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Editorial on the Research Topic

Nutrient use efficiency of plants under abiotic stress
Abiotic plant stresses such as drought, flooding, and ultraviolet (UV) radiation have

intensified in recent decades due to global climate change. Abiotic stress can result in

fundamental changes to cellular processes and whole-plant physiology that allow the plant to

adapt to the environment (Wang et al., 2021). Mineral nutrients play electrochemical,

structural, and catalytic roles in all biological organisms, and are essential for the completion

of plant life cycle (Lopez et al., 2023). Abiotic stresses and nutrient deficiency severely impact

the growth, development, and productivity of plants (Shikha et al., 2023). Environmental

changes cause abiotic stress in plants primarily by alterations in the uptake and utilization of

the nutrients. Maintaining nutrient use efficiency under abiotic stress is an effective means of

increasing plant stress resistance. Thus, the intensification of abiotic stresses will require the

development of plants with high nutrient use efficiency. There have been effects to increase

plant abiotic stress tolerance or growth with application small molecules, melatonin is such a

molecule. Exogenous melatonin application has been shown to effectively increase stress

tolerance and nutrient uptake in plants, and other compounds also play key roles in nutrient

uptake under abiotic stress conditions (Zhang et al., 2015; Liu et al., 2020a; Sun et al., 2021;

Gao et al., 2022; Ahammed and Li, 2023)

In this Research Topic, we present 11 articles related to abiotic stress responses and

nutrient use efficiency in plants, with a focus on the relevant factors that influence these

processes. Although abiotic stresses and nutrient deficiency can limit plant growth and

survival, plants have evolved a unique set of complex mechanisms to cope with environments

under high climate variation. (Liu et al., 2022; Wang et al., 2022; Abiala et al., 2023).

Therefore, research related to physiological, biochemical, and molecular responses, as well as

nutrient uptake and utilization in plants, is of paramount importance to improve plant stress

responses and nutrient use efficiency. Yue et al. integrated envirotyping techniques andmulti-

trait selection to enhance the mean performance and stability of maize genotypes, opening

the door to more systematic and dynamic characterization of the environment to better

understand genotype-by-environment interactions in multi-environment trials. Sun et al.

provided new insights into the molecular mechanism of the iron deficiency response inMalus

baccata. This study revealed that MbHY5-MbYSL7 mediates chlorophyll synthesis and iron

transport under iron-deficient conditions. D1-Pyrroline-5-carboxylate synthetase (P5CS) is
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the rate-limiting enzyme in proline biosynthesis, and plays an

essential role in plant responses to environmental stresses. Ma et al.

identified 11 PbP5CS genes in pear trees, most of which exhibited

distinct expression patterns in response to drought, waterlogging,

salinity/alkalinity, and other abiotic stresses. These findings represent

an advance in the understanding of the physiological functions of

PbP5CS genes in the enhancement of stress tolerance in pear and

other fruit trees. Song et al. performed transcriptome deep

sequencing and weighted gene co-expression network analyses to

explore the molecular mechanism of blueberry calli in response to

UV-B radiation. They found that UV-B induced the expression of

flavonoid biosynthetic pathways, and suggested that direct or indirect

regulation of MYB inhibitors or activators promotes flavonoid

biosynthesis under UV-B radiation. In a review article, Du et al.

highlighted the structure and function of TIR1/AFB family members,

with an emphasis on the potential mechanisms by which these

proteins regulate abiotic stress responses at the transcriptional and

post-transcriptional levels, including downstream regulation. For

example, they may function in the drought tolerance, salt stress,

and nitrate stress pathways. Chalcone synthase (CHS) is a key

enzyme required in flavonoid synthesis. Liu et al. isolated a CHS

gene from Poncirus trifoliata and found that relative expression of the

PtCHS gene was regulated by soil water deficit and arbuscular

mycorrhizal fungi (AMF) inoculation. Xu et al. explored the

physiological roles of CgSTPs in pummelo, and found that CgSTP4

plays important roles in sugar accumulation and pollen tube growth.

Sun et al. compared the results of physiological, transcriptome, and

metabolite analyses under different potassium conditions in apple

seedlings. They found that apple seedlings regulate the carbon

metabolism and flavonoid pathways in response to low and high

potassium stress. This study provided new insights that may be used

to improve potassium utilization efficiency in apple trees.

Melatonin is found in almost all plant tissues, and is powerful

natural antioxidants that play a significant role in enhancing plant

tolerance to various abiotic stressors such as drought (Muhammad

et al., 2023), flooding (Moustafa-Farag et al., 2020), salt (Michard

and Simon, 2020), and nutrient deficiency (Cao et al., 2022a).

Exogenous application of other compounds also enhances plant

abiotic stress resistance and nutrient utilization efficiency. The

benefits of dopamine have been reported in previous studies on

water-induced stress, which showed that exogenous dopamine

enhances the tolerance of drought (Du et al., 2022a) and

waterlogging (Cao et al., 2022b) by apple trees by regulating the

rhizosphere microbiome. Previous studies have also reported that

melatonin and dopamine significantly improve plant nutrient use

efficiency (Liu et al., 2020b; Du et al., 2022b). Ionome nutrient

uptake was decreased in drought-stressed plants, whereas exogenous

melatonin and dopamine significantly increased the uptake of

mineral elements, particularly under drought stress conditions

(Liang et al., 2018a; Liang et al., 2018b). In this Research Topic,

Huo et al. reported that exogenous melatonin effectively alleviated

damage to kiwifruit plants in response to waterlogging stress. This

study provides new insights into the links between melatonin and

amino acid metabolic systems in plant stress tolerance. Xia et al.

evaluated the effects of melatonin and AMF on kiwifruit seedling

drought tolerance. They found that melatonin and AMF have a
Frontiers in Plant Science 02
synergistic effect on improving drought tolerance by increasing

mycorrhizal colonization and nutrient uptake. Ma et al. found that

AMF (Diversispora spurca) promoted growth in walnut plants

exposed to drought stress. Similarly, AMF increased apple tree

drought resistance by regulating MAPK pathway genes (Huang

et al., 2020). AMF is a useful tool for increasing plant nutrient

uptake under drought stress conditions (Lotfabadi et al., 2022). Gao

et al. (2020) reported that dopamine promoted AMF symbiosis by

increasing carbohydrate content, and the synergistic effect of

dopamine and AMF enhanced apple tree salt resistance.

Abiotic stresses are anticipated to be among the greatest

challenges to future agriculture. It can diminish the uptake and

utilization of elements, then influence plant nutrient status.

Nutrient deficiency will continue to limit plant growth and yield.

Most of the articles associated with this Research Topic increase our

understanding of plant adaptive responses to abiotic stresses and

nutrient use efficiency, and enrich current knowledge of the

mechanisms through which melatonin and other compounds

facilitate abiotic stress responses and nutrient utilization efficiency

in plants, allowing them to adapt to unfavorable environmental

conditions. These findings will offer new opportunities for its use in

agriculture, especially in regions that are challenged by abiotic stress

or nutrient deficiency condition. We hope that this Research Topic

will inspire new ideas and stimulate further research in these fields.
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