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Soybean seed protein content (PC) and oil content (OC) have important
economic value. Detecting the loci/gene related to PC and OC is important
for the marker-assisted selection (MAS) breeding of soybean. To detect the stable
and new loci for PC and OC, a total of 320 soybean accessions collected from
the major soybean-growing countries were used to conduct a genome-wide
association study (GWAS) by resequencing. The PC ranged from 37.8% to 46.5%
with an average of 41.1% and the OC ranged from 16.7% to 22.6% with an average
of 21.0%. In total, 23 and 29 loci were identified, explaining 3.4%-15.4% and
5.1%-16.3% of the phenotypic variations for PC and OC, respectively. Of these,
eight and five loci for PC and OC, respectively, overlapped previously reported
loci and the other 15 and 24 loci were newly identified. In addition, nine
candidate genes were identified, which are known to be involved in protein
and oil biosynthesis/metabolism, including lipid transport and metabolism, signal
transduction, and plant development pathway. These results uncover the genetic
basis of soybean protein and oil biosynthesis and could be used to accelerate the
progress in enhancing soybean PC and OC.

KEYWORDS

genome-wide association study (GWAS), marker-assisted selection (MAS), protein
content, oil content, soybean, Glycine max L.

Abbreviations: BLUE, Best linear unbiased estimation; PC, Protein content; OC, Oil content; GWAS,
Genome-wide association study; 1%, Broad-sense heritability; KASP, Kompetitive allele-specific PCR; LD,
Linkage disequilibrium; MAS, Marker-assisted selection; QTL, Quantitative trait locus; R’ Phenotypic

variance explained; SNP, Single nucleotide polymorphism.
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Background

Soybean (Glycine max L.) is an important economic crop in the
world and is a major source of vegetable oil and feed protein (Liu
etal,, 2008). Dry soybean seeds are composed of approximately 40%
protein content (PC) and 20% oil content (OC). Increasing seeds’
PC (Li et al,, 2021) and OC (Zhang et al., 2019) is an important
breeding objective for soybean. The improvement of PC and OC is
challenging due to their polygenic inheritance (Li et al, 2020).
China, Russia, the United States, and Canada are the major
soybean-producing countries (Xue et al., 2022). Although soybean
production has been improved largely by traditional breeding, it is
still not enough to meet the demand (Li et al., 2019; Li et al., 2020).

PC and OC are typical quantitative traits and are controlled by
two major loci on chromosomes 15 and 20 and other genes with
minor effects (Wang et al., 2020), and they are influenced by both
environmental and genetic factors (Clemente and Cahoon, 2009;
Pathan et al., 2013). Marker-assisted selection (MAS) is an effective
method for the genetic improvement of PC and OC (Jiang et al.,
2018; Karikari et al,, 2019). The reliability and efficacy of MAS
depend on the number and phenotypic effects of the genes/
quantitative trait loci (QTL) on the corresponding trait (Zhang
et al., 2018; Karikari et al.,, 2019; Wang et al., 2020). Thus, QTL
mapping for soybean seed PC and OC plays a vital role in soybean
MAS breeding (Zafar et al., 2019; Wang et al., 2020). Over 200 and
300 QTLs for PC and OC have been deposited in SoyBase (http://
www.soybase.org) (Brown et al, 2021), and over 30 genes and
functional markers for PC and OC have been cloned and developed,
such as GmbZIP123, GmMYB73, GmDOF4, GmDOFI11, and
GmNFYA (Li et al, 2019; Wang et al, 2020). Overexpression of
GmSDPI-4 and GmPDAT increased seed oil (Liu et al.,, 2020; Liu
et al., 2020b). GA20 oxidase (GA200X) and nuclear transcription
factor Y subunit alpha (NFYA) are two key drivers of seed traits and
enhanced seed size and weight and OC, respectively. GmOLEOI
and GmWRIIa also significantly increased total OC and fatty acid
content (Zhang et al., 2019; Zhang et al., 2022). Furthermore,
several transcription factors were also found to be associated with
soybean seed oil. Overexpression of GmbZIP123, GmMYB73,
GmZF351, GmZF392, and GmWRIIb enhanced lipid content
(Guo et al, 2020). Compared with genes associated with OC,
fewer genes controlling PC or amino acids have been identified.
These include MGL (a putative methionine y-lyase), OASS (the
cytosolic isoform of O-acetylserine sulfhydrylase), Rab5a (a small
GTPase-encoding gene), and SWEETSs (sugar will eventually be
exported transporters) (GmSWEET15, GmSWEETI10a, and
GmSWEETI0b), which played important roles in soybean seed
quality through their effects on both OC and PC (Wang and
Tian, 2015; Zhang et al., 2022).

Most of these QTLs were mapped by linkage mapping based on
bi-parental populations, including the recombinant inbred line
(RIL), F,, and backcross populations. However, linkage mapping
was limited by the small phenotypic variation of bi-parental
populations. Furthermore, traditional molecular markers used in
these studies reduced the accuracy of QTL mapping due to their low
densities (Rasheed et al., 2016; Liu et al., 2017; Klepadlo et al., 2019;
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Samanfar et al,, 2019; Wang et al., 2020; He et al., 2021; Ullah
et al., 2021).

Single nucleotide polymorphisms (SNPs) are more abundant
with higher coverage and are markers of choice for gene discovery
and MAS (Yuan et al,, 2014; Rasheed et al., 2016). The development
of SNP chips and next-generation sequencing (NGS) made the use
of SNP quite affordable and feasible in molecular breeding. Linkage
mapping and association analysis identifying genes/QTLs for
complex traits are most widely used for gene discovery (Kim
et al, 2010; Chan et al., 2012; Liu et al., 2016; Liu et al., 2017;
Song et al,, 2017; Wang et al,, 2020). Currently, soybean SNP arrays
are widely used in genetic analysis for yield, processing quality, and
disease resistance-related traits (Akond et al., 2014; Chaudhary
et al,, 2015; Zhang et al., 2018; Beyer et al., 2019; Li et al., 2019;
Zhang et al,, 2019; Tian et al., 2020; Wang et al., 2020). In contrast
to traditional bi-parental mapping, genome-wide association
studies (GWASs) use natural diversity (such as wild types,
landraces, and cultivars) and offer an effective and reliable way to
uncover the genetic basis of complex traits (Zhu et al., 2008; Sela
et al,, 2014; Liu et al., 2017; Schlappi et al., 2017; Shi et al., 2017;
Wang et al,, 2019; Alqudah et al., 2020). GWAS has been widely
used in the genetic analysis of yield, disease resistance, and quality-
related traits in soybean (Vuong et al., 2015; Li et al., 2019; Wang
et al., 2020; Zahid et al., 2022).

In this study, 320 soybean accessions collected mainly from the
major soybean-growing countries were used to (1) identify loci
underpinning PC and OC in soybean and (2) identify candidate
genes for further study.

Materials and methods
Plant materials and field trials

A total of 320 soybean accessions from the main soybean-
growing countries (including the United States, Algeria, Canada,
China, Czechia, France, Germany, Hungary, Japan, Moldova,
Romania, Russia, Serbia, Sweden, and Ukraine) were collected and
used for the evaluation of PC and OC (Table S1). All 320 soybean
accessions were planted at the Heilongjiang Academy of Agricultural
Sciences experimental station in Harbin, China, with three
replications in 2017, 2018, 2019, and 2021; Mudanjiang in 2018
and Qingan in 2018. A completely randomized block design with
three replicates was used, with each line 3.0 m in length and 0.65 m
apart, and with 6 cm spacing between two plants. Field management
was in accordance with local field cultivation conditions.

Phenotyping and statistical analysis for
protein and oil contents

Soybean seeds were harvested from 10 plants from each
genotype and subsequently used for the PC and OC
determination. The Infratec 1241 NIR Grain Analyzer (FOSS,
Sweden) was used to analyze three seed samples from each
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genotype in each replicate (20-25 g). The phenotypic values given
for each accession used in this study were all the mean values of the
three replicates. The best linear unbiased estimation (BLUE) for PC
and OC among all environments was calculated using the R package
“sommer”. The maximum, minimum, and standard deviation of the
PC and OC were calculated. Analysis of variance (ANOVA) was
used to compare the phenotypic values of PC and OC in each

environment or jointly in multiple environments. The heritability
O.Z

g
2 o2

2,7y e
Og tone Thexny

was estimated using the entry-mean basis formula #* =

where O'ZZ, o7, and o7 is the genetic effect, environmental effect, and
residual, respectively, and n, and #, is the number of environments
and the number of replicates, respectively.

Genotyping and population structure
SNP genotyping

For QTL-seq, the genomic DNA from the seedling leaf was
isolated. The DNA was genotyped by re-sequencing using the
Mlumina HiSeq 2500 platform (Illumina, Inc., San Diego, CA,
United States) by Biomarker Biotechnology Co., Ltd. The paired-
end read data (PE150) with a sequencing depth of approximately
10x of the soybean genome were generated. In total, 3814.10 giga
base pairs (Gbp) of clean data, with a base call accuracy of about
93.10%, were obtained. The average comparison rate between the
sample and reference genome was 98.47%, with an average coverage
depth of 10x and genome coverage of 97.18%. The SNPs were
filtered by minor allele frequency (MAF)< 0.05 and missing rate >
10%. Population structure was analyzed using Structure v2.3.4
(Pritchard et al., 2000). Principal component analysis (PCA) was
performed and mega trees were created using Tassel v5.0
(Breseghello and Sorrells, 2006). Linkage disequilibrium (LD)
decay was calculated using the full matrix and sliding window
options in Tassel v5.0.

Genome-wide association study and
candidate gene identification

A mixed linear model (MLM, PCA (fixed-effect factor) + K
(random-effect factor)) in Tassel v5.0 (Breseghello and Sorrells,
2006) was used to avoid spurious marker-trait associations (MTAs)
as follows: y=p+xfB+u+e (y: phenotype; p: mean value; x: genotype;
B: effect of the SNP; u: the random effects). In this study, the
Bonferroni-Holm correction for multiple testing (alpha = 0.05) was
too conservative, and no significant MTAs were detected. Thus,
markers with the threshold for the significant associations is -log;,
(p-value) > 6.0. Manhattan and quantile-quantile (Q-Q) plots were
drawn using CMplot. Candidate genes for PC and OC consistently
identified in two or more populations were identified in this study.
The following steps were conducted to identify the candidate genes.
Firstly, all genes located in the LD block region around the peak
SNP ( + 480 kb based on previous LD decay analysis) of each
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important QTL were retrieved. Then, all available SNPs located
inside these genes were searched against GenBank using the
flanking sequences of the SNPs (including the LD decay interval)
significantly associated with PC and OC. The genes (except the
hypothetical protein, transposon protein, and retrotransposon
protein) that were identified with MTAs of non-synonymous
SNPs in the coding region that could further lead to sense
mutations were considered. Thus, genes involved in protein and
oil biosynthesis/metabolism were regarded as high-confidence
candidate genes for PC and OC.

Quantitative real-time PCR (qQRT-PCR) was performed to test
the expression of selected candidate genes in the accessions with
extreme PC and OC. All seeds were sampled for RNA extraction
after maturity. cDNA was synthesized using the HiScript II Ist
Strand cDNA synthesis kit and the primers were designed using
Primer 5.0 software. PCR was conducted in a volume of 20 pL (2 pL
cDNA, 10 pL ChamQ Universal SYBR qPCR Master Mix, and 0.4
uL of each primer (uM)) (Table S2). All assays were conducted in
two independent experiments with three repetitions.

Results
Phenotypic evaluation

OC and PC showed continuous and significant variations in the
320 soybean accessions. The BLUE values of OC and PC were 21.0%
(from 16.7% to 22.6%) and 41.1% (from 37.8% to 46.5%),
respectively (Figure SI; Table S1). The standard deviation and
coefficient of variation of OC and PC were 0.86% (0.041) and
1.38% (0.034) across all environments, respectively. The OC was
negatively correlated with PC (-0.532, p<0.001). ANOVA indicated
highly significant effects (p<0.01) of genotypes, environments, and
genotype x environment interactions on PC and OC (Table 1). The
SNP-based heritability for OC and PC was 0.77 and
0.78, respectively.

Genotyping, population structure, and
linkage disequilibrium decay analysis

In total, 3,290,923 polymorphic SNPs after filtration (MAF<
0.05, missing rate > 0.1) were used for GWAS. Chromosome 18 had
the highest number of SNPs (233,764), whereas chromosome 11
had the lowest number of SNPs (74,209). The average marker
density was 304.0 marker/kb on the genome-wide scale. The
population structure divided the 320 soybean accessions into
three subgroups, namely subgroup I, II, and III. Of these,
subgroup I consisted of 156 accessions from China, Russia, and
Ukraine, subgroup II had 102 accessions from the United States and
Canada, and subgroup III comprised 62 accessions from Germany,
France, and Czechia (Figure 1). The neighbor-joining (NJ) tree
results also suggested that the 320 soybean accessions could be
divided into three subgroups. PCA analysis indicated that the top
three PCAs explained 22.1%, 18.3%, and 12.5% of the total
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TABLE 1 ANOVA analysis for the protein content and oil content in 320 soybean accessions.

Source of variation

F-value

Genotypes 319 120.4** 24.4%*
Environments 5 380.9** 98.5%*
Replicates (nested in environments) 2 18.2%* 5.3%%
Genotypes*Environments 1594 9.2%* 4.3
Error 1425 - -

* and ** indicate significance at 0.05 and 0.01 levels.

variances. In addition, PCA results indicated that all 320 soybean
accessions could belong to the three subgroups. The NJ tree and
PCA analysis validated the results of the population structure
analysis. The average LD decay of the genome was about 480 kb
according to the locally estimated scatterplot smoothing (LOESS)
curve (Figure 1).

Genome-wide association study

In total, 29 loci for OC were identified on all chromosomes except
for chromosome 9, and each explained 5.1%-16.3% of the total
phenotypic variances. For OC, chromosome 20 contained three loci,
and chromosomes 2, 6, 7, 11, 12, and 19 contained two loci, whereas
chromosomes 3, 4, 5, 8, and 10 each had only one locus. For PC,
chromosome 11 contained four loci, and chromosomes 2, 5, and 20
contained two loci, whereas chromosomes 1, 3, 4, 6, 7, 8, 9, 13, 14, 15,
16, and 18 each had only one locus. Twenty-three loci for PC were

identified on all chromosomes except for chromosomes 12, 17, and 19,
and explained 3.4%-15.4% of the phenotypic variances. Of these, six
pleiotropic loci including qOC2.2 (44.7-49.2 Mb) and gPC2.2 (45.0-
50.8 Mb); gqOC4.1 (41.3-45.3 Mb) and qgPC4.1 (44.6-5.0.7 Mb); gPC5.2
(44.1-48.7 Mb) and qOC5.1 (46.8-47.7 Mb); gOCI3.1 (19.9-25.0 Mb)
and gqPCI3.1 (24.3-28.6 Mb); qOCI4.1 (43.5-49.1 Mb) and gqPCI4.1
(47.2-49.8 Mb); and qOC20.3 (43.9-49.0 Mb) and gPC20.2 (45.0-48.0
Mb) were significantly associated with both PC and OC.

For PC, gPC5.2, qPC9.1, gPC10.1, gPCI1.1, gPC11.2, gPCI 1.3,
qPCl11.4, qPCI4.1, and gqPCl16.1 were identified across all six
environments, gPCI.1, qPC3.1, qPC4.1, qPC18.1, qPC20.1, and
qPC20.2 were identified in five environments, and the other loci
were identified in three or four environments. For OC, gOCl.2,
q0C6.2, qOCl11.1, qOCIi2.1, qOCI13.1, qOCI5.1, qOCl6.1, and
qOC20.1 were identified in five environments, whereas qOCI.1,
qOC2.2, and qOC3.1 were identified in only one environment. The
other loci were identified in two or three environments (Tables 2, 3,
S2; Figures 2, S2).
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FIGURE 1

Population structure analysis for the 320 soybean accessions. (A) principal component analysis (PCA) plots; (B) population structure analysis from

k=2 to 12; (C) neighbor-joining (NJ) tree; (D) LD decay.
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TABLE 2 Loci for protein content in 320 soybean accessions by association analysis.

Loci Chromosome Interval Environment p-value R? Favorable Effect Reference
. . allele
Start End Lower Higher Lower Higher
(Mb) | (Mb)
qPCIL.1 1 43.2 487  El, E2, E3, E5, 7.7E-04 | 2.6E-09 4.9% 135% G 35—
E6 10.5
qPC2.1 2 03 29 | ELES5E6 9.9E-04  1.4E-09 4.5% 137% G 2.3-9.6
qPC2.2 2 45.0 508  El, E2, E3, E6 92E-04  2.9E-05 4.5% 6.9% G 36- | Lietal (2019)
12.8
qPC3.1 3 473 504  El, E2, E3, E5, 9.8E-04  1.6E-05 4.4% 6.0% G -6.3-
E6 32
qPC4.1 4 446 50.7 | El, E2, E4, E5, 8.7E-04  6.1E-05 4.7% 6.3% G 3.0-65
E6
qPC5.1 5 11.0 149  El, E3,E4, E6 9.2E-04  3.1E-06 4.6% 8.8% A 3.1-7.8
qPC5.2 5 44.1 487  El, E2, E3, E4, 9.9E-04  3.9E-05 4.5% 6.6% G -8.6-
E5, E6 23
qPC6.1 6 45.1 474  El, E2, E5, E6 82E-04 | 1.0E-06 4.6% 9.2% A 25-65
qPC7.1 7 39 84  E6, E5, E4, E3 9.9E-04  2.7E-09 3.4% 13.5% A 2.1-7.6 | Pathan et al.
(2013); Zhang
et al. (2021)
qPC8.1 8 9.9 11.8 | El, E3, E5 E6 7.7E-04 = 1.8E-10 4.8% 154% G 1.6-7.2
qPCI.1 9 6.8 98 | EI, E2,E3, E4, 9.7E-04  1.7E-05 4.6% 7.3% G -6.5-
E5, E6 1.2
qPC10.1 10 6.0 108 | El, E2, E3, E4, 8.6E-04 = 3.5E-09 4.5% 133% G 32-6.4
E5, E6
qPCI1.1 11 0.6 39 | El, E2,E3,E4, 9.8E-04  1.7E-06 4.5% 9.3% G 23-5.8
E5, E6
qPCI11.2 11 343 374  El E2,E3, E4, 9.4E-04  1.6E-05 3.5% 6.1% G 2.0-7.6
E5, E6
qPCI1.3 11 420 455  El, E2, E3, E4, 9.8E-04  1.5E-05 4.5% 7.3% A 2.1-85
E5, E6
qPC11.4 11 47.1 519 | El, E2, E3, E4, 9.9E-04  9.9E-06 3.6% 7.6% A -5.6-
E5, E6 1.2
qPCI3.1 13 243 286  E6, E4, E3 9.3E-04  2.2E-10 3.5% 153% A -64- | Mao etal.
2.1 (2013); Zhang
et al. (2021)
qPCl14.1 14 472 498  El, E2, E3, E4, 9.3E-04  4.5E-05 4.5% 6.6% A 3.4-6.4
E5, E6
qPCI5.1 15 1 49  E6,E5E3 8.7E-04 = 1.2E-04 4.5% 5.9% G 3.1-7.5 | Pathan et al.
(2013); Phansak
et al. (2016);
Warrington
et al. (2015);
Zhou et al.
(2015); Zhang
et al. (2021)
qPC16.1 16 10.5 147 | El, E2, E3, E4, 9.3E-04 = 4.1E-06 4.6% 8.1% A 2.5-7.6
E5, E6
qPCi8.1 18 42.1 468  El, E2, E4, E5, 9.3E-04  2.2E-06 4.6% 8.6% G -9.1-
E5 27

(Continued)
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TABLE 2 Continued

Loci Chromosome Interval Environment p-value R? Favorable  Effect Reference
. . allele
Start End Lower Higher Lower Higher
(Mb)  (Mb)
qPC20.1 20 344 408  E2, E3, E4, E5, 9.3E-04  2.0E-09 4.5% 135% G 2.5-7.5 | Zhang et al.
E6 (2019)
qPC20.2 20 45.0 480  E2, E3, E4, E5, 9.9E-04  6.1E-07 4.4% 9.7% -6.5-
E6 32

PC: protein content; E1, E2, E3, E4, E5, and E6 indicate 2017 Harbin, 2018 Harbin, 2019 Harbin, 2021 Harbin, 2018 Mudanjiang, and 2018 Qingan, respectively.

TABLE 3 Loci for oil content in 320 soybean accessions by association analysis.

Loci Chromosome Interval Environment p-value R? Favorable | Effect Reference
. . allele
Start  End Lower Higher Lower Higher
(Mb)  (Mb)
qOCL.1 1 10.9 136 | E2 25E-08 | 9.9E-07 9.0% 11.8% G 7.6~
12
qOCl1.2 1 37.0 379 | E3,E4, E3, E2 LIE-10  20E-07  10.2% 155% G 3.6-9.8
qOC2.1 2 31.8 335 | E6,E3,E4 7.6E-07  5.4E-08 9.2% 11.0% G 25-7.9
q0C2.2 2 447 492 | E2 95607 = 1.1E-07 9.0% 105% G 39- | Zhangetal
112 | (2019)
qOC3.1 3 11.2 117 | E2 9.8E-07 = 6.6E-07 9.1% 93% | A 32-9.6
qOC4.1 4 413 453 | E2,E4,E3 52E-07 = 15E-10 9.8% 155% | A 2.1-8.9
qOCs.1 5 46.8 47.7 | E4,E5 37E-07 = 3.2E-07 9.7% 9.9% G 2.0-7.8
q0Cé6.1 6 9.6 104  E4,E3,E2 4.5E-07 | 6.0E-09 9.6% 125% | A -9.5- | Zhang et al.
23 (2019)
q0C6.2 6 19.6 20.1 | E2,E5 E3,E4 6.1E-05 = 2.4E-09 6.2% 133% G 32-59 | Hyten et al.
(2004); Diers
et al. (1992);
Zhang et al.
(2021)
qOC7.1 7 117 156  E2,E3,E4 8.7E-07 = 8.9E-11 9.1% 155% G 2.1-9.5 | Lietal (2019)
qOC7.2 7 28.7 309 | E3,E4,E2 49E-07 | 3.2E-07 9.5% 101% G 5.9-7.9
qOC8.1 8 8.3 84  E6 E2,E5 53E-04  22E-05 5.1% 70% | A 3.1-88 | Zhangetal.
(2021); Lu et al.
(2013); Pathan
et al. (2013)
qOCI0.1 10 28.5 314 E3,ES, E4 27B-07 = 9.2E-11 9.9% 155% G -6.9-
23
qOCI1.1 11 8.5 110 | E3, E4,E2, E6 9.1E-11 = 27E-07  10.1% 153% G 3.6-8.8
qOCl11.2 11 26.0 29.8 | E3,E2, 8.0E-08 = 3.9E-07 9.6% 11.0% G 4.2-8.8
qOCi2.1 12 2.1 74 E6, E2,E3,E4 L1E-10  7.4E-07 9.2% 153% G 4.3-9.0
qOC12.2 12 9.7 101 | E5 E2 LIE-04  3.1E-06 5.9% 83% | A 25-64 | Zhangetal.
(2021)
qOCI3.1 13 19.9 250  E3, E5 E4,E2 7.8E-09  9.4E-07 9.1% 125% | A 5.5-9.8

(Continued)
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TABLE 3 Continued
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Loci Chromosome Interval Environment p-value R? Favorable = Effect Reference
. . allele
Start End Lower Higher Lower Higher
(Mb)  (Mb)

qOCl14.1 14 435 49.1  E4,E3,E2 72E-11  9.0E-07 9.0% 157% A 54-9.6

qOCI5.1 15 427 49.6  E3, E2, E4, E5 19E-10  9.7E-07 9.0% 152% G 5.3-9.0

qOCI6.1 16 5.0 7.6 E3, E2, E4, E5 1.3E-10  9.0E-07 9.1% 152% G 5.0-9.1

qOC16.2 16 316 377 | E2,E3 LIE-10  5.0E-07 9.4% 153% G 49-92

qOC17.1 17 433 493 E2,E3,E4 9.1E-07 = 2.5E-10 9.0% 163% A 4.9-9.9

qOCI8.1 18 10.8 111 E2,E3,E4 7.8E-07  3.1E-08 9.3% 11.7% G 6.3-9.8

qOC19.1 19 0.7 36  E4,E2,E5 7.0E-07 = 3.9E-07 9.2% 112% G -8.5-

43

q0C19.2 19 439 468  E2,E4 7.6E-07  2.8E-08 9.1% 129% G 7.6-9.8 | Chapman et al.
(2003); Li et al.
(2019)

q0C20.1 20 05 32 E2,E3,E5E4 79E-07  9.6E-08 9.1% 1L.1% A 8.2-9.5

q0C20.2 20 315 3.9 | E2,E4 1.OE-04  5.6E-06 5.9% 7.8% G 35-6.4 | Bachlava et al.
(2009); Zhang
et al. (2021)

q0C20.3 20 439 490  E2,E4,E3 1.2E-08 = 8.7E-07 9.1% 121% G 6.5-8.9

OC: oil content; E1, E2, E3 E4, E5, and E6 indicate 2017 Harbin, 2018 Harbin, 2019 Harbin,

Candidate genes underpinning protein and
oil content in soybean

In total, nine candidate genes for OC and PC were identified
and showed significant differential expression between the
accessions with contrasting phenotypes (Table S2). For
Glyma.03G261000 and Glyma.07G137400, the gene expression
was 1.3-5.9-fold higher in accessions with higher PC and OC
than in accessions with lower PC and OC. In contrast, the gene
expressions were 1.2- to 5.4-fold lower in accessions with higher PC
and OC than in accessions with lower PC and OC for the gene
Glyma.06G263800, Glyma.08G107800, Glyma.10G065000,
Glyma.12G014800, Glyma.13G119800, Glyma.15G049200, and
Glyma.20G189300 (Tables 4, S3; Figure S3).

Glyma.03G261000 (chromosome 3: 45465440-45469548 bp) for
qPC3.1 (47.3-504 MD) regulated pyruvate dehydrogenase (acetyl-
transferring) kinase activity; Glyma.10G065000 (chromosome 10:
6209769-6215999 bp) for gPCI10.1 (6.0-10.8 Mb) encoded pyruvate
kinase; Glyma.06G263800 (chromosome 6: 45124651-45126548 bp) for
qPC6.1 (45.1-47.4 Mb) encoded acetyl-CoA carboxylase 1;
Glyma.07G137400 (chromosome 7: 16298029-16299140 bp) for
qPC7.1 (3.9-8.4) encoded acetyl-CoA carboxylase 2;
Glyma.12G014800 (chromosome 12: 1071368-1079413 bp) for
qOCI2.1 (2.1-74 Mb) is an abscisic acid G-protein-coupled receptor;
Glyma.13G119800 (chromosome 13: 23237418-23241011 bp) for
qOCI13.1 (19.9-25.0 Mb) encoded pyruvate dehydrogenase (acetyl-
transferring) kinase activity; Glyma.20G189300 (chromosome 20:
42789586-42797140 bp) for gPC20.1 (0.5-3.2 Mb) is a Glycine max
pyruvate kinase, cytosolic isozyme; Glyma.08G107800 (chromosome 8:
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2021 Harbin, 2018 Mudanjiang, and 2018 Qingan, respectively.

8296214-8307239 bp) for gOC8.1 (8.3-8.4 Mb) encoded a bifunctional
aspartate kinase/homoserine dehydrogenase (AK-HSDH); and
Glyma.15G049200 (chromosome 15: 3861401-3863151 bp) for
qPC15.1 (1.0-4.9 Mb) encoded a SWEET family.

Discussion

The characterization of the subgroups for all 320 soybean
accessions was largely consistent with geographical origins (Wang
et al,, 2018; Jeong et al,, 2019; Kim et al,, 2021; Torkamaneh et al,
2021). Most of the cultivars from China, Russia, and Ukraine belonged
to subgroup I, the accessions mainly from the United States and
Canada belonged to subgroup II, and subgroup III mainly comprised
62 varieties from Germany, France, and Czechia (Figure 1). To avoid
spurious MTAs, an MLM model with PCA and kinship matrix was
applied in this study (Zhu et al, 2008). LD decay influenced the
precision of GWAS and was affected by allele frequency, population
structure, and recombination rate (Liu et al., 2017). The LD decay of
the whole genome was 450 kb, indicating that the marker density is
sufficient for subsequent GWAS.

Loci associated with protein and oil
contents in previous studies
In the present study, gPC2.2, gPC-7-1, qPC13.1, qPCI5.1, and

qPC20.1 related to the PC overlapped with previously reported loci,
indicating the reliability of the results (Mao et al., 2013; Warrington
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et al,, 2015; Zhou et al, 2015; Phansak et al., 2016; Zhang et al,,
2021). Meta-QTLs were detected consistent with gPC2.2, gPC-7-1,
and qPC20.1 in various populations (Pathan et al, 2013;
Warrington et al., 2015; Zhou et al,, 2015; Kim et al., 2016;
Phansak et al., 2016; Van and McHale, 2017). gPC13.1 (24.3-28.6
Mb, explaining 5.2%-9.6% of phenotypic variation) on
chromosome 13 was also reported (Mao et al., 2013; Zhang et al.,

Frontiers in Plant Science

2021). Previous studies also identified the locus qgPCI5.1 as an
important QTL for PC in soybean (Warrington et al., 2015; Zhou
et al., 2015; Phansak et al., 2016; Zhang et al., 2021).

QTL for OC was distributed on all chromosomes except
chromosome 9. The loci gOC2.2, qO0C6.1, qOC6.2, qOC7.1,
qOC8.1, qOCI12.2, gOC19.2, and qOC20.2 overlapped with QTL
related to oil and its compositional content in previous studies
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TABLE 4 The details for the candidate genes of protein content and oil content.

Chromosome Candidate gene Region (Mb) Annotation

QPC3.1 Glyma.03G261000 45465440-45469548 Pyruvate dehydrogenase (acetyl-transferring) kinase

QPC6.1 Glyma.06G263800 45124651-45126548 Acetyl-CoA carboxylase 1

QPC7.1 Glyma.07G137400 16298029-16299140 Acetyl-CoA carboxylase 2

QPCI0.1 Glyma.10G065000 6209769-6215999 Pyruvate kinase, cytosolic isozyme-like

QOCI2.1 Glyma.12G014800 1071368-1079413 Abscisic acid G-protein-coupled receptor

QOC13.1 Glyma.13G119800 23237418-23241011 Pyruvate dehydrogenase (acetyl-transferring) kinase

QPC15.1 Glyma.15G049200 3861401-3863151 SWEET (sugars will eventually be exported transporters) family
QPC20.1 Glyma.20G189300 42789586-42797140 Glycine max pyruvate kinase

Q0C8.1 Glyma.08G107800 8296214-8307239 Bifunctional aspartate kinase/homoserine dehydrogenase (AK-HSDH)

(Chung et al., 2003; Liang et al.,, 2010; Li et al., 2019; Zhang et al.,
2019; Zhang et al., 2021). gOCI12.2 (9.7-10.1 Mb) overlapped with
the loci for gOC-12-1 (9.1-11.5 Mb), which was identified by Zhang
et al. (2021) using 211 diverse soybean accessions genotyped with
355 K SoySNP array. gOC8.1 (8.3-8.4 Mb) overlapped with GqOil-8
(7.9-8.3 Mb), which was detected in several previous studies (Zhang
et al, 2019; Zhang et al, 2021). gOCé6.1 (9.6-10.4 Mb) was also
reported by Zhang et al. (2019) (8.3-9.6 Mb, explaining 7.3% of
phenotypic variation) and (9.0-11.2 Mb, explaining 11.2% of
phenotypic variation). qOC2.2 (44.7-49.2 Mb) overlapped with
the loci for qOil2-1 (42.5-45.4 Mb), identified by Zhang et al.
(2019) using 200 soybean accessions. gOC6.2 on chromosome 6
(9.6-10.4 Mb) overlapped with the loci gOC-6-1 (8.5-12.3 Mb),
which has been reported by a series of studies with 6.3%-15.6%
phenotypic variations (Diers et al., 1992; Hyten et al., 2004; Zhang
et al, 2021). qOC7.1 (11.7-15.6 Mb) overlapped with the loci
(associated SNP marker rs15774585) from 185 soybean cultivars
identified by Li et al. (2019) (10.2-13.0 Mb). gOC8.1 (8.3-8.4 Mb)
overlapped with previously reported QTL related to the PC with
5.2%-11.5% phenotypic variations (chromosome 8: 7.9-11.2 Mb)
(Lu et al,, 2013; Pathan et al,, 2013). gOCI19.2 on chromosome 19
(43.9-46.8 Mb) was reported by Chapman et al. (2003) (44.4-47.2
MBb, explaining 7.9% of phenotypic variations) and Li et al. (2019)
(41.5-44.6 Mb, explaining 6.9% of phenotypic variations), whereas
q0C20.2 (31.5-32.9 Mb, explaining 5.2%-11.5% of phenotypic
variations) was reported previously by Bachlava et al. (2009) and
Zhang et al. (2021). The remaining three QTLs related to the OC
were novel. Among the loci identified for PC and OC, 13 loci
mentioned above are probably the same as the QTL reported in
previous studies, whereas the remaining loci are likely to be new.
The stable loci validated by our studies and previous studies
indicated that they are less affected by environmental factors.

Potential candidate genes associated with
protein and oil content

A total of nine candidate genes were identified for soybean PC and
OC. Glyma.15G049200 was identified in the LD block of gPCI5.1 and
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belonged to the SWEET family, which is involved in the transportation
of carbohydrates and plays a vital role in transporting sucrose molecules
across a membrane. The accumulation of storage substances promotes
the development of seeds. Sucrose in seeds could be metabolized to
produce protein precursors (Smith et al., 1989). Glyma.08GI107800 was
located with the LD decay of gPC8.1. Glyma.08G107800 encoded an
AK-HSDH. AK-HSDH plays a vital role in the synthesis of amino acids
for Lys, Ile, and Met (Kang et al,, 2018). The aspartic acid family is the
main component in the biosynthesis of other amino acids (Zhang et al.,
2018; Zhang et al., 2021).

The oil and protein involved in carbohydrate transport in
soybean seeds are complex, mainly including the carbon source
competition and distribution process. The candidate gene of loci
qPC3.1 (Glyma.03G261000), gPC10.1 (Glyma.10G065000), gOC13.1
(Glyma.13G119800), and qPC20.1 (Glyma.20G189300) encoded
pyruvate dehydrogenase (acetyl-transferring) kinase, pyruvate
kinase, pyruvate dehydrogenase (acetyl-transferring) kinase, and
glycine max pyruvate kinase, respectively. The energy produced by
photosynthesis is stored mainly in the form of proteins and lipids
(Zhang et al., 2021). Pyruvate dehydrogenase is very important in
carbon metabolism, the tricarboxylic acid (TCA) cycle, and
glycolysis/gluconeogenesis (Zhang et al,, 2019; Yao et al., 2020).
Pyruvate dehydrogenase catalyzes the formation of pyruvate, which
is the substrate of the Calvin cycle (Yao et al., 2020).

The candidate gene for gPC6.1 (Glyma.06G263800) and qPC7.1
(Glyma.07G137400) encoded acetyl-CoA carboxylase 1 and acetyl-
CoA carboxylase 2, respectively. Acetyl-CoA carboxylase provides a
carbon skeleton for the synthesis of fatty acids and plays a vital role in
the glycolysis pathway (Alfonso, 2020). The metabolites are required
for the formation of fatty acids by acetyl coenzyme (Alfonso, 2020;
Megha et al,, 2022). In addition, starch and sucrose produced by
glycolysis can accelerate mitochondrial respiration and the TCA
cycle, which is the most critical metabolic pathway for carbohydrate,
protein, and fat oxidation (Allen et al., 2009; Liu et al, 2020).
Glyma.12G014800 is the candidate gene for gOCI2.1 and encoded
an abscisic acid G-protein-coupled receptor. Abscisic acid affects the
accumulation of assimilates (Manan and Zhao, 2020). G-protein
promotes oil increase by regulating the abscisic acid signal
transduction (Manan and Zhao, 2020).
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Implications of improving protein and oil
content in soybean breeding

Conventional breeding has led to an increase in PC and OC (Li
etal., 2020). However, selective breeding is time-consuming and costly
(Qiu et al.,, 2013; Lin et al., 2022). The stable SNPs associated with PC
and OC identified in this study, such as gPC3.1, qgPC5.2, qPC9.1,
qPC10.1, qPCI16.1, qOCl1.2, and qOCI1.1 for PC, and qOCI2.1,
qOCl15.1, qOCI6.1, and qOC20.1 for OC, could be used for soybean
MAS breeding, and pyramiding favorable alleles will improve PC and
OC. Accessions with superior PC and OC alleles (such as R256, R188,
R247,R200, R61, R238, R75, R31, R190, R156, R173, and R13 for OC,
and R124, R70, R121, R74, R199, R127, R196, R144, R249, R248, R59,
R54 and R134 for PC) could be used as parental lines for the
molecular improvement of PC and OC in soybean.

Conclusions

In this study, we have identified 23 and 29 loci for PC and OC in
320 soybean accessions, respectively. Of these, 15 and 24 loci are
likely to be new. In addition, nine candidate genes involved in
protein and oil biosynthesis/metabolism were identified, including
lipid transport and metabolism, signal transduction, and plant
development pathway. These significantly associated SNPs and
varieties with favorable alleles could be used to accelerate the
progress of breeding soybean with higher PC and OC.
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Manhattan plot for the protein content and oil content across all
environments. PC: protein content; OC: oil content; E1, E2, E3 E4, E5, and
E6 indicate 2017 Harbin, 2018 Harbin, 2019 Harbin, 2021 Harbin, 2018
Mudanjiang, and 2018 Qingan, respectively.

SUPPLEMENTARY FIGURE 2

Quantile—quantile (Q-Q) plot for protein content and oil content in all 320
soybean accessions analyzed by the mixed linear model (MLM) in Tassel v5.0.
PC: protein content; OC: oil content; E1, E2, E3 E4, E5, and E6 indicate 2017
Harbin, 2018 Harbin, 2019 Harbin, 2021 Harbin, 2018 Mudanjiang, and 2018
Qingan, respectively.

SUPPLEMENTARY FIGURE 3
The expression of the candidate gene by qRT-PCR results.
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