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Larix gmelinii (Rupr.) Kuzen is a major tree species with high economic and

ecological value in the Greater KhinganMountains coniferous forest of Northeast

China. Reconstructing the priority Conservation Area of Larix gmelinii under

Climate could provide a scientific basis for its germplasm conservation and

management. The present study used ensemble and Marxan model simulations

to predict species distribution areas and delineate priority conservation areas for

Larix gmelinii in relation to productivity characteristics, understory plant diversity

characteristics, and climate change impacts. The study revealed that the Greater

Khingan Mountains and the Xiaoxing'an Mountains, with an area of approximately

300 974.2 km2, were the most suitable for L. gmelinii. The stand productivity of L.

gmelinii in the most suitable area was significantly higher than that in the less

suitable and marginally suitable areas, but understory plant diversity was not

dominant. The increase in temperature under future climate change scenarios

will reduce the potential distribution and area under L. gmelinii; the species will

migrate to higher latitudes of the Greater KhinganMountains, while the degree of

niche migration will gradually increase. Under the 2090s-SSP585 climate

scenario, the most suitable area for L. gmelinii will completely disappear, and

the climate model niche will be completely separated. Therefore, the protected

area of L. gmelinii was demarcated with a target of the productivity

characteristics, understory plant diversity characteristics and climate change

sensitive area, and the current key protected area was 8.38 × 104 km2. Overall,

the study’s findings will lay a foundation for the protection and rational

development and utilization of cold temperate coniferous forests dominated

by L. gmelinii in the northern forested region of the Greater Khingan Mountains.

KEYWORDS

Larix gmelinii, biomod2, Marxan, climate change, potential distribution, conservation
planning, niche changes
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1 Introduction

Global warming caused by the annual increase in greenhouse gas

emissions has become a global problem (Chamorro et al., 2020). The

major abiotic factor affecting species distribution is climate, and

biome changes may occur on nearly 35% of the Earth’s land

surface if the global temperature increases by 4°C (Bezeng et al.,

2017; Trindade et al., 2020; Villén-Peréz et al., 2020; IPCC, 2021).

Larix gmelinii (Rupr.) Kuzen is a robust light-loving species with high

water requirements and is widely distributed in the Greater Khingan

Mountains (>70% area). It is considered a zonal vegetation of this

area (Fu et al., 1999; Cui et al., 2000). Forests with L. gmelinii as the

major tree species play a crucial role in air purification and water

conservation in the Greater Khingan Mountains. Its wood also has

high economic value and can be used for housing construction, civil

engineering, electric poles, boats, joinery, and wood fiber industrial

raw materials (Fu et al., 1999). Additionally, the content of

arabinogalactan (AG) in the heartwood of L. gmelinii is the most

abundant component, reaching approximately 30%. The species has

been used in food and healthcare products (Grabner et al., 2005; Ito

et al., 2020). An analysis of the tree rings showed that L. gmelinii is

extremely sensitive to climate change, showing obvious changes in

annual ring width (Sano et al., 2009). L. gmelinii forests with L.

gmelinii as the main species often form a large area of simple forest.

This species comprises China’s largest cold temperate forest, an

ecosystem susceptible to global warming (Barchenkov, 2011).

With the development of geographic information technology,

ecological models, and climate system models, species distribution

models (SDMs) have gradually matured (Elith and Leathwick, 2009;

Wiens et al., 2009). An SDM is typically based on the environment and

the species’ living habits. By combining the data on species distribution

with the environmental information of the corresponding location, an

SDM predicts the spatial distribution pattern under the present and

future climatic conditions and simulates the impact of the climate on

species. As important tools for change response, SDMs have been

widely used in research on species invasion, protection of endangered

animals and plants, biological distribution in paleoclimate periods, and

variations in species distribution under changing climatic conditions

(Tanaka et al., 2020; Sun et al., 2021b;Wen et al., 2022). Similar to other

ecological models, niche models exhibit prediction uncertainties, and

these models are associated with model algorithms and parameters,

species’ actual locations, and environmental variables; thus, selecting

the most suitable model to estimate the suitable distribution range of

different species is challenging (Pearson et al., 2006). Currently,

researchers use random forest, the maximum entropy model, the

generalized linear model, and the generalized additive model

(Duque-Lazo et al., 2016; Arabameri et al., 2020). These SDMs

employ different model algorithms and database schemes to

determine the ecological dimensions and potential distributions

based on different theoretical foundations and assumptions. Each

model possesses unique advantages and disadvantages; however,

none perfectly simulates species’ potential geographic distribution

(Araújo and New, 2007).

The platform Biomod2, based on R software, provides ten

commonly used SDM algorithms, and users can freely combine

and customize the ensemble model for the studied species (Thuiller
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et al., 2009; Duque-Lazo et al., 2018). Although the inherent defects

of each model cannot be avoided, assigning each model’s weight

based on the TSS (true skill statistic) or ROC (receiver operating

characteristic curve) will help achieve the best simulation effect in

the ensemble model (Shabani et al., 2016; Hao et al., 2019).

Thus, the present study employed Biomod2 to analyze the

appropriate/suitable distribution areas of L. gmelinii under

different climatic conditions and the correlation between the

stand structure and growth characteristics of natural L. gmelinii

forests and the environmental variables. The study aimed to (1)

predict the variations in L. gmelinii suitable areas under different

climate scenarios, (2) analyze the crucial environmental features

affecting the distribution of L. gmelinii, (3) analyze the changes in

the L. gmelinii ecological niche under different future climatic

conditions, (4) analyze the influence of habitat suitability on L.

gmelinii stand productivity and understory biodiversity, and (5)

zone the scope of L. gmelinii key protected areas. The study’s

findings will lay a foundation for the protection and rational

development and utilization of cold temperate coniferous forests

dominated by L. gmelinii in the northern forests of the Greater

Khingan Mountains.
2 Materials and methods

2.1 Collection of sample and species
distribution records

From 2017 to 2021, a total of 75 L. gmelinii distribution points

were obtained through field investigations in the Inner Mongolia

Autonomous Region and Heilongjiang Province. One distribution

site (5 km × 5 km) was maintained per grid to avoid model

overfitting caused by an excessive overconcentration of

distribution sites. Finally, 46 valid samples were acquired, as

shown in Figures 1B, C.
2.2 Selection and processing of
environmental features for modeling

The study used 76 environmental features, including 54 climate

factors, 14 soil factors, 4 terrain factors, 1 land cover factor, 1 human

footprint factor, 1 normalized difference vegetation index (NDVI)

factor, and 1 total primary productivity factor. We collected the

current and future climate data from the WorldClim database

(http://worldclim.org/data/index.html) (Fick and Hijmans, 2017).

Here, future climate data under three shared socioeconomic pathway

(SSP) scenarios were collected from the Beijing Climate Center Climate

System Model (BCC-CSM2-MR), representing low (SSP126), medium

(SSP245), and high (SSP585) concentrations of greenhouse gas

emissions (Sun et al., 2021a). In addition, we collected soil and

topographic data from the Harmonized World Soil Database

(HWSD) of the Food and Agriculture Organization (http://

www.fao.org/faostat/en/#data) (Milovac et al., 2018), human

footprint data from the Human Footprint dataset (2009) in NASA’s

Earth Observing System Data and Information System (EOSDIS)
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(Venter et al., 2016), land cover data from Tsinghua University’s Land

Cover Remote Sensing Monitoring Raster Database (2017) (http://

data.ess.tsinghua.edu.cn/fromglc10_2017v01.html), and NDVI data

and total primary productivity data from the MODIS (https://

ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD17A3) dataset.

We obtained data on all variables at a 2.5 arc-minute spatial

resolution (approximately 25 km).

To avoid the influence of multicollinearity of variables on the

prediction accuracy (Yang et al., 2013), multicollinearity (Spearman

correlation) and variance inflation factor (VIF) tests were performed

for all environmental features in R (version 4.1.3). After eliminating

the environmental factors with Spearman values< 0.7 and VIF< 5

(Elith et al., 2006; Zhao et al., 2021), nine climate variables (annual

mean temperature, annual precipitation, isothermality, maximum

temperature in the hottest month, mean temperature of the warmest

quarter, minimum temperature in the coldest month, mean

temperature of the coldest quarter, precipitation in September, and

solar radiation in September), three soil variables (topsoil saturation,

bulk density, and gravel content), two environmental variables

(NDVI, primary productivity, and land cover), one human

variable (footprint), and two topographic variables (elevation,

landform) were preserved in the final model.
2.3 Construction of the ensemble model

Ensemble modeling of species distribution was performed based

on species presence and pseudo-absence data using Biomod2.

During the process, 470 pseudo-presence data points were

randomly generated for model simulation using the ‘random’

function. The model parameters were optimized, and 75% of the

sample data were selected for the training model using the ‘biomod-

tuning’ command; the remaining 25% of the data were used to
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validate the predictive performance of the model. Finally, the split-

sample process was repeated ten times, resulting in 100 model

simulations. We then used AUC (area under the curve), a

threshold-independent measure, and TSS (true skill statistic), a

threshold-dependent measure, to assess the prediction accuracy of

the model. A single model with TSS ≥ 0.7 was retained, and the

chosen models were combined to construct a model using the

weighted average method (Allouche et al., 2006). Then, a threshold

(cutoff) of 0/1 was used to identify suitable areas. The regions above

the threshold were divided into two equal parts, one with medium

suitability and the other with high suitability; the areas below the

threshold were considered unsuitable. Finally, a map showing the

areas with different suitabilities was generated using ArcGIS v10.4.1.
2.4 Niche changes

The background points under the present climatic conditions

were selected based on the L. gmelinii distribution point and the 1-

degree buffer distance. Through the distribution points and climate

data under different climate backgrounds, the package ‘ecospat’ was

used to determine the L. gmelinii niche overlap rate in the current

scenario and under different future climate backgrounds, visualize

the changes in the niche, and calculate the niche parameter D

(observed value), which ranges from 0 to 1, indicating that the niche

ranges from no stacking to full stacking, to assess the influence of

climate change on the L. gmelinii niche (Di Cola et al., 2017).
2.5 Analysis of stand characteristics

In this study, 75 L. gmelinii plots (30 m × 30 m) were set up in

the Greater KhinganMountains from 2017 to 2021. Within the plot,
A B

C

FIGURE 1

(A) The current habitat suitability area of L. gmelinii. (B) L. gmelinii sampling sites in China. (C) Location of the study area in China.
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the diameter at breast height (DBH) of trees at 5 cm height was

measured, and the tree height, DBH, and plant density were

investigated. The binary volume table was queried to calculate the

volume per unit area, and the relative growth method was used to

estimate the biomass of trees. The formula is expressed as follows

(Shingleton and Frankino, 2018):

Y = a(DZH)b

where Y is the tree biomass, D is DBH, H is the tree height, and

a and b indicate the constants obtained by regression.

Two large (10 m × 10 m) shrub squares were set up at opposite

corners of the plot, and three small (1 m × 1 m) herb squares were

set up at the three corners of the shrub square. The R open-source

package ‘spaa’ was used to determine the Shannon, Pielou, Simpson,

Dma, and other indexes of the biodiversity of shrub and

herb species.

Among the 75 L. gmelinii plots, 57 were located in the most

suitable area, 14 in the marginally suitable area, and 4 in the

marginally unsuitable areas. To study the possible impact of

habitat suitability on stand productivity and understory plant

diversity, “two-way ANOVA” in GraphPad Prism software was

used to evaluate the impact of different habitat suitability values on

L. gmelinii forest differences in subproductivity and understory

plant diversity.
2.6 Analysis of conservation hotspots of
L. gmelinii

The Marxan 4.0.6 model is a system protection planning model

based on the simulated annealing method and is used to select the

minimum cost area under certain economic constraints in a

protected system (Moilanen et al., 2009; Hermoso et al., 2011). It

was first used in marine protection system planning and has been

widely used in terrestrial protection system planning (Munro,

2006). In the analysis, a 1 km2 grid was used as the research unit,

and the tool “zonal statistics as table” (Spatial Analyst) in ArcGIS

10.4.1 was used to quantify the habitat distribution area of each

target species in each planning unit and construct a species

distribution matrix. The conservation area of L. gmelinii should

reach 80% of the future loss of area in the potential distribution area

due to climate change, and the model iterative operation was

performed 100 times to obtain the optimal solution of the

planning unit (Tang et al., 2021).

After the iterative calculation of the location selection, the

spatial compactness of the adjusted result units was controlled by

the boundary length modifier (BLM) of the model. If it is too dense,

some planning units with low protection effects may be selected; as a

result, the protected area distribution is too discrete (Javed et al.,

2019; Tang et al., 2021). Then, the cost of the results and the

relationship between the total boundary length and the total area

can be analyzed via BLMmodification. The larger the BLM value is,

the more crucial the boundary cost and the smaller the

fragmentation degree. Generally, the BLM value is adjusted

between 1 and 10,000, and a more reasonable spatial distribution

pattern of protection priority areas is obtained through repeated
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calculation. The final model used a model boundary correction

value of 100.
3 Results

3.1 Model accuracy

All ten models ran successfully and yielded 100 (2 × 5 × 10) results.

Furthermore, we optimized the model parameters using the

‘biomod_tuning’ function and verified them at each iteration

according to the selected method (kappa, TSS, or ROC). The results

revealed RF (Random Forest), with a kappa coefficient of 0.90, TSS of

0.98, and ROC of 0.99, as the most appropriate model for predicting

the latent distribution of L. gmelinii (Supplementary Figure 1); this

approach was followed by the GBM (Generalized Boosted Models),

GLM (Generalized Linear Models), MARS (Multivariate Adaptive

Regression Splines), and FDA (Flexible Discriminant Analysis)

methods. The ANN (Artificial Neural Networks) method performed

the worst among all models and failed the accuracy test. Finally, 35 best

model results were chosen to construct the ensemble model (kappa

coefficient of 0.92, TSS of 0.98, ROC of 1.00).
3.2 Current period potential
distribution area

The analysis revealed (Figure 1A) 397,192.1 km2 as the current

L. gmelinii suitable area (the sum of the marginally suitable area and

the most suitable area); this region included 300,974.2 km2 of the

most suitable area distributed mainly in the Greater Khingan

Mountains in the northeastern part of the Inner Mongolia

Autonomous Region and northern Heilongjiang Province. The

marginally suitable area was 96,217.9 km2, and was distributed

mainly in the grassland-forest transition zone on the east side of the

most suitable area and from the Xiaoxing’an Mountains to the

Zhangguangcai Mountains on the west side.
3.3 Predicted future potential
distribution areas

The suitable and most suitable areas of L. gmelinii will be

reduced to varying degrees in the future under all climate scenarios

compared with the previous period, except in the 2050s-SSP126

climate scenario, in which a small area of newly suitable areas will

appear. The other climate scenarios were almost entirely contracted

(Table 1 and Figures 2, 3). Under SSP126, the suitable area of L.

gmelinii had the slightest change, and the suitable area in the 2050s

is reduced by 34.8% compared with the current area, which is

approximately 138 235 km2. The suitable area in the 2090s is

reduced by 9.3% compared with that in the 2050s, which is

24,124 km2. Under the SSP245 climate scenario, the suitable area

in the 2050s is reduced by 46.1% compared with the current total

suitable area, with an area of approximately 182,985.9 km2. By the

2090s, the suitable area was further reduced by 43.7%, with an area
frontiersin.org
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of approximately 93,576 km2. Under the SSP585 climate scenario,

the area suitable for L. gmelinii shrank the most, and the suitable

area in the 2050s was reduced by 65.4% compared with the present

suitable area, approximately 259,905 km2. The suitable area in the

2090s was reduced by 92.0%, with a value of approximately 126,304

km2, and the most suitable area will disappear entirely at this time.

The centroids of the suitable area of L. gmelinii migrated

northwestward in all climate scenarios (Figure 4). The centroid of
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the suitable area in the current period was located in Tozamin

Township, Oroqen Autonomous Banner (123.13 E, 50.20 N).

Under the SSP126 climate scenario, the centroid moved to Ganhe

Township of the Oroqen Autonomous Banner (122.80 E, 50.91 N)

in the 2050s, and the migration distance is 83.60 km; in the 2090s,

the centroid moved to the northwest of Ganhe Township of Oroqen

Autonomous Banner (122.74 E, 51.06 N), and the migration

distance is 15.92 km. In the SSP245 climate scenario, the centroid
TABLE 1 The spatial variations in the suitable areas for L. gmelinii under various climate scenarios.

Climate
scenarios

Total suit-
able area
(km2)

Most suit-
able area
(km2)

Contraction
area (km2)

Expansion
area (km2)

Unchanged
area (km2)

Contraction
rate (%)

Expansion
rate (%)

Unchanged
rate (%)

Current 397 192.1 300 974.2 – – – – – –

2050s-
SSP126

258 956.9 137 565.8 139 339.8 84.9 258 957.0 35.1 0 65.2

2090s-
SSP126

234 833.0 124 359.3 26 295.7 2 197.6 232 878.4 10.1 0.8 89.9

2050s-
SSP245

214 206.2 102 728.1 183 058.4 235.0 214 036.6 46.1 0 53.9

2090s-
SSP245

120 630.7 25 618.6 93 418.8 111.4 120 489.2 43.6 0 56.2

2050s-
SSP585

137 287.6 48 608.1 260 226.9 120.7 137 429.1 65.5 0 34.6

2090s-
SSP585

10 983.5 0 126 522.5 216.8 10 723.6 92.1 0 7.8
A

B

C

D

E

F

FIGURE 2

Future potential distribution of L. gmelinii in China.
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moved to Hesi Street, Genhe City (122.60 E, 51.12 N) in the 2050s,

with a migration distance of 109.31 km; in the 2090s, the centroid

moved to Alongshan Town, Genhe City (121.96 E, 51.61 N), with a

migration distance of 70.33 km. In the SSP585 climate scenario, the

centroid moved to Jinhe Town, Genhe City (122.07 E, 51.47 N),

with a migration distance of 160.43 km; the centroid moved to

Moldauga Town, Erguna City (121.57 E, 52.92 N), with a migration

distance of 164.55 km in the 2090s.
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3.4 Future changes in ecological niche
changes in the future period

The overlap of the L. gmelinii ecological niche is shown in

Figure 5. The changes in the climatic niche under different present

and future climatic conditions were the same as those of the

background climate. Compared with the SSP126 and SSP245

climate backgrounds, the migration distance of the climatic niche
A

B

C

D

E

F

FIGURE 3

Variations in the spatial distribution pattern of L. gmelinii under various climate scenarios.
FIGURE 4

Centroid distributional shifts under different climate scenarios.
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in the SSP585 climate background was longer. The L. gmelinii niche

was completely separated from the previous period under the

2090s-SSP585 climate background. The magnitude of future

global climate change considerably influences the niche shift of L.

gmelinii, and the decreasing niche overlap indicates that L. gmelinii

will experience a more significant niche shift during future

climate change.

In the principal component analysis (PCA) of this research, the

two principal components together explained 80.91%-85.15% of the

variance in the environmental factors in the study area (PC1:

62.6%-70.5%; PC2: 14.65%-18.03%), i.e., the annual average

temperature and the mean temperature of the coldest quarter. In

addition, the average annual temperature, the mean temperature of

the warmest quarter and the mean temperature of the coldest

quarter were the primary factors driving the variations in the L.

gmelinii niche, and the future climatic niche center will move closer

to the mean temperature of the coldest quarter.
3.5 Analysis of stand characteristics under
different habitat suitability values

There were significant differences in stand productivity

characteristics and understory plant diversity in the most suitable,

marginally suitable, and marginally unsuitable areas (Figure 6). In

terms of stand productivity characteristics, the stand volume,

biomass, and plant density of L. gmelinii in the marginally

suitable and marginally unsuitable areas were lower than those in

the most suitable area. In terms of understory plant diversity, there

were no significant differences in the Pielou, Shannon−Wiener, and

Simpson indexes among the three types of suitable areas, but the L.

gmelinii stand in the marginally suitable area had the highest

understory shrub species richness index and the greatest height.

The most suitable area had the second highest values, and the

marginally unsuitable area had the smallest values. The L. gmelinii

stand in the most suitable area had the highest species richness

index of understory herbs, followed by that in the marginally
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suitable area, and the lowest value was found in the marginally

unsuitable area.
3.6 Division of key protected areas

The purpose of the protected area in the current research was to

cover 80% of the area most affected by climate change in the L.

gmelinii suitable areas under three future climate scenarios, taking

into account the productivity characteristics and understory plant

diversity characteristics of L. gmelinii in the different classes of

suitable areas. The area of key protected areas in the current period

was 8.38 × 104 km2. The eastern and western sides of the

Daxing’anling state-owned forests in the northeastern part of the

Inner Mongolia Autonomous Region and the northwestern part of

Heilongjiang Province had the main L. gmelinii key protected areas.

The key protected areas almost completely covered the marginally

suitable areas for L. gmelinii (Figure 7). In the future, the area of L.

gmelinii priority conservation areas will be expanded together with

the increase in climate change. In the 2090s-SSP585 climate

scenario, the L. gmelinii focal area reached 28.12 × 104 km2, and

most of the L. gmelinii suitable areas in the current period were

included in the focal area (Figure 8).
4 Discussion

With the increase in climate change challenges, the risk of L.

gmelinii extinction in China will also increase. Currently, the

potential distribution area of L. gmelinii is distributed in the

Greater Khingan Mountains and the Xiaoxing’an Mountains. The

prediction is consistent with the actual distribution of L. gmelinii in

the temperate coniferous forests of the Greater Khingan Mountains

(Fu et al., 1999). Under the climate change scenarios, the overall

trend of L. gmelinii habitat suitability was consistent. All types of

suitability migrate to higher latitudes with the intensification of

climate change in the future. The rate of increase in the L. gmelinii
A

B

C

D

E

F

FIGURE 5

Future L. gmelinii niche under the SSP126 (A, B), SSP245 (C, D) and SSP585 (E, F) scenarios in the 2050s (A, C, E) and 2070s (B, D, F).
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suitable area was lower than the loss rate; the maximum increase

rate was less than 1% of the currently suitable area. The increased

area appeared only in a tiny area on the edge of the present suitable

area. The areas lost were located mainly in the southeastern and

southwestern parts of the present suitable areas. These areas were

also the areas with the largest climatic anomalies in the results of the

MESS and MoD analyses. Simultaneously, with the increase in the

emission of greenhouse gases, the effect of climate change on L.

gmelinii increased as the area of suitability change increased. Studies

have shown that the continuous warming of the climate will cause

temperate forest vegetation to migrate to higher latitudes. The

present study’s findings agree with previous reports (Villén-Peréz

et al., 2020).

The niche dynamics of L. gmelinii showed that the degree of

niche overlap for all pairwise comparisons of current and future

scenarios decreased with increasing climate change severity. The

current study suggested that the annual average temperature and

the mean temperatures of the coldest and warmest quarters were

the main factors that caused the niche differentiation of L. gmelinii.
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Similarly, the radial growth of L. gmelinii was restricted primarily by

temperature and was more closely related to precipitation. This

result is consistent with weak growth characteristics (Zhang et al.,

2018). The ecological niche of L. gmelinii in the SSP585-2090s

climate model with the most severe climate change will be

completely separated, and its original ecological niche may be

occupied by other tree species moving northward. At this time,

the ecosystem structure of the cold temperate coniferous forest with

L. gmelinii as the dominant tree species will experience subversive

changes, and its original biodiversity will be seriously threatened.

This shift explains why the potential distribution area of L. gmelinii

disappeared in a large area under the SSP585-2090s climate model

and why the potential distribution of L. gmelinii continued to move

northward in the future.

The productivity characteristics of L. gmelinii from the most

suitable area were significantly better than those from the

marginally unsuitable and marginally suitable areas. The most

suitable area for L. gmelinii has a higher latitude, higher altitude

and lower temperature than the marginally unsuitable and
A B C

FIGURE 6

The stand characteristics (A) Stand productivity. (B) Species diversity of shrubs. (C) Species diversity of herbs) of L. gmelinii under different suitable
habitats. Note: * and *** indicate significant differences at p ≤ 0.05 and p ≤ 0.01, respectively.
FIGURE 7

The current priority conservation areas of L. gmelinii in China.
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marginally suitable areas. In the Northern Hemisphere’s middle and

high latitudes, the trees at the high latitude and low-temperature

boundary of the tree species’ suitable area had a fast growth rate and

strong adaptability, while the trees at the low latitude and high-

temperature boundary of the tree species’ suitable area had a slow

growth rate. (Davis and Shaw, 2001; Reich et al., 2015; Sendall et al.,

2015). The growth characteristics of L. gmelinii from different types

of suitable areas were consistent with this hypothesis. For group

analysis, this study divided the L. gmelinii understory plant diversity

into shrub species diversity and herbaceous species diversity. We

found certain differences in the response of the diversity of shrub

and herbaceous shrub species to changes in the habitat suitability of

L. gmelinii. The diversity of understory shrub species in the sample

plots in the marginally suitable area was significantly higher than

that in the marginally unsuitable and most suitable areas, but the

diversity of understory herb species in the marginally unsuitable

area was slightly higher than that in the marginally suitable area.

From regional to global scales, there have been related studies on

plant species diversity showing significant differences due to

changes in latitude and elevation, but there have still been certain

differences in the conclusions drawn in these previous studies. Some

studies have shown that species diversity decreases with increasing

latitude and altitude (Koch, 2000), and other studies have shown

that species diversity increases with increasing latitude and

longitude, decreases with increasing altitude, or is higher at mid-

latitudes and altitudes (Whittaker, 1960; Yang et al., 2004). The
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conclusions based on the analysis of L. gmelinii understory species

diversity in this work differ from those of previous reports. The

reason for this difference may be the difference in the microclimate

of L. gmelinii forests with different habitat suitability values.

Although the plant species composition of the understory has

been studied, the mechanism of the influence of different stand

structures of L. gmelinii natural forests on understory plant species

diversity remains to be further studied (Zhang et al., 2017; Kumar

et al., 2018).

Temperate coniferous forest is the most extensive forest

ecosystem on Earth, accounting for approximately 14.5% of the

land area and 30% of the forest area (Landsberg and Gower, 1997).

China is located at the southernmost edge of the distribution of

temperate coniferous forests in the world. The cold temperate

coniferous forests are distributed only in the northern regions of

the Greater Khingan Mountains in the northeast and the Altai

Mountains in Xinjiang (Zhou, 1991). As the main tree species of the

Greater Khingan Mountains’ temperate coniferous forest, the

protection of L. gmelinii natural forests has been continuously

strengthened, the protection system has been continuously

improved, the construction of national forest parks and national

wetland parks is gradually advancing, and protection efforts will

increase progressively in the future (Zhang et al., 2000). However,

there are still problems, such as protected areas that are too small

and too scattered and fragmented in the Greater Khingan

Mountains. Meanwhile, the area of spatial variation in the
A
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FIGURE 8

Priority conservation areas of L. gmelinii under the SSP126 (A, B), SSP245 (C, D) and SSP585 (E, F) scenarios in the 2050s (A, C, E) and 2070s (B, D, F).
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distribution of L. gmelinii is a climate change-sensitive area, which

should be given attention in the conservation of L. gmelinii.

Therefore, this study used Marxan software to assess and

implement overall protection planning for L. gmelinii natural

forests. Considering the objective situation that the residents in

the Greater Khingan Mountains mainly rely on growing food crops

and mining economic plants for their livelihoods, when setting the

plant protection target in this study, 80% of the future loss of area in

the potential distribution area was taken as the zoning target. While

destroying the natural forest habitat of L. gmelinii, establishing

protected areas should avoid serious impacts on the quality of life

(QoL) and the economic development of local residents. Therefore,

when setting the BLM parameters in this study, referring to the

research conducted by Javed et al. (2019) and Tang et al. (2021),

different BLM values and scales of planning units in the planning

area will affect the final research conclusions. The BLM and

planning unit areas were optimized according to the number and

area of debris, and excessive encroachment on grassland and

cropland in the L. gmelinii distribution area was avoided in the

final zoning map.
5 Conclusions

Due to global warming, the potential distribution range of L.

gmelinii will continue to decrease and move to higher latitudes, its

climatic ecological niche will gradually move with it, and many

areas outside the northern Greater Khingan Mountains area will

become less suitable for L. gmelinii. A comparison of the

characteristics of L. gmelinii stands revealed considerable

differences in the productivity characteristics and understory

plant diversity of L. gmelinii natural forests under different

habitat suitability levels. Therefore, strengthening the

conservation of cold-temperate coniferous forests in the Greater

Khingan Mountains area with L. gmelinii as the main tree species

and designating key protection areas based on the distribution

range of highly suitable L. gmelinii habitats to reduce the damage to

L. gmelinii forest resources by human activities are inevitable.
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