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1 Introduction

The rapid development of robotics and artificial intelligence has led to increasing

deployment of agricultural robots for precision agricultural applications (Chebrolu et al.,

2017; Su et al., 2021; Hu et al., 2022b). Simultaneous Localization andMapping (SLAM) is a

critical skills for robots, which builds the environmental map around the robot and

localizes the robot on the map at the same time (Cadena et al., 2016). SLAM is also a

prerequisite of many other tasks for robots, such as autonomous navigation

(Ponnambalam et al., 2020) and path planning (Bonny and Kashkash, 2022). Various

modalities of sensors are used to realize SLAM, so as to realize full automation of

agricultural robots (Gupta and Fernando, 2022; Tourani et al., 2022). Among them,

Visual Simultaneous Localization and Mapping (VSLAM) has gained tremendous

attention due to the wide availability of camera and its cost effective nature (Matsuki

et al., 2018; Campos et al., 2020). Many datasets have been proposed for VSLAM, such as

KITTI dataset (Geiger et al., 2013) and TUM dataset (Schubert et al., 2018). These

benchmark datasets are of key importance to make a fair comparison and validation of

different VSLAM methods. Therefore, construction of a benchmark dataset captured in

agricultural field for VSLAM is important for design and evaluation of VSLAM methods

that are suitable for agricultural robots.

In recent years, the number of publicly available datasets in the field of robotic

application in agricultural has gradually increased, attracting surging attention from

researchers. Currently, agricultural datasets mostly focus on fruit detection (Gené-Mola

et al., 2019), weed detection (Dos et al., 2017; Olsen et al., 2018) and obstacle avoidance

applications (Pezzementi et al., 2018). Only few datasets are available for localization and

navigation, and further processing of the data is lacking. Hansen et al. (2017) collected data

from stereo camera, thermal camera, LIDAR, Inertial Measurement Unit (IMU), and GNSS

in dynamic scenes, and added object labels and geographic coordinates to all static and

moving obstacles. The dataset is primarily used for localization and obstacle detection of

robots in agricultural field. Zujevs et al. (2021) proposed the first event-based vision dataset,
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recording data sequences in 12 different scenes in autumn, aiming

to cover visual navigation tasks in different types of agricultural

environments. The dataset is specifically designed for a special type

of vision sensor, i.e. event camera. Chebrolu et al. (2017) presented a

multi-sensor dataset for plant segmentation, localization and

mapping in a sugar beet farm. The dataset consists of data

captured by RGB-NIR camera, Kinect RGB and depth camera

and RTK-GPS sensor, and is recorded continuously for three

months. The RGB-NIR camera data is semantically annotated for

pixel-wise classification and segmentation of sugar beet and weed.

Pire et al. (2018) proposed a number of visually challenging soybean

field scenarios captured by ZED stereo camera, including sunlight

reflections, irregular terrain, and highly repetitive texture which is

particularly challenging for loop closure. In addition, information

such as IMU and wheel odometers were recorded for the evaluation

of SLAM algorithms by the fusion of multiple sensors. The captured

RTK-GPS serves as ground truth for robot trajectories. Aiming at

the dynamic characteristics and change of plant features in

agricultural environments, Dong et al. (2016) performed

continuous recordings of a peanut field. A data association

algorithm is designed to solve the problem of large appearance

change caused by different time points and different angles. Lu and

Young (2020) and Wang et al. (2022) provided a review on

agricultural datasets for robotics.

Regarding VSLAM of agricultural robots in farms or fruit

orchards, the situation is usually more challenging than the most

general case, due to the semi-structured environment of farms and

fruit orchards. Although the plants and trees are often planted in

structured rows, VSLAM is still a challenging problem, because of

the repetitive visual pattern which is observed by robots when

driving along these rows. The repetitive visual pattern can severely

damage the performance of VSLAM by introducing incorrect

matching of visual feature points and incorrect loop closure.

Classical VSLAM frameworks often use direct or semi-direct

methods such as LSD-SLAM (Engel et al., 2014) and DSO

(Matsuki et al., 2018), and indirect methods such as PTAM

(Klein and Murray, 2007) and ORB-SLAM3 (Campos et al.,

2020), to optimize camera poses and build the environmental

map. Due to the semi-structured nature of the farms and fruit

orchards, these conventional VSLAMmethods often fail or perform

poorly when being used in agricultural dataset. To effectively resolve

the challenging semi-structured environment, it is important for

robots to fully exploit objects and semantic information in their

surrounding environment (Wang et al., 2020). Recent works in

VSLAM show that adding object (Yang and Scherer, 2018) and

semantic level information (Wen et al., 2021) to conventional visual

feature points yields promising results. Among them, object SLAM

is a typical application of semantic SLAM, which aims to estimate

more robust and accurate camera poses by leveraging the semantic

information of in-frame objects (Wu et al., 2020).

In this paper, Lettuce Farm SLAM Dataset (LFSD), a VSLAM

dataset based on RGB and depth images captured by VegeBot (Hu

et al., 2022a) in a lettuce farm, is presented. The dataset consists of

RGB and depth images, IMU, and RTK-GPS sensor data. Detection

and tracking of lettuce plants on images are annotated with the

standard Multiple Object Tracking (MOT) format (Zhang et al.,
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2020). It aims to accelerate the development of algorithms for

localization and mapping in the agricultural field, and crop

detection and tracking. Our data and related supporting

documents is publicly released at https://ieeedataport.org/

documents/lfsd-dataset and https://github.com/wangshuo9707/

LFSD-Dataset. Supplementary python scripts for converting raw

data files (text and JPG image files) to ROS bag files for ROS1 and

ROS2 systems, as well as converting MOT annotation files to target

detection annotation files, are provided for the convenience of users.

The major contributions of the proposed dataset are

summarized as follows:
1. Eight closed-loop sequences recorded in a lettuce farm by

the VegeBot robot are provided, as shown in Figure 1A.

The dataset is approximately 67 G, including RGB images,

depth images and IMU information recorded by the Intel

RealSense D435i sensor installed in front of the robot

slightly facing downward. The MOT (Zhang et al., 2020)

format is used to annotate part of the RGB and depth

images, which is used to carry out research on detection

and tracking of lettuce plants. RTK-GPS data is presented

for performance evaluation of VSLAM algorithms. We

tested three open source VSLAM algorithms with the

proposed dataset, and report benchmark results for

comparison purpose.

2. Compared to existing datasets for robotic localization and

mapping in agricultural field, the proposed dataset provides

plant detection and tracking annotation, which makes it

possible for object level VSLAM. In addition, recording of

closed-loop data in different growth stages of lettuces from

the same area is helpful for designing a spatio-temporal

model of a dynamic scene. Specifically, the dataset provided

by Pire et al. (2018) does not contain any plant detection

information. Though the dataset provided by Chebrolu et al.

(2017) provided semantic labels for RGB-NIR image pairs,

there is no straightforward object labels for each individual

plants and correlations between plants in consecutive

images. Therefore, it can not be directly used for object

level VSLAM. Even if the RGB-NIR data can be post-

processed to extract all objects and their correspondences

for object level VSLAM, the resulting localization lacks scale

information since the RGB-NIR camera is essentially a single

pinhole camera. In comparison, our method directly

provides plant detection and tracking information for RGB

and depth image pairs, which is suitable to evaluate object

level VSLAM without lack of scale information.
2 Materials and methods

2.1 Data acquisition

The dataset was collected in the spring of 2022 and 2023,

respectively, at a lettuce farm in Tongzhou district, Beijing,

China. The lettuce is planted in a ridge transplanting mode, and
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two rows are planted on each ridge. The distance between rows and

plants is about 35cm. At the time of data collection, the lettuce was

in the rosette stage, and there is no obvious overlap between plants.

The VegeBot robot used to collect data is developed by China

Agricultural University. It is powered by 8 servo motors for four-

wheel independent drive and steering, so that it can drive in various

farms with great flexibility as shown in Figure 1A. The VegeBot is

equipped with a RTK-GPS sensor for GNSS-based global

positioning and a forward-tilted Intel RealSense D435i depth

camera with an IMU sensor. In order to ensure the recording

quality of the dataset, the robot is remotely controlled following the

middle of the plant rows as much as possible with a speed of about

0.6m/s. When the robot is driving straight along the lettuce ridge, it

adopts the front-wheel Ackerman steering method to ensure

smooth progress. When turning at the end of the ridge, it adopts

synchronous four-wheel steering to provide the smallest

turning radius.

The Intel RealSense D435i depth camera is approximately 1.1m

high from the ground and tilted slightly downward with an angle of

40° between horizontal line. For Intel RealSense D435i camera, its

RGB Field of View (FOV) is 69° ×42°, the maximum resolution is

1920×1080, and the frame rate is 30 Frames Per Second (FPS). The

FOV of depth image can reach 87° ×58°, the maximum resolution is

1280×720, the maximum frame rate is 90 FPS, and the depth

accuracy is< 2%. It provides a wide field of view in a global

shutter mode, so it can cover a wider area and has high

adaptability to low-light environments. An IMU is also available

to measure acceleration and rotation rate with 6 Degree Of Freedom

(DOF). During the data collection, it streams RGB images with a

size of 1280×720, and aligned depth images at 10 FPS. It streams

IMU information at 200 HZ. The RTK-GPS sensor based on GNSS

global positioning receives the satellite signal and the differential

signal of the base station, and performs RTK calculation internally.
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Finally, the longitude and latitude position information with

centimeter-level precision and direction information are released

at 1HZ. All sensor data is recorded by the on-board computer with

Intel i5-9400 CPU, NVIDIA RTX1650 GPU, 8 GB DDR4 RAM, 1T

hard disk, and operating system of Ubuntu 18.04. Sensor data is

recorded with their Robot Operating System (ROS) drivers in terms

of asynchronous ROS topics. Timestamp is recorded for each piece

of information, which is used for synchronizing data from

multiple sensors.

In total, the robot drives eight closed loop trajectories. With

each trajectory, the robot starts from the first ridge, continuously

drives through the lettuce field with multiple ridges, finally returns

to the first ridge, and drives for a certain distance, as shown in

Figure 1B. Sequences 1 to 4 are closed-loop recordings from four

different areas recorded in 2022. Among them, Sequences 1 and 2

cover large area of the farm. Due to the regular weed removal in the

field of sequence 1, the density of weed is low throughout the

planting period. In comparison, in order to enhance the richness

and complexity of the dataset, the areas where sequences 2, 3, and 4

are located have not been manually cleared of weeds, so the density

of weed is relatively high. Sequences 5 to 8 are closed-loop

recordings of the same area captured in 2023. In these four

sequences, the weed density is comparatively low. The resolution

of RGB and depth images recorded by the D435i sensor is 640×480.

The tilt angle between the sensor and the horizontal line is set to 45

degree to obtain a wider field of view.
2.2 Dataset

2.2.1 Extrinsics between different coordinates
To facilitate the data fusion of different sensors, we provide

the 3D coordinate transformations between the base_link of the
B

C

A

FIGURE 1

Details of data acquisition. (A) Robot and installed sensors. (B) Geological location of the farm and GPS trajectories of the eight sequences of the
dataset. (C) Illustration of the coordinate frames. The a is base_link, the b is D435i_link, and the c is GPS_link. The x-axis is colored red, the y-axis is
green, and the z-axis is blue.
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robot and all other sensors. Among them, the RTK-GPS has two

satellite signal receiving antennas, which run in master slave mode.

The master antenna on the left side serves as the base point of

positioning, which is denoted as GPS_link. The slave antenna on the

right side assists the master antenna in positioning by providing the

orientation of yaw and pitch angles. The RTK-GPS sensor does not

provide the roll angle. The robot base_link is located in the middle

of two GPS antennas over its Y axis direction, as shown in

Figure 1C. The coordinate transformations of other sensors

relative to the base_link are shown in Table 1, where the

translation is given by x, y and z, and the rotation is given by

the quaternion.

2.2.2 Dataset structure and image annotation
There are eight sequences in the dataset, corresponding to the

eight trajectories in Figure 1B. In order to prevent data loss during

recording, it is saved every 5 to 8 minutes, so each sequence is split

into multiple files in chronological order. For the convenience of

users who are not familiar with ROS, the dataset originally recorded

with ROS drivers is converted into image and text data files. Each

sequence is subdivided into data folders for two sensors, GPS and

D435i, as shown in Figure 2A.
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2.2.2.1 RTK-GPS

The gps.txt file in the GPS folder contains original GPS data,

including longitude, latitude and altitude positional information as

well as three-axis attitude angle information, with its format

detailed as follows,

GPS < timestamp > lat,  long ,  altitude,  yaw,  pitch,  rollf g (1)

where GPS< timestamp > is the ROS timestamp. To estimate

the accuracy of the visual odometry and VSLAM algorithms, The

latitude and longitude coordinates (lat, lon, altitude) are converted

into Cartesian coordinates (x, y, z). In the converted Cartesian

coordinates, the robot initial position is

set to be the origin of the coordinate system. The orientation of

the robot is expressed in quaternion. Using the extrinsic

transformation between base_link and the GPS_link, the ground

truth base_link trajectories are also provided. It is saved in the

groundtruth.txt file, with its format detailed as follows,

GPS < timestamp > x y z qx qv qz qwf g, (2)

where x, y, z are used to indicate the position of the robot, and

qx, qy, qz, qw are quaternions used to indicate the rotation of

the robot.
TABLE 1 Rigid transformation from different sensors to the robot base_link.

Frame x(m) y(m) z(m) qx qy qz qw

base_link 0 0 0 0 0 0 1

GPS_link 0 -0.491 0 0 0 -0.707 0.707

D435i_link1 -0.383 0 -0.034 -0.242 -0.242 -0.665 0.665

D435i_link2 -0.383 0 -0.034 -0.271 -0.271 -0.653 0.653
1Extrinsic transformation of D435i sensor relative to base_link in sequences 1, 2, 3, and 4.
2Extrinsic transformation of D435i sensor relative to base_link in sequences 5, 6, 7, and 8.
B CA

FIGURE 2

Dataset format and image annotation. (A) File structure for dataset. The the term<index> identifies each piece of data, the term<date> refers to the
day of the data acquisition, and the term<timestamp>is the timestamp recorded by ROS. (B) Example of annotated plants in the low weed density
scene of sequence 1. (C) Example of annotated plants in the high weed density scene of sequence 2.
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2.2.2.2 D435i

The D435i folder contains both RGB and depth images, and

uses ROS timestamps as names of the images. As there is a short

interval between the timestamp published by the two topics, it is

necessary to associate and synchronize the RGB and depth images.

It is provided in the associations.txt file, whose format is as follows,

RGB < timestamp >,  depth < timestamp >f g, (3)

where RGB< timestamp > and depth< timestamp > are the

corresponding image names in the

RGB folder and the depth folder, respectively. calibration.txt

contains the camera intrinsic parameters, which are obtained based

on the calibration method of Zhang (1999). This file consists of the

camera’s intrinsic parameters fx, fy, cx, cy, the radial distortion

coefficients k1, k2, k3, and the tangential distortion coefficients p1,

p2. accel.txt and gyro.txt are accelerometer and gyroscope data,

respectively. mot.txt contains annotated lettuce detection and

tracking information expressed in the popular MOT format. In

addition to detection, tracking of lettuce plants offers correlation

between object detection results between consecutive images, as

shown in Figures 2B, C, which helps to identify the same landmarks

for object level SLAM methods. This is especially convenient for

researchers to design object level SLAM algorithms using lettuce

plants as landmarks.

The DarkLabel tool is used to label images, and the label format

is:

MOT _ label = RGB < timestamp >, id, x, y,w, h, 1, 0, 1f g, (4)

where RGB< timestamp > is the name of the RGB image, id is

the ID number of individual lettuce. x and y are the coordinates of

the upper left corner of the label box, and w and h are the width and

height of the label box. The last three the numbers 1,0,1 are not used
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in this dataset. All images of sequence 3 are annotated, while images

of only one ridge of sequences 1, 2, and 4 are annotated. The

detailed information is summarized in Table 2.
2.3 Evaluation of MOT and VSLAM
algorithms with the proposed dataset

Extensive evaluation of popular VSLAM algorithms, as well as

MOT methods, are conducted with the proposed dataset. All

methods run on a computer with I9 10850K CPU, NVIDIA RTX

3070 GPU, 32G DDR4 RAM, and the operating system of

Ubuntu 18.04.

Firstly, three popular MOT algorithms, which are namely

FairMOT (Zhang et al., 2020), ByteTrack+NSA kalman filter (Du

et al., 2021) and YOLOV5+SORT (Bewley et al., 2016), are tested

with 1-4 sequences of the dataset. The results are shown in Table 3,

and the ByteTrack+NSA kalman filter performs the best among all.

The provided benchmark results are helpful to researchers in

developing new MOT methods, and comparing their performance

with existing methods based on the proposed dataset.

In order to show the characteristics of the challenging semi-

structured environment of the lettuce farm, we run three popular

open source VSLAM algorithms, i.e. ORB-SLAM3 (Campos et al.,

2020), DSO (Matsuki et al., 2018), and OA-SLAM (Zins et al., 2022),

with the proposed dataset. Among them, OA-SLAM is an object

level VSLAM. It uses the YOLOv5 deep neural net to detect objects,

and uses the Hungarian algorithm to find the optimal data

association (Zins et al., 2022). The performance of VSLAM

algorithms is reflected by their accuracy, robustness, computational

efficiency, scalability, map quality, and real-time performance. The

Absolute Trajectory Error (ATE) (Sturm et al., 2012) is used to
TABLE 2 Summary of the eight sequences of the proposed dataset.

Sequence 1 2 3 4 5 6 7 8

Sensors D435i GPS

Resolution 1280×720 640×480

Number of images (Frame) 44018 28134 7120 7498 9555 9709 9247 10275

Number of labeled images 2437 2084 7120 1768 / / / /

Tracks (Track) 889 538 2468 511 / / / /

Boxes (Box) 19846 13585 51166 11138 / / / /

Ridges/Labeled ridges 16/1 14/1 4/4 4/1 4/0 4/0 4/0 4/0

Weed density Less Normal Many Many Less Less Normal Normal

Loop closure Strict Strict Strict Strict Strict Strict Strict Strict

The weather Cloudy Sunny Sunny Sunny Cloudy Cloudy Sunny Sunny

Light intensity Weak Strong Strong Normal Weak Normal Normal Strong

Dynamic environment No No No No No No No No

Occlusion condition No No No No No No No No

Acquisition time 2022.4.26 P.M 2022.5.2 P.M 2022.5.2 P.M 2022.5.5 P.M 2023.4.17 P.M 2023.4.22 A.M 2023.4.26 A.M 2023.5.3 A.M
The details of data from each sensor are summarized as follows.
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evaluate the accuracy of the VSLAM algorithms. The mean

execution time to process one image is used to evaluate real-time

performance of different methods. The results are shown in Tables 4

and 5. Among the three methods, only the ORB-SLAM3 and OA-

SLAM result in complete tracking and positioning on sequence 3 and

7. All methods fail with the other six sequences, so they are only

tested on the single ridge of each sequence.

The results in Table 4 show that in semi-structured lettuce field

with repeated texture, both the ORBSLAM3 method relying on ORB

features and the DSO method based on the sparse direct method are
Frontiers in Plant Science 06
prone to failure. When the scene is large, as the driving distance

increases, the visual odometry drifts quickly, and the ATE grows

accordingly, which eventually leads to fail. Based on the results of

ORB-SLAM3, it can be seen that using RGB and depth images yields

more accurate results than relying on RGB images alone, and it is less

likely to result in failure. Failure of ORB-SLAM3 happens mostly

when the camera moves quickly when turning, causing blurry images,

or when the soil texture is similar at headland. The DSO algorithm

requires photometric calibration, and it fails where strong

illumination change happens. Compared to these two methods
TABLE 4 Performance of VSLAM algorithms with the proposed dataset in terms ATE.

Sequence Overall length /m Test length /m
ORB-SLAM3 OA-SLAM DSO

RGBD↓b Monocularc↓ Monocular ↓ Monocular↓

1 2565.28 154.38 6.05(3.91%)d 14.07(9.11%) 5.46(3.53%) 7.01(4.54%)

2 1637.35 112.80 2.56(2.27%) 27.49(24.37%) 7.22(6.40%) 6.79(6.02%)

3 455.37 455.37 39.99(8.78%) /e 19.22(4.22%) /

4 481.66 108.20 2.18(2.01%) 38.03(35.15%) 6.12 (5.65%) 8.31(7.68%)

5 478.22 79.31 1.88(2.37%) 8.17(10.30%) 3.43(4.32%) 3.22 (4.06%)

6 481.28 97.85 4.13(4.22%) 9.49(9.70%) 0.84(0.80%) 6.17(6.30%)

7 477.13 477.13 11.18(2.34%) / 16.10(3.37%) /

8 493.01 112.47 4.54(4.03%) 11.78(10.47%) 1.31(1.16%) 10.67(9.48%)
bSymbols ↓ after the evaluation metrics indicate the value of it is the lower the better.
cOnly RGB images are used for monocular VSLAM. In this case, the optimum scale information is used during evaluation.
dThe numbers in brackets represent the ratio of ATE over trajectory length (%).
eFailure of the method.
The bold values show the best performing method.
TABLE 3 Performance of three MOT methods with the proposed Dataset.

Sequence Method HOTA(%)↑ DetA(%)↑ AssA(%)↑ DetRe(%)↑ DetPr(%)↑ AssRe(%)↑ AssPr
(%)↑

1 FairMOT 39.17 56.11 28.09 60.28 79.43 31.21 47.68

ByteTrack+NSA kalman
filter

76.74 75.79 77.69 76.20 99.16 77.96 99.40

YOLOV5+SORT 65.79 63.86 69.66 67.18 81.98 73.49 87.86

2 FairMOT 50.03 54.08 51.06 58.58 74.97 54.51 77.05

ByteTrack+NSA kalman
filter

78.87 77.64 80.15 78.84 97.67 80.75 98.71

YOLOV5+SORT 67.54 65.89 70.31 70.23 81.51 74.46 86.59

3 FairMOT 51.85 54.19 51.39 57.79 74.82 54.24 79.19

ByteTrack+NSA kalman
filter

74.92 73.56 76.39 74.93 96.59 76.99 98.23

YOLOV5+SORT 64.34 62.96 67.04 66.87 79.82 71.04 84.64

4 FairMOT 44.95 52.15 39.79 55.97 75.82 42.18 65.53

ByteTrack+NSA kalman
filter

75.35 73.77 77.03 74.86 97.31 77.62 98.33

YOLOV5+SORT 65.49 63.34 70.35 66.73 81.28 74.16 88.38
a Symbols ↑ after the evaluation metrics indicate the value of it is the higher the better.
HOTA, DetA, AssA, DetRe, DetPr, AssRe and AssPr are comprehensive evaluation indicators for the MOT method, and their detailed explanations can be found in (Bewley et al., 2016; Zhang
et al., 2020; Du et al., 2021; Hu et al., 2022a).
The bold values show the best performing method.
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relying on low-dimensional features, the OA-SLAM algorithm tracks

lettuce plants, and exploits high level semantic information. In the

monocular mode, it yields better localization accuracy than the other

two algorithms. The performance of OA-SLAM degrades in scenes

with high weed density,e.g., sequences 4 and 7.

Therefore, it is critical to design a robust MOT method based

object level VSLAM to effectively resolve the challenging situation

of semi-structured environment of agricultural farms. Combined

with feature points such as low-dimensional ORB features, the

accuracy of camera pose estimation can be greatly improved. On the

other hand, in repeated texture scenes, the success rate of loop

closure detection based on lettuce plant detection can be increased

compared to the conventional methods based on e.g. binary bag of

words (Wang and Zell, 2018; Wang et al., 2020). The main goal of

the proposed dataset is exactly to validate object level VSLAM based

on plant detection and tracking.

The mean execution times of three VSLAM methods to process

one image are summarized in Table 5, which are provided by their

open source codes when running in offline mode. It can be seen that

ORBSLAM3 yields the best real-time performance in both monocular

and RGBDmode. OA-SLAM is based on ORB-SLAM2method (Zins

et al., 2022), and requires to carry out additional object detection and

tracking step, which adds additional time consumption. Interestingly,

DSO is reported to be generally faster than ORB-SLAM3, which

disagrees with the test results of the proposed dataset. It is likely to be

caused by the fact that, due to the complex texture of the soil in the

challenging agricultural field, there are many pixels with significant

brightness gradient change, which increases the run time for the

semi-dense mapping.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://ieee-dataport.org/

documents/lfsd-dataset https://github.com/wangshuo9707/

LFSD-Dataset.
Frontiers in Plant Science 07
Author contributions

SW, DS, and LZ contributed to the design of the data

acquisition. SW, ML, and HY collected the experimental data.

SW, and YJ organized and labelled the data. SW and DS wrote

the first draft of the manuscript. NH and YT wrote sections of the

manuscript. All authors contributed to manuscript revision, read,

and approved the submitted version.
Funding

This research was financially supported by the National Key Research

and Development Program of China (No. 2016YFD0700302).
Acknowledgments

We would like to thank the editor and reviewers for their

valuable input, time, and suggestions to improve the quality of

the manuscript.
Conflict of interest

ML was employed by the company Beijing Zhong Nong LV

Tong Agriculture Development LTD.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher's note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
TABLE 5 Mean execution times (ms) of VSLAM algorithms with the proposed dataset.

Sequence Resolution
ORB-SLAM3 OA-SLAM DSO

RGBD↓ Monocular↓ Monocular↓ Monocular↓

1 1280×720 26.25 26.15 49.56 72.25

2 1280×720 33.53 33.64 64.51 73.16

3 1280×720 36.62 / 69.72 /

4 1280×720 36.03 35.91 70.22 77.28

5 640×480 29.81 32.92 35.21 37.52

6 640×480 32.21 25.71 38.52 41.22

7 640×480 22.53 / 44.54 /

8 640×480 34.15 34.25 49.6 43.51
The bold values show the best performing method.
The Symbols ↓ after the evaluation metrics indicate the value of it is the lower the better.
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