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Introduction: Clonal integration of connected ramets within clones is an

important ecological advantage. In this study, we tested the hypothesis that

the effects of clonal integration on performance of donor and recipient ramets

when one resource is heterogeneous can be influenced by the availability of

another resource of donor ramets.

Methods:We conducted a greenhouse experiment on the widespread, perennial

herb Glechoma longituba. Clonal fragments consisting of pairs of connected

ramets were grown for seven weeks. The younger, apical ramets were exposed

under 30% or 100% light condition and the older, basal ramets were treated with

three levels of nutrients. The connections between ramets were either severed or

left intact. 30% light condition negatively affected the growth of apical ramets,

basal ramets and the whole fragments.

Results: Clonal integration significantly increased the growth of apical ramets,

but decreased the growth of the basal ramets. Medium and high level nutrient

availability of basal ramets significantly increased the growth of apical ramets,

basal ramets and the whole fragments. At the high nutrient level, the reduction in

growth of basal ramets from clonal integration was decreased, but the growth

responses of apical ramets and the whole fragments to clonal integration were

not influenced by nutrient availability.

Conclusion: The results suggested that clonal integration was benefit to the

growth of apical ramets of Glechoma longituba but at the cost of reducing the

growth of basal ramets. Although the high nutrient level could reduce the cost

that clonal integration brought to the unshaded basal ramets, but could not

increase the benefit that clonal integration brought to the shaded apical ramets

and whole fragment.
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1 Introduction
Clonal plants are common in many natural habitats and are

often the dominant species (Prach and Pysěk, 1994; Evans and Cain,

1995; Liu et al., 2007). The clonal growth of plants mainly involves

the production of vegetative offspring that remain connected to the

parent by connective architectures (e.g., stolons, rhizomes, or

horizontally growing roots), which form a large network (Prach

and Pys ̌ek, 1994; Alpert, 1996; Gao et al., 2012). Among

interconnected ramets, water, mineral nutrients, photosynthates,

and chemical signals can be translocated via the connective

architecture, that is, clonal integration (Caraco and Kelly, 1991;

Alpert, 1996). Clonal integration is a uniquely advantageous trait

for clonal plants (Hutchings and Kroon, 1994; Hutchings and

Wijesinghe, 1997; Kroon and Groenendael, 1997). During the

establishment of offspring (or distal) ramets, parent (or proximal)

ramets can provide resources through clonal integration to help

them successfully colonize and quickly spread (Zhang et al., 2003;

Elgersma et al., 2015).

The distribution of resources such as nutrients, light, and water

in natural environments is heterogeneous (Ricklefs, 1977; Caldwell

and Pearcy, 1994; Stein et al., 2014). That is, levels of resources are

consistent within the same patch but inconsistent among different

patches (Stuefer and Hutchings, 1994; Qian et al., 2014). Resource

heterogeneity can influence plant growth, intraspecific and

interspecific competition, and community structures (Roiloa et al.,

2014; Wan et al., 2019; Liang et al., 2020; Si et al., 2021).

In natural habitats, clonal plants usually occupy a large area and

inevitably span patches with different resource levels (Roiloa and

Retuerto, 2007; Xing et al., 2019). Clonal integration plays an

important role in the distribution of connected ramets in

heterogeneous environments (Glover et al., 2015; Zhang et al.,

2016; Si et al., 2020a). Ramets in patches with higher recourses

(i.e., donor ramets) can transfer resources to connected ramets in

patches with lower recourses (i.e., recipient ramets) (Zhang

et al., 2016).

Furthermore, when resources are translocated among

connected ramets, there is a cost–benefit relationship between

donor and recipient ramets (van Kleunen and Stuefer, 1999;

Zhang et al., 2015; Si et al., 2020a). If the benefit of recipient

ramets is greater than the cost of donor ramets, the whole clone will

benefit. Otherwise, the growth of the entire clone is consumed

(Chen et al., 2010; Gao et al., 2013; Zhang et al., 2015). If the benefit

is consistent with the cost, overall growth will be consistent

(Adomako et al., 2020; Si et al., 2020a). However, whether the

cost–benefit relationship between connected ramets is affected by

another resource when they grow in a heterogeneous environment

is limited.

To occupy more space, offspring ramets of dwarf clonal plants

usually spread to the shaded environment caused by coexisting tall

trees or shrubs that block the light (Slade and Hutchings, 1987; Li

et al., 2018a; Li et al., 2018b). Previous studies have shown that the

growth of shaded ramets can be improved using unshaded ramets

through clonal integration (Li et al., 2018a; Si et al., 2020b). Nutrient

availability is a key factor affecting plant performance (Lebauer and
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Treseder, 2008; Song et al., 2015; Gao et al., 2021). An increase in

nutrient availability can promote plant growth and change the

population dynamics of the plant (Si et al., 2019; Zhang et al., 2020;

Zhang et al., 2022). Previous studies have indicated that ramets with

low nutrient availability and whole plants could benefit from clonal

integration in heterogeneous nutrient environments (Zhang and

He, 2009; You et al., 2014; Wang et al., 2017). We hypothesized that

nutrient availability in unshaded ramets can influence the effects of

clonal integration on plant performance.

To test this hypothesis, we conducted a control experiment in a

greenhouse. In the experiment, fragments of the widespread,

herbaceous, clonal species Glechoma longituba were planted in

pairs in pots. The basal ramets grow unshaded and receive three

levels of nutrients, whereas the apical ramets are shaded. Stolons

between the basal and apical ramets were either severed or left

intact. Specifically, we tested the following hypotheses: (1) shading

can decrease the growth of apical ramets, (2) clonal integration can

increase the growth of apical ramets, and (3) the high nutrient

availability of the unshaded basal ramets can enhance the benefits of

clonal integration brought to the shaded apical ramets and

whole fragments.
2 Materials and methods

2.1 Plant species

G. longituba L. is a perennial clonal herb belonging to the

Lamiaceae family (Chu et al., 2006; Zhang et al., 2007; Zhang and

He, 2008). This species is common in forests, roadsides, and creeks,

and is distributed throughout China, except for the Northwest and

Inner Mongolia Autonomous Region (Zhang et al., 2007). The

monopodial stolon extends and forms a network on the ground

(Chu et al., 2006). Along the stolon, each node can produce two

opposite zygomorphic single leaves and adventitious roots, thereby

functioning as a potentially independent ramet. Every leaf axil bears

one bud, which may grow into a secondary stolon (Chu et al., 2006;

Zhang et al., 2007). The experimental plant materials were

purchased from a commercial supplier in Shanghai, China. The

plants were cultivated for several weeks in a greenhouse (36°34′N,
114°29′E) at Handan University in Handan, Hebei Province, China,

before the commencement of the experiment.
2.2 Experimental design

The experiment had two levels of clonal integration treatments

(stolon severed or stolon left intact) fully crossed with two levels of

light intensity (apical ramets grown under shaded conditions or

under unshaded conditions) and three levels of nutrient availability

(basal ramets grown under low, medium, or high nutrients

conditions) (Figure 1).

On 22 April 2021, 84 ramets bearing a pair of fully expanded

leaves were severed from stock plants. These ramets was planted on

the potted trays which were filled with equal volumes of potting soil

(0.17 g total N kg−1, 2.1 mg total P kg−1, and 1.5 g total K kg−1;
frontiersin.org
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Dewoduo Fertilizer Co., China) and river sand. After 36 days, 60

plants in which the ramet had produced a new axillary stolon at

least 15 cm long, with four nodes and an apex, were selected and

used in this experiment.

The three proximal nodes, referred to as the basal portion, were

allowed to root in the pots (15 cm in diameter and 13 cm in depth)

which were filled with a mixture of the local collected topsoil (0.83 g

total N kg−1 and 20.37 g total C kg−1), and peat (particle size <6 mm;

Klasmann, Germany) at a volume ratio of 1:1. One distal node and

the apex, referred to as the apical portion, were rooted in a separate,

same pot that was filled with the same mixture as the basal one. The

apical portions were placed under ambient light conditions or

shaded to 30% ambient light with a shade cloth. For the three

levels of nutrient treatments in the basal portions, the pots received

300 mL of 0, 0.2, or 1 g water-soluble fertilizer (Peters Professional

20-20-20+TE General Purpose Fertilizer, Everris, NA, Inc.: 20%

total N, 20% available PO4, and 20% soluble potash) L−1 tap water

every 10 days. When the basal portions received nutrient solution,

tap water was provided to the apical portions of the same volume. In

the severed treatment, the stolon connecting the basal and apical

portions was cut on 17 June 2021. In the clonal integration

treatment, these portions were left intact. Each treatment was

replicated five times, resulting in a total of 60 pairs of pots. All
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pot pairs were placed randomly on a bench in the same greenhouse

for cultivation.

Plants were allowed to grow for 7 weeks. During the

experiment, the daily mean temperature and relative humility

were 28.9 °C and 50.2%, respectively. New stolons and ramets

produced by each portion of each fragment were allowed to root in

the same pot as the rest of the fragments.
2.3 Measurements and data analysis

We harvested the experiment when the plants covered the

entire soil surface in many containers. At harvest, we counted the

number of nodes in G. longituba and measured total stolon length

in each pot. Then, the plants were separated into leaves, stolons, and

roots, dried at 70 °C to a constant weight, and weighed. We also

calculated the specific stolon length (total stolon mass/total stolon

length) and root–shoot ratio [root mass/(leaf mass + stolon mass)].

We used three-way ANOVA to test the effects of clonal

integration, light conditions, and nutrient availability on total

mass, leaf mass, stolon mass, root mass, node number, total

stolon length, specific stolon length, and root–shoot ratio in the

apical portion, basal portion, and whole clonal fragment. Data were
FIGURE 1

Schematic representation of the experimental design. Apical portions of Glechoma longituba grew under 30% or 100% light conditions. Basal
portions were grown at three nutrient levels under 100% light conditions. The stolon between the apical and basal portions was either severed
or left intact.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1182068
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1182068
checked for normality and homoscedasticity and transformed

before analysis, as needed, to improve homoscedasticity. Total

mass, leaf mass, stolon mass, root mass, node number, specific

stolon length of the apical portion, leaf mass, node number of the

basal portion, total mass, leaf mass, stolon mass, root mass, total

stolon length, and root–shoot ratio of the whole fragment were

transformed into square roots. The total stolon length and root–

shoot ratio of the apical portion, total mass, stolon mass, root mass,

total stolon length, root–shoot ratio of the basal portion and node

number of the whole fragment were transformed to the natural log.

Figures show untransformed data. All analyses were conducted

using SPSS 22.0 (IBM, Inc., Armonk, NY, USA).
3 Results

3.1 Effects of clonal integration, light
condition, and nutrient availability on
apical portions

Clonal integration significantly increased the biomass (total

mass, leaf mass, stolon mass, and root mass), node number, total

stolon length, and root–shoot ratio of the apical portions of G.

longituba, but significantly decreased the specific stolon length

(Table 1; Figure 2). Biomass, total stolon length, and root–shoot

ratio were significantly decreased under 30% light conditions, while

the response of specific stolon length was the opposite (Figures 2A–

D). Nutrient availability significantly affected the biomass, node

number, total stolon length, and stolon length (Table 1). Medium

and high levels of nutrients increased biomass, node number, and

total stolon length of apical portions, while the specific stolon length

decreased (Figures 2A). The interaction between clonal integration

and light conditions significantly affected the biomass of the apical

portions. Compared to the 30% light condition, the increase in

biomass was greater under 100% light conditions when the stolon

was left intact (Table 1; Figures 2A). Clonal integration and nutrient

availability had a significant interaction effect only on the stolon

mass of the apical portion. Specifically, the increase in stolon mass
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by clonal integration was greater at medium- and high-nutrient

levels than at low-nutrient levels (Table 1; Figure 2).
3.2 Effects of clonal integration, light
condition, and nutrient availability on
basal portions

Clonal integration significantly decreased the biomass, node

number, total stolon length, and specific stolon length of the basal

portions of G. longituba but increased the root–shoot ratio (Table 2;

Figure 3). The 30% light condition decreased biomass, node

number, and total stolon length but the increased root–shoot

ratio (Figures 3A–F). Increased nutrient availability increased

biomass, node number, total stolon length, and specific stolon

length but decreased the root–shoot ratio (Figure 3). The

interaction between clonal integration and nutrients significantly

affected biomass, node number, total stolon length, and root–shoot

ratio (Table 2). The decrease in biomass, node number, and total

stolon length under clonal integration was lower at high nutrient

levels, and the increase in the root–shoot ratio was reduced

(Figures 3A–F).
3.3 Effects of clonal integration, light
condition, and nutrient availability on
the whole clonal fragments

Clonal integration significantly decreased the node number,

total stolon length, and specific stolon length but increased the

root–shoot ratio of the whole fragment of G. longituba (Table 3;

Figures 4E). The 30% light condition significantly decreased

biomass, node number, total length, specific stolon length, and

root–shoot ratio (Figure 4). Biomass, node number, total stolon

length, and specific stolon length increased, but the root–shoot ratio

decreased with an increase in nutrient availability (Figure 4). The

interaction between clonal integration and light conditions

significantly affected the biomass (Table 1). Under 100% light
TABLE 1 Effects of clonal integration, light condition, and nutrient availability on total mass, leaf mass, stolon mass, root mass, node number, total
stolon length, specific stolon length, and root–shoot mass ratio of the apical portions of Glechoma longituba.

Variable Integration (I) Light (L) Nutrient (N) I × L I × N L × N I × L × N

F1,48 P F1,48 P F2,48 P F1,48 P F2,48 P F2,48 P F2,48 P

Total massa 170.1 <0.001 40.2 <0.001 5.7 0.006 13.4 0.001 3.1 0.058 0.1 0.914 0.7 0.490

Leaf massa 128.2 <0.001 23.7 <0.001 3.6 0.035 10.7 0.002 1.9 0.160 0.2 0.859 1.5 0.227

Stolon massa 161.9 <0.001 53.1 <0.001 7.3 0.002 13.1 0.001 3.6 0.036 0.1 0.912 0.1 0.918

Root massa 139.3 <0.001 53.9 <0.001 4.4 0.017 12.4 0.001 3.1 0.056 0.9 0.405 <0.1 0.955

Node numbera 123.3 <0.001 21.7 <0.001 6.1 0.004 0.7 0.412 0.9 0.412 0.4 0.652 1.0 0.365

Total stolon lengthb 101.4 <0.001 8.6 0.005 4.3 0.019 0.8 0.371 0.7 0.492 0.5 0.605 0.1 0.936

Specific stolon lengtha 27.4 <0.001 41.4 <0.001 3.6 0.034 2.7 0.104 1.6 0.209 1.8 0.169 0.2 0.854

Root–shoot ratiob 5.9 0.019 11.4 0.001 0.3 0.768 0.1 0.718 0.6 0.558 1.3 0.274 0.5 0.637
frontier
aSquare root transformation. bNatural log transformation. Degree of freedom (subscript for ‘‘F’’), F and P-values are given. Values are in bold when P <0.05.
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FIGURE 2

Total mass (A), leaf mass (B), stolon mass (C), root mass (D), node number (E), total stolon length (F), specific stolon length (G), and root–shoot ratio
(H) of the apical portions of Glechoma longituba when the apical portions were under 30% or 100% light conditions, the basal portions at low,
medium, or high nutrient levels, and the connection between the two portions were either severed or left intact. Bars and vertical lines represent the
mean and SE (n = 5).
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conditions, clonal integration increased the biomass of the whole

fragments. Under 30% light conditions, biomass decreased

(Figures 4A). The interaction between clonal integration and

nutrient availability significantly affected the node number of

whole fragments (Table 3). The reduction in the number of nodes

by clonal integration decreased when the nutrient levels were

high (Figure 4).
4 Discussion

The low light intensity caused by shading significantly reduced

the growth of apical ramets in G. longituba, probably because of the

reduced photosynthetic rate (Madsen and Adams, 1989; Everitt and

Burkholder, 1991; Wang et al., 2012). Moreover, plants can adjust

themselves to adapt to low-light environments (Cronin and Lodge,

2003; Going et al., 2008; Si et al., 2020b). In this experiment, apical

ramets produced shorter and thinner stolons under low-light

conditions, which is inconsistent with the response observed in

many other terrestrial clonal plants (Barko and Filbin, 1983;

Maegawa et al., 1987; Tavechio and Thomaz, 2003). We

attributed these differences to the variation in the trade-off

between the cost of respiration and the benefits of photosynthesis

across clonal plant species. The root–shoot ratio of apical ramets

decreased under 30% light conditions. This may be a positive

adaptive strategy for plants, as explained in the typical resource-

ratio hypothesis, i.e., plants tend to allocate more biomass to

aboveground organs to compete for light when light is limited

(Zhou et al., 2012; Xie et al., 2016; Yu et al., 2018).

As expected, clonal integration significantly increased the

growth of apical portions under shaded conditions, although this

increase was lower than that when the apical portions were not

shaded. Meanwhile, the growth of the basal portions decreased

when the stolon was left intact, and the performance of whole

fragments was not significantly influenced by clonal integration.

The cost–benefit relationship between donor and recipient ramets

was inconsistent in previous studies (Chen et al., 2010; Roiloa and
Frontiers in Plant Science 06
Retuerto, 2012; Si et al., 2020b). For instance, clonal integration

improved the performance of Fragaria vesca offspring grown in

copper-polluted soil but reduced the photosynthetic efficiencies and

growth of their parent (as the donor) (Roiloa and Retuerto, 2012).

In another study, although clonal integration brought benefits to

distal ramets (as the recipient) of Carex praeclara buried in sand,

the cost was not detected in proximal ramets (as the donor) (Chen

et al., 2010). The results of this experiment demonstrated that the

benefits of clonal integration to apical ramets of G. longitubamay be

at the cost of reducing the growth of basal ramets, regardless of the

light condition of apical ramets and the nutrient availability level of

basal ramets.

The increase in nutrients improved the growth of the apical

ramets, basal ramets, and whole fragments, but did not enhance the

benefits of clonal integration brought to apical ramets and whole

fragments as predicted. However, there is a noteworthy finding in

this experiment that the reduction in basal ramets by clonal

integration was significantly reduced at high nutrient levels. These

results suggest that a higher level of nutrient availability can reduce

the consumption of basal ramets caused by clonal integration. In

addition, biomass allocation of basal ramets responded significantly

to nutrient levels when clonal integration was maintained. With the

increase in nutrients, the biomass invested in the roots of basal

ramets was less when the stolon was intact than when it was severed.

This may be because basal ramets need to invest more biomass in

the roots to ensure their nutrient uptake and supply to apical ramets

when nutrient availability is low. When nutrient levels are high,

they invest more biomass in the aboveground organs to improve

photosynthesis (Wang et al., 2008). This allocation strategy may

maximize the performance of the whole clone by preferentially

acquiring and using resources that are more valuable (Roiloa and

Retuerto, 2007). A limitation of this study is that we defined the

nutrient level of the soil itself as a low nutrient level, but for apical

ramets, this nutrient level may be a level that can support plant

growth. We do not deny that the results may be different when

nutrient levels are lower or higher than those used in this

experiment. In addition, this experiment lasted for only 7 weeks;
TABLE 2 Effects of clonal integration, light condition, and nutrient availability on total mass, leaf mass, stolon mass, root mass, node number, total
stolon length, specific stolon length, and root–shoot mass ratio of the basal portions of Glechoma longituba.

Variable Integration (I) Light (L) Nutrient (N) I × L I × N L × N I × L × N

F1,48 P F1,48 P F2,48 P F1,48 P F2,48 P F2,48 P F2,48 P

Total massb 64.4 <0.001 8.8 0.005 39.0 <0.001 1.8 0.187 6.1 0.004 1.0 0.377 0.1 0.885

Leaf massa 46.6 <0.001 4.1 0.048 45.0 <0.001 0.3 0.576 3.1 0.056 0.3 0.714 <0.1 0.969

Stolon massb 86.6 <0.001 7.1 0.011 26.0 <0.001 1.8 0.191 7.0 0.002 0.6 0.567 0.1 0.917

Root massb 29.0 <0.001 20.6 <0.001 7.3 0.002 2.9 0.094 3.8 0.028 0.8 0.429 0.2 0.819

Node numbera 108.3 <0.001 4.3 0.045 37.4 <0.001 2.1 0.150 5.5 0.007 0.3 0.774 0.8 0.455

Total stolon lengthb 115.3 <0.001 4.9 0.032 33.0 <0.001 2.5 0.118 9.0 <0.001 0.9 0.418 0.1 0.928

Specific stolon length 21.3 <0.001 1.8 0.192 4.3 0.018 1.5 0.227 2.6 0.085 0.7 0.483 3.0 0.059

Root–shoot ratiob 43.7 <0.001 6.7 0.013 63.6 <0.001 0.3 0.560 4.6 0.015 0.1 0.916 0.2 0.801
frontier
aSquare root transformation. bNatural log transformation. Degree of freedom (subscript for ‘‘F’’), F and P-values are given. Values are in bold when P <0.05.
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FIGURE 3

Total mass (A), leaf mass (B), stolon mass (C), root mass (D), node number (E), total stolon length (F), specific stolon length (G), and root–shoot ratio
(H) of the basal portions of Glechoma longituba when the apical portions were under 30% or 100% light conditions, the basal portions at low,
medium, or high nutrient levels, and the connection between the two portions were either severed or left intact. Bars and vertical lines are means
and SE (n = 5).
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TABLE 3 Effects of clonal integration, light condition, and nutrient availability on total mass, leaf mass, stolon mass, root mass, node number, total stolon length, specific stolon length, and root–shoot mass
ratio of all Glechoma longituba fragments.

Light (L) Nutrient (N) I × L I × N L × N I × L × N

F1,48 P F2,48 P F1,48 P F2,48 P F2,48 P F2,48 P

21.6 <0.001 22.6 <0.001 5.4 0.025 1.0 0.358 0.1 0.932 0.1 0.927

15.4 <0.001 28.4 <0.001 4.5 0.040 0.7 0.518 0.1 0.863 0.2 0.834

25.4 <0.001 17.4 < 0.001 5.9 0.018 1.5 0.241 0.1 0.922 0.1 0.947

39.9 <0.001 7.6 0.001 7.1 0.010 2.2 0.127 0.1 0.868 <0.1 0.999

10.6 0.002 39.7 <0.001 3.6 0.064 4.6 0.015 0.4 0.689 0.5 0.600

5.2 0.028 22.8 <0.001 1.8 0.182 2.4 0.102 0.1 0.866 0.5 0.638

37.3 <0.001 6.9 0.002 0.9 0.337 1.0 0.380 0.4 0.680 2.4 0.105

32.7 <0.001 45.0 <0.001 1.5 0.226 2.9 0.067 2.2 0.117 0.8 0.438

edom (subscript for ‘‘F’’), F and P-values are given. Values are in bold when P <0.05.
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if the plant is allowed to grow longer, the response of the plant may

change accordingly.
5 Conclusion

Limited light conditions of the apical ramets negatively affected

the growth of the apical portions of G. longituba. Clonal integration

was beneficial to the growth of apical portions but was a

consumption of basal portions. The benefit of clonal integration
Frontiers in Plant Science 09
to the shaded apical portions did not improve when the nutrient

availability of the unshaded basal portions was high, but the

consumption of the basal portions decreased. Thus, although

increased nutrient availability may reduce the cost of unshaded

basal portions, may not promote G. longituba spread into shaded

habitats through clonal integration, at least for the nutrient levels

and shorter period set in our study. Clonal plants are the dominant

species in natural habitats. Understanding the performance of

clonal plants when they spread from unshaded to shaded habitats

while maintaining ramets connections is helpful in predicting the
B

C D

E F

G H

A

FIGURE 4

Total mass (A), leaf mass (B), stolon mass (C), root mass (D), node number (E), total stolon length (F), specific stolon length (G), and root–shoot ratio
(H) of whole fragments of Glechoma longituba when the apical portions were under 30% or 100% light conditions, the basal portions at low,
medium, or high nutrient levels, and the connection between the two portions either severed or left intact. Bars and vertical lines are means and SE
(n = 5).
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distribution dynamics of plant populations and communities.

However, the plant material used in this study originated from

the same clone. Further experiments should be designed using

clones of different genotypes or from various habitats to fully

understand the effects of resource heterogeneity and clonal

integration on the performance of G. longituba.
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