Figure 3). Under drought conditions, the seed

germination rate was significantly lower than that of the control

(p< 0.05, Figures 3A, B: Supplementary Data).
3.3 Effects of PGPR, biochar, and drought
on physiological traits in barley

The chlorophyll-a (chl-a) content of the plants was significantly

lower in the drought treatment than in the control. Meanwhile, the

amendment of biochar and PGPR significantly enhanced chlorophyll-

a in barley compared with the control (Figure 4A). A similar trend in

chlorophyll b (chl-b) content was observed under the BC, PGPR, and

combined BC + PGPR treatments compared to the control. However,

it significantly decreased under drought stress alone (Figure 4B). The

total chlorophyll content of the plants was significantly higher under

the PGPR, BC, and PGPR + BC treatments than that of the control by

10.6%, 15.6%, and 31.1%, respectively. However, it decreased by 16.5%

under the treatment with drought stress alone (Figure 4C).
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3.4 Total antioxidant activity in barley

The antioxidant enzymatic activities (POD, CAT, and SOD) of

barley significantly increased in response to most treatments.

However, they decreased significantly by 20%, 25%, and 25%

respectively under conditions of drought stress alone compared to

the control (Figures 5A–C). The highest POD, CAT, and SOD values

were recorded (23.3, 100%, and 21%) in the combined BC + PGPR

drought stress treatment (Figure 5). This suggests that BC and PGPR

promote antioxidant enzyme activity to alleviate ROS toxicity.
3.5 Plant uptake activity

The uptake of nitrogen (N), potassium (K), and phosphorus (P)

by barley under drought stress was examined. Soil nutrient uptake

activities of barley plants were significantly enhanced under BC,

PGR, and the combination of BC + PGPR (Figure 6). The highest

(39.7%) total N uptake was recorded in the PGPR and BC combined

treatment, whereas the lowest (7.1%) occurred under the drought

stress treatment (Figure 6A). The total P content was highest under

the PGPR + BC treatment (27.5%), and the second highest was

observed under the BC alone treatment (23.5%). These were the

only treatments higher than the control (Figure 6B). The total K

uptake was highest (27%) under the BC + PGPR treatment and

lowest (11.4%) under the treatment with drought stress (Figure 6C).
FIGURE 2

Growth response of barley with or without plant growth promoting rhizobacteria (PGPR), biochar (BC) and combined PGPR and BC (PGPR+BC)
under drought (DRT) stress. (A) Plant phenotype, (B) Shoot length, (C) Root length, (D) Fresh biomass, (E) Dry biomass. The bars represent the
standard deviation with 3 replicates. A single asterisk represents significant differences at p< 0.05, while two asterisks represent significant differences
at p< 0.01 compared to the control (student t test).
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4 Discussion

The phenotypic, biological, agronomic, and physiological

properties of plants are strongly affected by drought stress

(Mertz-Henning et al., 2018). Water deficit is one of the global

agricultural issue to restricts crop productivity and development,

including plant growth, nutrient uptake, and antioxidant activity
Frontiers in Plant Science 07
(Laird et al., 2010). Therefore, it is necessary to develop effective

approaches for tolerance and resistance to drought stress. PGPR

and BC activities can generally improve plant tolerance and

productivity (Akhtar et al., 2021). PGPR can promote plant

growth either directly or indirectly, that is, the direct mechanism

of PGPR uses resource acquisition including essential minerals,

ACC deaminase, auxin, nitrogen fixation, and phosphorus
A B C

FIGURE 4

Chlorophyll content of barley plants with or without plant growth promoting rhizobacteria (PGPR), biochar (BC) and PGPR together with BC under drought
stress. (A) Chlorophyll-a, (B) Chlorophyll-b, (C) total chlorophyll. The bars represent the standard deviation with 3 replicates. A single asterisk represents
significant differences at p< 0.05, while two asterisks represent significant differences at p< 0.01 compared to the control (using student t test).
FIGURE 3

Seed germination assay of barley with or without plant growth promoting rhizobacteria (PGPR), biochar (BC) and PGPR+BC under drought stress.
(A) Germinated seeds, (B) seed germination rates. The bars represent the standard deviation with 3 replicates. A single asterisk represents significant
differences at p < 0.05, while two asterisks represent significant differences at p < 0.01 compared to the control (using student t test).
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solubilization. Meanwhile, the indirect mechanism inhibits the

function of other pathogenic organisms through biocontrol agents

and cell wall degradation by enzyme production (Frampton et al.,

2012). Different strains of PGPR have been proven to enhance plant

growth, for example Azosprilillum, Bacillus, and Serratia (Akhtar

et al., 2021: Bangash et al., 2013). BC is another strategy used for

enhancing plant growth and development because it stores more

water and increases nutrient uptake, which promotes the growth of

the rhizosphere (Khan et al., 2021).
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In the present study, we found that the combined treatment with

PGPR (Serratia odorifera) and biochar (P. hysterophorus) enhanced

soil organic content, total nitrogen, total phosphorus, and total

electrical conductivity under drought stress. This was because BC

has ash content, nutrient content, and increased holding capacity.

These results have suggested that biochar and PGPR have a potential

positive effect on soil fertility. Algal biochar and PGPR enhanced soil

quality and organic matter, as well as total essential minerals. This is

because algal BC has organic carbon that may enhance the bacterial
A B C

FIGURE 6

Nutrient uptake activity of barley plants in the control (well-watered no PGPR and BC), drought (alone), plant growth promoting rhizobacteria (PGPR
with drought), biochar (BC with drought) and PGPR with BC (with drought). (A) Total nitrogen content, (B) total phosphorus content, and (C) Total
potassium content. The bars represent the standard deviation with 3 replicates. A single asterisk represents significant differences among treatments
at p< 0.05, while two asterisks represent significant differences at p< 0.01 compared to the control (using student t tests).
A B C

FIGURE 5

Antioxidant enzyme activity of barley plants in the control (well-watered), drought (alone), plant growth promoting rhizobacteria (PGPR with
drought), biochar (BC with drought) and with PGPR and BC combined (with drought). (A) Peroxidase activity, (B) catalase activity, (C) superoxide
dismutase activity. The bars represent the standard deviation with 3 replicates. A single asterisk represents significant differences at p< 0.05, while
two asterisks represent significant differences at p< 0.01 compared to the control (using student t test).
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population in the rhizosphere, which involves soil nitrification to

promote total soil minerals (Ullah et al., 2020). Soil organic matter

and essential minerals increase in soils because of the porous

structure and ash content of the biochar, which enhanced the

absorption ability of different cultivator (Yu et al., 2023). Ain et al.

(2023) found that biochar from P. hysterophorus enhanced the

organic matter and total nitrogen content in soils where rice plants

were grown under drought and saline conditions. The potential

effects of biochar on soil fertility, organic matter, and important

minerals have been widely reported (Tak et al., 2013; Awad et al.,

2019; Eissa, 2019).

In this study, we observed a positive correlation between PGPR

and BC with increasing barley growth. The barley phenotypes were

more vigorous when treated with BC, PGPR, or a combination of

both compared to the control. Meanwhile, drought stress alone

severely impacted the plants. The shoot length was significantly

higher under the PGPR and BC treatments than under the control,

which decreased the negative effects of drought stress alone

(Figure 2). Therefore, it can be concluded that combining PGPR

with BC significantly enhances plant growth under drought

conditions. This result is in line with the findings of a previous

study showing that the phenotypes of rapeseed improved when

treated with biochar to promote growth under water-deficit

conditions (Khan et al., 2021). Tomato plant phenotypes and

shoot and root lengths significantly improved after amendment

with biochar and PGPR, which significantly enhanced plant

resistance to drought (Wang et al., 2021). Awad et al. (2019)

highlighted that barley growth and development were enhanced

after amendment with two different concentrations of biochar

compared with the control treatment. In the present study, the

root length was considerably longer under drought stress and PGPR

treatments compared to BC. This suggested that water deficit could

induce roots to grow deeper into the soils to enhance water uptake

due to inoculation of the PGPR Serratia odorifera strain. This has

the capability to form indole acetic acid (IAA) which is capable of

increasing stimulation of amino cyclopropane carboxylic acid

synthase that converts toxic ethylene to amino-cyclo-propane

carboxylate (ACC). ACC may help convert the ethylene hormone

to a-ketobutyrate and ammonia forms in the rhizosphere. Barley

roots can become substantially elongated after decreased

stimulation with ethylene (Bangash et al., 2013). BC from P.

hysterophorus acts as a bodyguard for PGPR to enhance root

proliferation. This provides essential nutrients and adjusts the

water levels owing to its high surface area, increasing the

electrolyte capacity and water-holding capacity (Hussain et al.,

2021). This is supported by another study in which maize roots

were elongated under drought stress when treated with PGPR and

BC compared to the control (Ullah et al., 2020).

The seed germination rate of barley was significantly higher

under biochar and the combination of BC and PGPR under drought

stress (Saeed et al., 2022). These findings suggest that P.

hysterophorus biochar would help to improve the barley plants
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during the early stages of seed germination under water-deficient

conditions. This is because it may increase the soil essential nutrients

(N, P, and K) owing to the porous and negatively charged structure

to decrease soil leaching and enhance soil mineralization by directly

aborting plant roots from the soil (Ain et al., 2023). It may also

activate the metabolic system in the soils to activate PGPR inside the

root zone. In this study, the PGPR strainmay have increased the seed

germination rate by increasing the production of essential growth

hormones, that is, auxin and cytokinin, to enhance the production of

enzyme activity. In this context, amylase can help to promote the

levels of starch (Akhtar et al., 2021). The fresh and dry biomass of

barley was significantly higher when treated with biochar and PGPR.

Danish et al. (2020), reported the positive effects of ACC deaminase

PGPR on maize for enhancement the maize development and

biological response. Growth rate, chlorophyll content, and

enzymatic activity of potato plants significantly increased with the

inoculation of PGPR o resist the water scarcity condition (Batool

et al., 2020). This is in line with the findings of the present study.

Biochar from P. hysterophorus has been found to significantly

improve seed germination, shoot height, and root length in maize

plants (Kumar et al., 2013). This suggesting that there is some

beneficial use for some invasive plant species in agriculture.

Plant physiological responses are important during abiotic

stress (Khan et al., 2020) and chlorophyll levels can be used as an

indicator for various abiotic stress in the plant (Wang et al., 2019).

Water deficit condition, negatively affects the plant growth and

physiological response (Mertz-Henning et al., 2018). However, it

was previously found that the chlorophyll content in barley

significantly increased under drought stress after amendment

with BC (Tak et al., 2013). This is similar to the observations in

the current study (Figure 4). Chlorophyll a and b were significantly

higher in tomato plants following the application of PGPR (Batool

et al., 2020), as well as in barley plants treated with BC (Awad et al.,

2019). This suggests that BC and PGPR may benefit plant

physiological responses. Rice plants have significantly enhanced

chlorophyll content owing to the presence of PGPR, which

promotes photosynthetic efficiency (Hafez et al., 2016). Our

results have indicated that combining PGPR-tolerant strains with

BC from P. hysterophorus enhances the ability of barley plants to

survive under water-deficit conditions and can maintain

photosynthetic pigments. The chlorophyll a, b and total

chlorophyll content of the current proposed study significantly

higher under BC and PGPR treatments because Chlorophyll is

directly linked to the nitrogen content in the leaves. After the

amendments of PGPR and BC, the photosynthetic rate in barley

plants was enhanced because of increased N uptake activities from

the soil via the xylem to close the stomata and prevent water loss

under drought stress (Lalay et al., 2021). PGPR can prevent net

photosynthetic activities by producing cytokinin hormones to close

the stomata and enhance leaf cell division in the early growth stage.

This then leads to an increase in the number of vascular bundles to

promote leaf area (Sivasakthi et al., 2013; Hönig et al., 2018).
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Application of PGPR and BC may improve root growth, which, in

turn, improves nutrient intake and ultimately increases

photosynthetic activity.

The crop antioxidant defense system is triggered under water

deficit conditions to absorb reactive oxygen radicals, which

potentially affect numerous organelles in plants (Zhang et al.,

2021). Antioxidant enzymes in barley plants may potentially

mitigate the negative effects of drought stress by scavenging

reactive oxygen species (ROS) and preventing cell damage (Gupta

et al., 2015). The present findings have shown that catalase (CAT),

peroxidase (POD), and superoxide dismutase (SOD) were

significantly increased under drought stress following the addition

of PGPR and BC. This alleviated the negative effects of ROS owing

to PGPR-activated self-protective systems and the production of

enzymes inside the plant (Figure 5). Our results are in line with

those of other studies that found increased CAT, POD, and SOD

activities under drought stress (Abid et al., 2019). This suggests that

plants treated with PGPR and BCmay produce ROS that protect the

photosynthetic apparatus (Hafez et al., 2020). Barley plants showed

decreased toxicity caused by reactive oxygen species after

amendment with BC and chitosan, which boosted antioxidant

enzyme activity. The findings of the current study are in line with

those of Khan et al. (2021), who observed a positive role from

biochar in reducing the toxic effects of drought stress supported by

SOD, CAT, and POD enzyme activities.

Addition of biochar and PGPR increases the plant uptake of

essential nutrients from the soil (Abdipour et al., 2019). Nutrient

uptake in barley plants significantly increased after treatment with a

range of biochar concentrations under drought stress (Awad et al.,

2019). In the present study, we found that the uptake of total nitrogen,

total potassium, and total phosphorus was significantly enhanced after

amendment with biochar, PGPR, and a combination of both. This is

because this PGPR strain has the capability to take up more nutrients

from the soil by a direct mechanism to release the organic compound

responsible for nutrient availability (Ullah et al., 2020). Therefore,

PGPR and BC can enhance the uptake of essential nutrients under

drought conditions. Yu et al. (2023) hypothesized that nitrogen uptake

activity increases because of plant growth bacteria associated with the

nitrogen cycle helping plants resist abiotic stress. In contrast, plants

treated with biochar have enhanced uptake of total nitrogen,

phosphorus, and potassium because they have negatively charged

ions and cohesive forces that boost mineralization in soils (Laird

et al., 2010). Mahmood (2022) also observed that more phosphorus

was absorbed by plants treatedwith PGPRunder high stress conditions.
5 Conclusion

The results of this study have shown that the positive role of the

PGPR drought strain (Serratia odorifera) and BC from P.

hysterophorus mitigated the negative effects of drought stress by

improving plant growth, plant biomass, and seed germination. The

combination of PGPR and BC significantly enhanced chlorophyll

content and activated the antioxidant defense system in barley to

resist drought stress. Furthermore, they improved the uptake of

essential nutrients, that is, N, P, and K, as well as soil organic matter.
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Therefore, biochar and PGPR could play a key role in alleviating the

negative effects of abiotic stress on agricultural crops. From this

perspective, the application of BC and PGPR to other plants under

different stress conditions should also be explored.
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