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The damage symptoms of Cnaphalocrocis medinalis (C.medinalis) is an

important evaluation index for pest prevention and control. However, due to

various shapes, arbitrary-oriented directions and heavy overlaps of C.medinalis

damage symptoms under complex field conditions, generic object detection

methods based on horizontal bounding box cannot achieve satisfactory results.

To address this problem, we develop a Cnaphalocrocis medinalis damage

symptom rotated detection framework called CMRD-Net. It mainly consists of

a Horizontal-to-Rotated region proposal network (H2R-RPN) and a Rotated-to-

Rotated region convolutional neural network (R2R-RCNN). First, the H2R-RPN is

utilized to extract rotated region proposals, combined with adaptive positive

sample selection that solves the hard definition of positive samples caused by

oriented instances. Second, the R2R-RCNN performs feature alignment based

on rotated proposals, and exploits oriented-aligned features to detect the

damage symptoms. The experimental results on our constructed dataset show

that our proposed method outperforms those state-of-the-art rotated object

detection algorithms achieving 73.7% average precision (AP). Additionally, the

results demonstrate that our method is more suitable than horizontal detection

methods for in-field survey of C.medinalis.

KEYWORDS

Cnaphalocrocis medinalis, damage symptom, deep learning, rotated object detection,
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1 Introduction

Cnaphalocrocis medinalis(C.medinalis) always damages rice and

results in yield reduction (Heong et al., 1993; Wan et al., 2015). The

larvae spit out the silk and roll up the rice leaves from the edges to

the center, feeding on the leaf flesh and remaining white damage

symptoms, as shown in Figure 1. For the pests are concealed in the

rolled leaves, plant protection staff have to visually inspect and

record the number of rolled leaves with white damage symptoms

from the sampled rice clusters, which is inefficient and labor-

intensive. With the obvious shortage of plant protection workers

and technical strength, automatic monitoring and intelligent

investigation of pests and diseases show important research

significance. With the development of machine learning

technology, extensive studies have been conducted on object

detection and recognition methods for rice disease and pest

damage symptom images without complex backgrounds.

However, the diversity and complexity of in-field scenes make it

difficult to determine an optimal feature to solve symptom detection

and recognition by traditional machine learning methods (Phadikar

et al., 2013; Xiao et al., 2018; Sahu and Pandey, 2023).

Deep learning is an evolution of machine learning techniques. It

can adaptively learn complex and abstract features without human

involvement. It has also been widely used in agriculture in recent

years, including rice disease or pest damage symptom identification
Frontiers in Plant Science 02
(Sethy et al., 2020; Krishnamoorthy et al., 2021; Wang et al., 2021;

Dey et al., 2022). Although these methods made use of deep

learning methods to classify rice diseases or pest damage

symptoms, they dealt with images focused on a single leaf with

simple backgrounds, as shown in Figure 2. Deep learning models

were trained for image classification using disease data collected in

the field (Lu et al., 2017; Rahman et al., 2020). Real-time diagnosis

systems were developed for rice disease identification under wild

field conditions, combining deep learning techniques with the

Internet of Things (IoT) and providing feedback on rice disease

categories in response to input images (Temniranrat et al., 2021;

Debnath and Saha, 2022; Yang et al., 2022). All of the above

methods are used to identify symptom categories. At the same

time, the actual demand for pest and disease investigation requires

estimating the number of damaged leaves or the area of damaged

regions from multiple rice plants or clusters. The precise location of

disease or pest damage symptoms under complex field conditions

can provide more detailed information to facilitate accurate

analyses of the occurrence trend of pest and disease outbreaks.

Since most damage symptoms show discontinuity, pixel-level

segmentation methods based on deep learning require heavy

labeling work in complex field scenarios. Existing methods for

locating symptom areas in the field mostly rely on instance-level

bounding box detection. Several works (Zhou et al., 2019; Li et al.,

2020) trained an image detection model based on the Faster-rcnn
FIGURE 1

Examples of C.medinalis and its damage symptoms. The dashed box in the left panel indicates the typical damage symptom and the arrow points to
the pest hiding in the rolled leaf.
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algorithm (Ren et al., 2017) with rice disease datasets collected in

the field. The feature pyramid structure was improved on the

conventional RetinaNet (Lin et al., 2017b) model and applied to

the automatic detection of two pest damage symptoms in the rice

canopy (Yao et al., 2020). YoloX (Ge et al., 2021) was adopted in the

detection stage to locate the diseased spot areas for subsequent

disease classification (Pan et al., 2023). Studies on rice disease or

pest damage symptom detection in natural scenes are limited, and

prevalent studies mainly employ generic object detection methods

based on horizontal bounding boxes (HBBs), which include one-

stage and two-stage algorithms. One-stage algorithms usually

regress the category and location directly on the feature vectors of

key points, such as (Law and Deng, 2018; Duan et al., 2019; Tian

et al., 2019; Zhu et al., 2020; Chen et al., 2021; Dai et al., 2021). The

rcnn series of algorithms are representatives of two-stage methods,

such as typical Faster-rcnn (Ren et al., 2017) and others (Cai and

Vasconcelos, 2018; Pang et al., 2019; He et al., 2017; Wu et al.,

2020), which select promising proposals based on feature point

vectors and map them to feature maps for further fine-tuning.

Techniques in object detection continue to be updated, which also

promotes the development of deep learning for agricultural disease

and pest damage symptom detection.

Due to the oriented and densely-distributed properties of

objects in the field, one horizontal bounding box often contains

several instances. Comparatively, rotated bounding boxes are more

practical to precisely characterize damage symptom areas. However,

the convolution kernels in the backbone network of rotated

detectors are still horizontal with fixed size. The receptive field

associated with the feature vectors of the key points does not carry

object shape and tilt information, leading to feature misalignment

within one-stage rotated detection algorithms (Liu et al., 2017; Guo

et al., 2021; Han et al., 2021; Yang et al., 2021; Li et al., 2022).
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Although feature maps are refined in many of the above works, one

feature point vector remains inadequate to represent a skewed and

slender object. Proposals derived from feature point vectors in two-

stage methods are projected onto feature maps, and feature-aligned

regions will be fetched for final regression and classification. Many

rotated anchors were designed in the region proposal network

(RPN) to learn targets (Ma et al., 2018). Since the work set

rotated anchors with different sizes, aspect ratios, and angles, it

will increase a large amount of computation and memory

occupation. The Rotated Faster-rcnn method in the MMRotate

(Zhou et al., 2022) obtained horizontal proposals in the RPN stage

and added an orientation dimension in the region convolutional

neural network (RCNN) which is improved on the Faster-rcnn

method (Ren et al., 2017). Horizontal proposals were also used in

several other rotated detectors (Jiang et al., 2017; Yang et al., 2019;

Xu et al., 2021). However, the feature areas corresponding to

horizontal proposals will contain much redundant and

ambiguous information, which is not conducive to the following

detection. Ding et al. (2019) performed feature alignment again

using rotated proposals learned in the first RCNN phase based on

horizontal proposals, making the parameter number and the

computation amount increase.

Recent detection methods have a couple of limitations in pest

damage detection: (1) Horizontal bounding boxes ignore

orientation information which is not conducive to expressing the

morphology of the damage symptoms precisely. One horizontal

bounding box often contains several instances leading to ambiguous

features, as shown in Figure 3. (2) The horizontal detectors are not

able to extract discriminative features for inclined and crossed

object detection, as shown in Figure 4. Therefore, we propose a

two-stage rotated detection framework CMRD-Net for detecting

C.medinalis damage symptoms. CMRD-Net comprises a
FIGURE 2

Samples focused on a single leaf with simple backgrounds.
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Horizontal-to-Rotated region proposal network(H2R-RPN) and a

Rotated-to-Rotated region convolutional neural network (R2R-

RCNN). First, the H2R-RPN converts horizontal anchors to

rotated proposals, and uses adaptive dynamic selection of positive

samples (Zhang et al., 2020) to alleviate the hard matching of

horizontal anchors due to arbitrary orientation and slender shape of

the damage symptoms. Second, the R2R-RCNN performs rotated

feature alignment to recalibrate rotated proposals for ultimate pest

damage symptom detection. Finally, we establish a rotated

bounding box annotation dataset (CMRD) with roLabelImg

software for C.medinalis damage symptoms and built the

horizontal bounding box annotation dataset(CMHD) by fetching

horizontal circumscribed rectangles within the CMRD dataset.

Extensive experiments demonstrate that our method outperforms

other state-of-the-art rotated algorithms. We also verify that the

proposed CMRD-Net is more suitable than horizontal detectors for

detecting C.medinalis damage symptoms.

The main contributions of our work can be summarized as

follows:1) The CMRD-NET network is proposed based on rotated

bounding boxes to detect C.medinalis damage symptoms. CMRD-

NET utilizes a Horizontal-to-Rotated proposal strategy and rotated

feature alignment to improve accuracy and efficiency. 2) For the

detection of C.medinalis damage symptoms, extensive experiments

have been conducted to demonstrate that our rotated detector is more

practical than horizontal detectors, which can locate inclined damage

symptoms precisely and enhance the visualization ability of detection
Frontiers in Plant Science 04
results. 3) We construct the CMRD dataset based on rotated

bounding box annotation and the corresponding horizontal

circumscribed rectangles-based dataset CMHD to demonstrate the

effectiveness of our proposed framework, which also provide a richer

benchmark for the C.medinalis damage symptom detection task.
2 Materials and methods

2.1 Datasets

2.1.1 Image acquisition
The images in the presented dataset were collected by experts

from plant protection stations in 24 cities and counties in China over

three years, from 2019-2021, with restrictions on angles and heights

during photography. The dataset includes 3900 images with different

rice fertility periods and field types. It provides a valuable data

resource for C.medinalis field surveys and occurrence

regularity studies.

2.1.2 Image annotation
The images were annotated with the rotated bounding box

labeling software roLabelImg (https://github.com/cgvict/

roLabelImg, Figure 5A) rather than the horizontal bounding box

labeling software labelImg (https://github.com/tzutalin/labelImg,

Figure 5B). They were saved in XML files after annotation. A
A B

FIGURE 3

Object representation. (A) C.medinalis damage symptoms are represented by horizontal bounding boxes and (B) rotated bounding boxes.
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vector (x, y,w, h, angle)is used to represent a rotated bounding box

closely surrounding a C.medinalis damage symptom, where (x, y)

refers to its center point coordinates, (w, h) denotes the width and

height of the bounding box. The parameter angle represents the
Frontiers in Plant Science 05
radian between the w and x axis with the cycle period of p . Experts
from Jingxian Plant Protection Station and Anhui Academy of

Agricultural Science perform image labeling in collaboration. The

dataset is named Cnaphalocrocis medinalis Rotated Dataset (CMRD).
A B

FIGURE 5

Annotation software. (A) Rotated bounding box labeling software roLabelImg and (B) horizontal bounding box labeling software labelImg.
A B

FIGURE 4

Feature maps. (A)the feature map of horizontal detector and (B)rotated detector.
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To fairly compare the performance of horizontal detectors and

rotated detectors, horizontal circumscribed rectangles are extracted

for all rotated bounding boxes in the CMRD dataset, resulting in a

C.medinalis horizontal annotation dataset called CMHD. Objects

are defined as (x1, y1, x2, y2) in the CMHD dataset, where (x1, y1)

represents the top-left vertex coordinates of the horizontal

rectangular box and (x2, y2) represents the bottom-right

vertex coordinates.

2.1.3 Properties of the CMRD dataset
The dataset was established with different rice field types and

fertility periods in different regions, resulting in a diverse and

complex dataset. We randomly divided the 3900 images into 2000

training images and 1900 testing images to ensure that the testing

set included as many different in-field scenes as possible. The

number of instances in each image was counted and the statistical

result is shown in Figure 6A. In order to compare and analyze the

model performance more comprehensively, up to 120 images with

the number of instances in the interval 1-9, 10-19, 20 and above

were randomly selected from the testing set and named “sparse”,

“medium” and “dense”, respectively. 120 images with the influence

of sunlight illumination were manually chosen and named

“sunlight”. The statistics of all data sets are listed in Table 1. The

aspect ratio of C.medinalis damage symptoms in the field varies

widely, and instances incline randomly with the growth direction of

the leaves. We counted the number of corresponding instances by

aspect ratio and angle, respectively, as shown in Figures 6B, C. More

than 50% of the instances have an aspect ratio greater than 5, and

the instances are randomly oriented with different angles. Figure 7

lists some samples in different test subsets.
2.2 Methods

2.2.1 Overview of the proposed method
C.medinalis damage symptoms have elongated shapes with

large aspect ratios and arbitrary tilt directions, making aligned

features essential for detection. We present a rotated detection

network CMRD-Net for detecting in-field C.medinalis damage

symptoms, which outputs oriented bounding boxes that can
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precisely express the morphology of C.medinalis damage

symptoms. The overall architecture of CMRD-NET is shown in

Figure 8. The architecture adopts common settings for the

backbone and neck network with ResNet (He et al., 2016) and

Feature Pyramid Network(FPN) (Lin et al., 2017a) to extract multi-

scale features. The first stage is the H2R-RPN, which sets three

horizontal anchors on one feature point to provide rotated

proposals to instruct the following module where to look. The

adaptive positive sample selection method (Zhang et al., 2020) is

introduced to mitigate hard matching between horizontal anchors

and inclined instances. The following stage is the R2R-RCNN,

which aims at oriented feature alignment and proposal

refinement. Features aligned with rotated proposals are extracted

from feature maps and used to refine the rotated proposals after

down-sampling. In CMRD-Net, we use the long-edge definition

method (Ma et al., 2018) with five parameters (x, y,w, h, q) to

represent an oriented object. (x, y) denotes the center point

coordinates, w is the long edge, h is the short edge, and the angle

q is defined by the long edge w and the x-axis in the range of ½−p
=4, 3p=4), as shown in Figure 9.

2.2.2 Horizontal-to-Rotated RPN
To reduce the computational burden of numerous rotated

anchors, the H2R-RPN assigns three horizontal anchors at each

feature point position in different layers of the feature pyramid

network P2-P6 with aspect ratios of (0:5, 1, 2). As the feature level

deepens, the anchor areas are set as (322, 642, 1282, 2562, 5122). For

a size of W*H*256 feature map in Figure 8, it has W*H spatial

feature point vectors with 256 channels. The H2R-RPN predicts

three rotated proposals with each feature point vector. The

classification branch outputs W*H*3(W*H*3*1) scores that

provide the probability of object or not object and the regression

layer outputs W*H*15(W*H*3*5) encoding five parameters (x, y,

w, h, q) of a predicted rotated bounding box, where the coordinate

(x, y,w, h, q) means the center point, long edge, short edge and

angle. As horizontal bounding boxes cover more ineffective areas

than rotated bounding boxes, the H2R-RPN learns rotated

proposals directly based on predefined anchors. Then up to 2000

rotated proposals in each feature pyramid layer with the highest

confidence scores are selected and performed with non-maximum
A B C

FIGURE 6

Distribution of the CMRD dataset. (A) shows the image number associated with the instance number, (B, C) calculate the instance number by aspect
ratio and radian. Blue, red and gray denote the distribution of the total dataset, the training set and the testing set.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1180716
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2023.1180716
suppression (NMS) (Neubeck and Van Gool, 2006) to remove

duplicate detection boxes. Finally, after aggregating proposals

from P2-P6 layers, some rotated proposals are collected for

subsequent fine-tuning based on confidence score sorting.

During the training process, H2R-RPN adopts the adaptive

training sample selection method (Zhang et al., 2020), which can

find the optimal skew intersection over union (IoU) threshold for

each rotated instance with horizontal anchors to separate positive

and negative samples. The skew IoU definition is similar to the IoU
Frontiers in Plant Science 07
and it can be calculated by the triangular dissection method based

on intersection points (Ma et al., 2018). For a large range of aspect

ratios and scales, it is challenging to set an appropriate skew IoU

threshold to define positive and negative samples, as shown in

Figure 10. For each ground truth, n anchors closest to its center

point are obtained in each of m different feature layers for a total of

m� n. Figure 11 shows the anchor sample acquisition of an

instance on the P2-layer feature map. The skew IoU threshold

corresponding to this instance is calculated as mean(IoUs) + std(Io

Us). The IoUs are sets between these. anchors with the ground-

truth, and std is the standard deviation operation of IoUs. This

implementation dynamically fetches positive samples for each

instance, ensuring that each instance possesses positive samples.

Negative samples will be randomly selected from the remaining

anchors. By default, N = 256 training samples are taken for one

image. The ratio of positive and negative samples is 1:1. The sample

selection strategy is used only during the training phase, which does

not increase the inference time.

N training samples are involved in the calculation of the

classification loss Lcls, and only Np positive samples are needed to

perform the regression loss Lreg , which is expressed as follows:

L =
1
N
(o
N

i=1
Lcls(pdt , pgt) +o

Np

i=1
Lreg (mDgt ,mDdt)) (1)
A B DC

FIGURE 7

Examples of test subsets. The columns from left to right display two samples of the test subsets (A) “sparse”, (B) “medium”, (C) “dense” and (D) “sunlight”.
TABLE 1 Statistics on CMRD and its subsets. “average” denotes the
average number of instances per image in the corresponding dataset.

Datasets images instances average

total 3900 28964 7.43

training 2000 15117 7.56

testing 1900 13847 7.29

sparse 120 526 4.38

medium 120 1529 12.74

dense 113 2885 25.53

sunlight 120 977 8.14
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FIGURE 9

Definition of rotated bounding boxes. (x, y) denotes the center point coordinates, w is the long edge, h is the short edge, and the angle q is defined
by the long edge w and the x-axis in the range of ½−p=4, 3p=4). The clockwise angles are positive and the counterclockwise angles are negative.
FIGURE 8

The overall architecture of CMRD-NET. The H2R-RPN module uses horizontal anchors to generate rotated proposals. The rotated proposals are
refined in the R2R-RCNN stage based on the oriented-aligned feature regions.
Frontiers in Plant Science frontiersin.org08
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where pdt denotes the probability over classes, pgt denotes the class

label (pgt =1 for the positive sample, otherwise it is 0). Lcls adopts the

cross-entropy loss, Lreg is calculated by the smoothL1 function that

includes the regression of the center point coordinates (x, y), the

long and short edges (w, h), and the angle q :

Lreg (mDgt ,mDdt) = o
i∈ x,y,w,h,qf g

smoothL1 (m
i
Dgt − mi

Ddt) (2)
Frontiers in Plant Science 09
smoothL1 (x) =
0:5x2, if xj j < 1

xj j − 0:5, otherwise

(
(3)

where mi
Ddt , i ∈ fx, y,w, h, qg is the regression result representing

offsets between the detection box idt , i ∈ fx, y,w, h, qg and the

predefined anchor ia, i ∈ fx, y,w, h, qg, mi
Dgt , i ∈ fx, y,w, h, qg

denotes offsets between the ground truth igt , i ∈ fx, y,w, h, qg and

the anchor. The specific calculations are as follows:
FIGURE 11

Anchor sample acquisition for a rotated instance on the P2-layer feature map.
FIGURE 10

The skew IoU of the anchor (yellow) with the rotated ground truth (red RBBs in the right image) is significantly less than the IoU of the same anchor
with the corresponding horizontal circumscribed rectangle (red HBBs in the left image). The blue area indicates the intersection between the anchor
and the ground truth (gt).
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mx
Dgt = (xgt − xa)=wa, mx

Ddt = (xdt − xa)=wa

my
Dgt = (ygt − ya)=ha, m

y
Ddt = (ydt − ya)=ha

mw
Dgt = log (wgt=wa),mw

Ddt = log (wdt=wa)

mh
Dgt = log (hgt=ha),mh

Ddt = log (hdt=ha)

mq
Dgt = qgt − qa, mq

Ddt = qdt − qa

(4)

In the inference process, oriented proposal boxes are obtained

by the above calculation between predicted results and anchors.

Finally, the normalization operation qdt = (mq
Ddt + qa + p=4)% p −

p=4 needs to be performed to limit the angle qdt range in ½−p=4, 3
p=4).

2.2.3 Rotated-to-Rotated RCNN
The R2R-RCNN module comprises a rotated region of interest

alignment (RRoIAlign) operation and a detection head. The R2R-

RCNN relies on k� k� 256feature map regions aligned with

rotated proposals for detection rather than a misaligned 256-

dimensional feature vector. The rotated proposals obtained from

the H2R-RPN stage are denoted as (xp, yp,wp, hp, q). The RRoIAlign
operation projects the rotated proposals onto the feature map with

the stride of s to obtain oriented-aligned feature regions denoted as

(xf , yf ,wf , hf , q) as follows:

wf = wp=s, hf = hp=s

xf = ⌊ xp=s ⌋, yf = ⌊ yp=s ⌋

(
(5)

The rotated feature regions are then pooled into k� k grids with

256 channels to improve efficiency. For the index (m, n) grid in the

c − th(0 ≤ c < C) channel, the value is calculated as:

F
0
c(m, n) = o

(x,y)∈bin(m,n)

Fc(Rq(x, y))=l (6)

Rq(x, y) = (
cos q − sin q

sin q cos q
)(
x − wf =2

y − hf =2
) + (

xf

yf
) (7)

where 0 ≤ m, n < k, l represents the number of sampled points in

one grid, Fc(Rq(x, y)) denotes the value in the c − th channel for the

sampled point within each grid after the rotated operation Rq( : ).

The RRoIAlign operation is performed on arbitrary-oriented

proposals, while RoIAlign is for horizontal proposals, as shown in

Figure 12. We use the common setting 7� 7 for the parameter k�
k in the experiments. The sample values within each grid are

calculated by bilinear interpolation. Figure 12 reveals that

RoIAlign introduces ambiguity, such as background or other

instances, while RRoIAlign can focus more on discriminative

features for rotated objects.

All proposals are transformed into fixed-size feature vectors of

k� k� C by a RRoIAlign operation. Next, the feature vectors are fed

into two cascaded fully-connected layers Linear(dinput , doutput) in the

detection head, where dinput and doutput(by default doutput = 1024)

denote the dimensions of the input and output vectors. Finally, two

sibling fully-connected layers, Linear(1024, 2) and Linear(1024, 5),

are used for the class probability and regression offset

prediction, respectively.
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3 Experiment

3.1 Experimental settings

The experimental platform uses Ubuntu 18.04 operating system

with PyTorch 1.7.1, Python 3.7.10 and CUDA version 11.1. The

GPU is NVIDIA TITAN RTX with 24G memory. The optimizer

SGD (stochastic gradient descent) is adopted to train the models

with 36 epochs and a batch size of 2. The learning rate is reduced at

the 24th and 33rd epochs with a momentum of 0.9. The CMRD and

CMHD datasets are utilized for rotated detection algorithms and

horizontal detection algorithms based on the rotated object

detection framework MMRotate (Zhou et al., 2022) and the

generic object detection framework MMDetection (Chen et al.,

2019). All the experiments use ResNet-50 (He et al., 2016) as

the feature extraction backbone, and the FPN method (Lin et al.,

2017a) as the feature fusion neck. The size of images is normalized

to (1024, 1024). Other parameters keep the default settings.
3.2 Evaluation metrics

The evaluation metrics for rotated and horizontal detection are

defined in the similar way, specifying an IoU threshold between the

detection box and all labeled instances to determine whether the

detection result is correct. Unlike horizontal detectors, rotation

detectors are evaluated with skew IoU calculated by the

triangulation method. For a given skew IoU threshold, a set of (P,

R) values can be computed by setting different confidence score

thresholds, where P(Precision) denotes the correct proportion of

detection results and R (Recall) denotes the correctly detected

proportion of labeled instances. The higher the confidence score

threshold, the higher the P and the lower the R in general. The

average precision (AP) is widely used to evaluate the overall

performance of models by calculating the integral under the

precision-recall curve, as in Formula 8. Considering that some

C.medinalis damage symptoms are truncated and discontinuous, we

also evaluate AP with skew intersection over foreground (IoF),

which is the ratio of the intersection between the detection box and

the instance to the detection box.

P = TP
TP+FP � 100%

R = TP
TP+FN � 100%

AP =
Z 1

0
P(R)dR

(8)

where TP, FP and FN denote true positive, false positive and false

negative, respectively.
3.3 Comparison between rotated detectors
and horizontal detectors

The rotated detection algorithms produce oriented bounding

boxes closely surrounding the damage symptoms. We compare the

state-of-the-art rotated algorithms with horizontal detection
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algorithms, including our proposed method CMRD-Net. The

results of AP with IoU=0.5 are shown in Table 2. It can be seen

that our two-stage rotated CMRD-Net method achieves the highest

AP with 73.7% among all algorithms listed. Within horizontal

detection algorithms, the two-stage Doublehead-rcnn method

achieves the best performance with 69.3% AP. The CMRD-Net

and Roi-trans show higher AP than Doublehead-rcnn by 4.4% and

3.1%. Compared with the horizontal detection algorithms Faster-

rcnn and Fcos, the rotated detection methods Rotated Faster-rcnn

and Rotated Fcos obtain 0.8% and 1.9% improvements, respectively.

The results show that compared with horizontal detection

algorithms, our rotated detection algorithm provides precise

localization while achieving better performance.

We visualize the detection results of Faster-rcnn and Rotated

Faster-rcnn in Figure 13. The comparison figure reveals that the
Frontiers in Plant Science 11
rotated detection boxes adhere more closely to the damaged areas

and enhance the visualization ability of detection results. The

horizontal detection algorithm Faster-rcnn can provide accurate

horizontal bounding boxes when objects are sparsely distributed,

but it is intractable to detect crossed and densely-distributed

objects. The rotated detection methods present higher

applicability in complex field conditions.
3.4 Comparison with other
rotated detectors

We compare CMRD-Net with other state-of-the-art rotated

detection algorithms. We calculate AP with a skew IoU threshold

equal to 0.75 and 0.5, namely AP75 and AP50. The same is for skew
TABLE 2 Comparison between rotated detectors and horizontal detectors.

Mode Method AP (%)

Horizontal detection methods

Autoassign (Zhu et al., 2020) 63.5

Fcos (Tian et al., 2019) 65.3

Ddod (Chen et al., 2021) 64.9

Dynamic Head (Dai et al., 2021) 67.6

Libra-rcnn (Pang et al., 2019) 64.7

Faster-rcnn (Ren et al., 2017) 68.6

Cascade-rcnn (Cai and Vasconcelos, 2018) 69.1

Doublehead-rcnn (Wu et al., 2020) 69.3

Rotated detection methods

Gliding Vertex (Xu et al., 2021) 66.1

Rotated Fcos (Tian et al., 2019) 67.2

Oriented Reppoints (Li et al., 2022) 70

S2anet (Han et al., 2021) 70.7

Rotated Faster-rcnn (Ren et al., 2017) 69.4

Roi-trans (Ding et al., 2019) 72.4

CMRD-Net 73.7
A B

FIGURE 12

Feature alignment. (A) RoIAlign and (B) RRoIAlign. For simplicity, we exhibit the comparison results with 3� 3 on the original image instead of feature maps.
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IoF. As shown in Table 3, the proposed CMRD-Net outperforms

the other models. To be specific, CMRD-Net achieves the highest

AP with 33.7%, 73.7%, 63.4% and 81.7% in four cases respectively,

which is higher than the two-stage method Roi-trans by 1.2%, 1.3%,

2.1% and 5.3%. Among one-stage algorithms, Oriented Reppoints

obtains the highest AP75(IoU) with 28.2.% and S2anet has the best

performance in other three cases. Compared to the optimal one-

stage algorithms, CMRD-Net obtains an improvement of 5.5%,

3.0%, 4.9% and 1.5% on AP75(IoU), AP50(IoU), AP75(IoF) and A

P50(IoF). We also calculate the parameter quantity (Params), the

floating-point operations per second (FLOPs) and the frames per

second (Fps) for all the algorithms. The FLOPs are related to the

input size, which is uniformly fixed at 3� 1024� 1024. For a fair

comparison, the inference speed is the average speed with 5 times

based on 1900 images in the testing set. Compared to one-stage

algorithms, two-stage algorithms substitute feature point vectors
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with more feature regions corresponding to the region of interests

for detection, resulting in higher Params and FLOPs in general.

With an additional proposal refinement stage, the method Roi-trans

is significantly inferior to CMRD-Net in terms of Params and

detection speed. Our framework does not add extra parameters

among two-stage algorithms and the detection speed is satisfactory

for practical applications.

Examples of the comparison detection results with several other

rotated detection methods are visualized in Figure 14. The left-most

column shows the oriented annotations. The ground-truth image in

the first row only has three separate instances. The second and third

row illustrate images with crossed and densely packed objects.

Comparatively, our proposed CMRD-Net obtains more accurate

detection boxes compared to other methods for both sparse and

dense distributions. Figure 15 presents the feature maps of our

method and Rotated Faster-rcnn. The primary difference between
A

B

FIGURE 13

Examples of the comparison detection results of the horizontal detector with the rotated detector. The first row (A) is the detection results of
Faster-rcnn and the second row (B) is the detection results of Rotated Faster-rcnn.
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CMRD-Net and Rotated Faster-rcnn is that CMRD-Net generates

rotated proposals in the region proposal network, whereas Rotated

Faster-rcnn generates horizontal proposals. As can be seen from the

comparison feature maps, our method obtains better discriminative

response features indicating the importance of learning rotated

proposals in the first stage network for two-stage algorithms.
3.5 Comparison in different scenes

To further validate the effectiveness of the proposed framework,

we perform comparison experiments with other rotated algorithms

on test subsets called “sparse”, “medium”, “dense” with different

number of instances per image, and “sunlight” with illumination

influence. We present AP with a skew IoU threshold equal to 0.5.

Table 4 shows that CMRD-Net achieves 76.8% in the sparse scene

higher than Oriented Reppoints by 1.1%. Despite the fact that Roi-

trans performs well on the other three scenes, CMRD-Net always

obtains improvements than Roi-trans. Our method achieves the

highest AP under different in-field scenes. It can also be seen that

CMRD-Net reaches 65.4% and 63.9% in the dense and sunlight

scene, which are not as well detected as the sparse scene 76.8% and

the medium scene 73.8%, but are still superior to other state-of-the-

art methods. The scenes with densely distributed objects and

illumination influence need to be focused on and addressed in

future work.
4 Discussion

As the C.medinalis pests conceal themselves in the rolled leaves,

agricultural experts assess the pest occurrence level by estimating

pest damage symptoms with visual observation during the field

survey. To effectively control and prevent pest outbreaks, it is

essential to detect pest damage symptoms automatically and

precisely. Advances in deep learning techniques have boosted
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research into object recognition and detection for pest damage or

disease symptoms (Lu et al., 2017; Rahman et al., 2020; Temniranrat

et al., 2021; Debnath and Saha, 2022; Yang et al., 2022).

In complex field conditions, instance-level horizontal bounding

box detectors based on deep learning are commonly used to locate

pest damage or disease symptom regions (Zhou et al., 2019; Li et al.,

2020; Yao et al., 2020; Pan et al., 2023). However, the oriented and

densely-distributed object characteristics increase the difficulty of

horizontal detection, making it challenging to detect damage

symptom regions precisely. Comparatively, rotated bounding box

detectors can provide more precise regions with orientation

information and are better adapted to complex field

environments. We propose a deep learning-based detection

framework with rotated bounding box for in-field C.medinalis

damage symptoms survey, called CMRD-Net.

The comparison performances between rotated and

horizontal detectors are listed in Table 2. The rotated detection

methods Roi-trans (72.4%) and our CMRD-Net (73.7%) achieve

higher AP than the best performing horizontal detector

Doublehead-rcnn (69.3%). Rotated Faster-rcnn and Rotated

Fcos outperform Faster-rcnn and Fcos, respectively. Figure 13

illustrates that the rotated detection boxes are more suitable for

characterizing the oriented damage symptoms and favorable for

inspecting their actual positions. Furthermore, our CMRD-Net is

superior to other state-of-the-art rotated detection methods by

four different evaluation indicators, as shown in Table 3.

Meanwhile, CMRD-Net does not add additional parameters

within two-stage algorithms, and the detection speed is

satisfactory for real-world tasks. The comparative detection

results in Figure 14 show the excellent detection performance

of our framework. Figure 15 illustrates that CMRD-Net extracts

more discr iminat ive features , improving the feature

representation capability based on rotated proposals. In

addition, comparison experiments with other state-of-the-art

rotated detection methods in different scenes further verify the

effectiveness of the proposed framework, as shown in Table 4.
TABLE 3 Comparison with other rotated detectors.

Mode Method
IoU IoF

Params (M) FLOPs (G) Fps
AP75 (%) AP50 (%) AP75 (%) AP50 (%)

One- Stage

R3det (Yang et al., 2021) 16.8 63.6 54 76.3 41.58 328.7 16.2

Rotated Fcos (Tian et al., 2019) 24.8 67.2 56.7 77.9 31.89 206.2 24.9

CFA (Guo et al., 2021) 24.7 67.5 49.2 74 36.6 194.24 21.3

Rotated Atss (Zhang et al., 2020) 25.9 68.2 58.6 78.8 36.01 207.16 23.1

Oriented Reppoints (Li et al., 2022) 28.2 70 51 74.7 36.6 194.24 21.4

S2anet (Han et al., 2021) 24.4 70.7 58.5 80.2 38.54 196.21 19.6

Two- Stage

Gliding Vertex (Xu et al., 2021) 20.3 66.1 52.4 75.9 41.13 211.29 20

Rotated
Faster-rcnn (Ren et al., 2017)

25.5 69.4 58.6 78.8 41.12 211.28 20.3

Roi-trans (Ding et al., 2019) 32.5 72.4 61.3 76.4 55.03 225.18 17

CMRD-Net 33.7 73.7 63.4 81.7 41.12 211.35 19.4
frontiersin.org

https://doi.org/10.3389/fpls.2023.1180716
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2023.1180716
The detection results under the four scenes show that we need to

pay more attention to the scenes with densely-distributed objects

and illumination effects.
5 Conclusion and future work

C.medinalis seriously affects the yield and quality of rice. The

automatic detection method of its damage symptoms has become

an urgent requirement and development trend for field

investigation. Rice leaves grow in arbitrary-oriented directions
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under natural conditions, resulting in C.medinalis damage

symptoms inclined, crossed and slender. We explore a two-stage

rotated detection framework CMRD-Net to solve the above

problems based on a newly constructed dataset named CMRD

with oriented annotations. The extensive experimental results show

that our proposed algorithm can achieve superior detection results

among the state-of-the-art rotated detection methods. In addition,

compared with horizontal detection methods, our rotated detection

framework CMRD-Net obtains higher AP and locates the damage

symptom regions more precisely. Our work provides novel insights

into in-field C.medinalis investigation to take the initiative of

pest control.
A B DC

FIGURE 14

Examples of the comparison detection results with other rotated detection methods. The left-most column (A) shows Ground truth. The other three
columns are detection results of the methods (B) Oriented Reppoints, (C) Rotated Faster-rcnn and (D) CMRD-Net.
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Despite the outstanding effect of our proposed rotated

detection method for detecting C.medinalis damage symptoms

in the field, there are still some limitations. The detection results

are clearly separated when C.medinalis damage symptoms are
Frontiers in Plant Science 15
heavily occluded. Occasionally, C.medinalis damage symptoms

have curved shapes that do not facilitate rotated detection

methods. In further research, we will consider the occlusion and

bending, and design a unified detection framework that can
A

B

FIGURE 15

Visualization comparison of feature maps. The first row (A) shows the feature maps of Rotated Faster-rcnn(horizontal proposals-based) and the
second row (B) shows the feature response maps of CMRD-Net(rotated proposals-based).
TABLE 4 Comparison with other rotated detectors in different scenes based on AP(%).

method sparse medium dense sunlight

R3det (Yang et al., 2021) 72.1 63.2 54.3 57.5

Rotated Fcos (Tian et al., 2019) 71.1 68 59.4 58.3

CFA (Guo et al., 2021) 71.3 69.3 56 58.9

Rotated Atss (Zhang et al., 2020) 74.2 66.8 59.8 59.5

Oriented Reppoints (Li et al., 2022) 75.7 70.8 55.7 61.2

S2anet (Han et al., 2021) 74.5 69.2 63.3 62.4

Gliding Vertex (Xu et al., 2021) 74.3 65.9 62.4 61.2

Rotated Faster-rcnn (Ren et al., 2017) 73.3 69.7 62.7 60.4

Roi-trans (Ding et al., 2019) 74.6 72.3 65.2 62.4

CMRD-Net 76.8 73.8 65.9 64.3
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handle the complex cases of inclination, occlusion, and

bending simultaneously.
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