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multi-parameter Monod-type
model of tobacco BY-2 cell
suspension cultures in a
stirred-tank bioreactor
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5Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life
Sciences, Vienna (BOKU), Vienna, Austria
Introduction: Tobacco (Nicotiana tabacum) cv Bright Yellow-2 (BY-2) cell

suspension cultures enable the rapid production of complex protein-based

biopharmaceuticals but currently achieve low volumetric productivity due to

slow biomass formation. The biomass yield can be improved with tailored media,

which can be designed either by laborious trial-and-error experiments or

systematic, rational design using mechanistic models, linking nutrient

consumption and biomass formation.

Methods: Here we developed an iterative experiment-modeling-optimization

workflow to gradually refine such amodel and its predictions, based on collected

data concerning BY-2 cell macronutrient consumption (sucrose, ammonium,

nitrate and phosphate) and biomass formation.

Results and discussion: The biomass formation was well predicted by an

unstructured segregated mechanistic Monod-type model as long as the

nutrient concentrations did not approach zero (we omitted phosphate, which

was completely depleted). Multi-criteria optimization for sucrose and biomass

formation indicated the best tradeoff (in a Paretian sense) between maximum

biomass yield and minimum process time by reducing the initial sucrose

concentration, whereas the inoculation biomass could be increased to

maximize the biomass yield or minimize the process time, which we
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confirmed in calibration experiments. The model became inaccurate at biomass

densities > 8 g L-1 dry mass when sucrose was almost depleted. We compensated

for this limitation by including glucose and fructose as sucrose hydrolysis

products in the model. The remaining offset between the simulation and

experimental data might be resolved by including intracellular pools of

sucrose, ammonium, nitrate and phosphate. Overall, we demonstrated that

iterative models can be used to systematically optimize conditions for

bioreactor-based processes.
KEYWORDS

biopharmaceuticals, cultivation medium, mechanistic model, multi-criteria
optimization, upstream production
Introduction

Plant cell cultures (PCCs) canbeused toproduce complexprotein-

based biopharmaceuticals such as growth factors, cytokines or

antibodies, especially proteins that are unsuitable for expression in

microbial or mammalian cells (Xu and Zhang, 2014; Santos et al.,

2016). PCCs from carrot (Daucus carrota), rice (Oryza sativa) and

tobacco (Nicotiana tabacum), in particular tobacco cell linesNT-1 and

BY-2, are often used for this purpose (Xu et al., 2011; Xu and Zhang,

2014; Santos et al., 2016; Moon et al., 2020). Tobacco cells have short

doubling times of 25–30 h compared to 50–500 h for other PCCs and

can be grown to high cell densities of up to 300–600 g L-1 fresh mass

(FM) in large-scale stirred-tank reactors (STRs)withworking volumes

of up to 100,000 L (Fischer et al., 1999).However, PCCs generally have

a lowproductivity of up to1 gL-1 of protein, compared to5–20 gL-1 for

microbial and mammalian cells (Schillberg and Spiegel, 2022).

One option to increase the productivity of PCCs is to optimize

the growth medium (Terashima et al., 2001; Holland et al., 2010;

Holland, 2013; Vasilev et al., 2013; Häkkinen et al., 2018; Sadoch

et al., 2020). PCCs are typically cultivated in chemically defined

media containing sucrose (C12H22O11) as a carbon source,

ammonium nitrate (NH4NO3) and/or potassium nitrate (KNO3)

as nitrogen sources, and potassium dihydrogen phosphate

(KH2PO4) as a phosphate source. The feeding strategy also affects

the volumetric productivity. For example, varying nitrogen sources

in trial-and-error screening experiments led to recipes such as

Murashige and Skoog (MS) medium (Murashige and Skoog,

1962), Gamborg B5 (Gamborg et al., 1968), Chu N6 (Chu et al.,

1975), Schenk and Hildebrandt (SH) medium (Schenk and

Hildebrandt, 1972), and amino acid (AA) medium (Thompson

et al., 1986). More recently, carbon, nitrogen and phosphate sources

have been optimized more systematically using a Design of

Experiments (DoE) approach, confirming the potential to

increase biomass formation and volumetric productivity of

protein-based biopharmaceuticals . These studies also

demonstrated that mineral salts, vitamins and plant growth

regulators, including substances referred to as phytohormones,

are required for the growth of PCCs, but have only a minor

impact on biomass formation and biopharmaceutical production
02
(Holland, 2013; Vasilev et al., 2013). Importantly, the experiments

were conducted in shake flasks and the transferability of such

conditions to STRs has yet to be demonstrated.

Model-based optimization is another systematic option to

improve media composition (Schinn et al., 2021; Yeo et al., 2022).

Model-based DoE methods attempt to find new sets of experiments

that improve the model based on prior knowledge about the system

anda small number of initial tests (Seufert et al., 2021). Ingeneral, there

are three modeling strategies: data-driven (black box), mechanistic

(white box), and hybrid (gray box). The mechanistic modeling are

based on physical, chemical and biological principles that describe the

interdependency of parameters such as nutrient uptake, biomass

formation and target protein production, thus enabling robust

bioprocess engineering (Tsopanoglou and Del Jiménez Val, 2021).

Additionally, mechanistic models can be described as structured or

unstructured. Whereas unstructured models consider nutrient

(substrate) uptake from the medium, biomass formation and protein

production, structured models also include the intracellular

metabolism of nutrients. Compared to structured models,

unstructured models require a limited number of equations and

parameters, making them less prone to overfitting when presented

with limited input data (Hawkins, 2004). Both unstructured and

structured models can be either unsegregated, which assumes the

cell population is homogeneous, or segregated, which differentiates

cells into viable and dead cells or differentiates by nutrient uptake,

biomass formation, and protein production.

A mechanistic, kinetic modeling approach is preferred for

PCCs, where all metabolic effects are lumped into unstructured

kinetic functions for simplification (Resat et al., 2009), especially for

model-based DoE where the number of experiments is small and

hence only few model parameters can be fitted. In particular,

Monod-type models are preferred because they simulate nutrient

uptake, biomass formation and protein production while

differentiating between viable and dead cells (Prakash and

Srivastava, 2006; Prakash and Srivastava, 2008; Jiménez-Hornero

et al., 2009a; Jiménez-Hornero et al., 2009b; Puad et al., 2017;

Villegas et al., 2017; Puad and Abdullah, 2018; Jacob et al., 2020).

Model-based optimization requires an iterative workflow for

process characterization and model setup followed by process and
frontiersin.org
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model improvement in three steps: experiment, modeling, and

optimization (Figure 1). A similar workflow has been applied in

chemical engineering (Höller et al., 2019; Asprion et al., 2022). In the

first iteration, initial experiments are carried out to collect startingdata,

e.g., a few experiments to characterize nutrient consumption, cell

growth and biomass formation. Then a model is set up to identify

relevant parameters (e.g., concentration of specific nutrients), and the

model is used to predict improved/optimal process conditions, e.g.,

altered initial nutrient concentrations (Table S1). In the second

iteration, these optimized process conditions are experimentally

verified and used to update the model calibration and/or process for

further model improvement (Table S1). Both, the process and model,

can then be refined in subsequent iterations until the desired model

fidelity or process improvement is achieved.

Here we applied an unstructured segregated Monod-type model

to describe the nutrient uptake and biomass formation of tobacco

BY-2 cells as model PCC in 2-L and 5-L STRs as part of a semi-

continuous fermentation process (Patent WO2015165583A1). We

used the model to maximize the biomass yield and minimize the

process time by medium optimization. The purpose of the study

was to demonstrate that relevant bioprocess optimization is possible

using a very small number of experiments in combination with

corresponding models.
Materials and methods

Cultivation of tobacco cells

Tobacco (N. tabacum BY-2) cells were grown in either 100-mL or

1000-mL Erlenmeyer shake flasks containing 20 mL or 200 mL of
Frontiers in Plant Science 03
modifiedMSmedium as previously described (Murashige and Skoog,

1962; Rademacher et al., 2019). Flasks were placed on a Climo-Shaker

ISF1-X orbital shaker (Kuhner Shaker, Herzogenrath, Germany) at

26°C, shaking at 160 rpm with a displacement of 25 mm. The BY-2

cells were transferred to fresh MS medium every 7 days using an

inoculation cell density of 20 g L-1 FM.

The 7-day-old cells were used to inoculate MSmedium in 2-L or

5-L STRs (Getinge Deutschland, Rastatt, Germany) (Tables S2, S3).

The double-walled glass STRs were equipped with dissolved oxygen

(dO2), capacitance, and pH probes, and contained a porous sparger

for aeration. Two axial marine and two radial flat-blade impellers

were used for mixing. The bottom marine impeller was installed at a

height corresponding to the mid-level of the minimum culture

volume, whereas the second marine impeller was placed at the

corresponding height of the maximum culture volume (Figure S1).

The bottom flat-blade impeller was installed equidistant in between

the two marine impellers. The second flat-blade impeller was

positioned at the same distance above the top marine impeller.

The dO2 level was kept constant by controlling the stirrer speed.

The pH were monitored but not controlled. Online data were

recorded using the BioExpert process information management

system (Getinge Deutschland). The FM data were used to calibrate

the capacitance probe that controlled the feeding rate. The

concentration of sucrose, glucose and fructose in the medium was

adjusted for each fermentation run as described below (Table S3).

The feed phase was initiated at a FM of 100 g L-1 and this FM

concentration was maintained by adding fresh medium. In

addition, interspersed draining of cultivation broth was used

every 22–26 h to restore the starting volume. The feed medium

was of the same composition as the batch medium but contained 59

mM (or 20 g L-1) instead of 88 mM (or 30 g L-1) sucrose. The feed

rate was dynamically adjusted in dependence of the growth rate that

was monitored via a capacitance probe. Accordingly, the drain

volumes differed over time. Process samples were taken for

subsequent analysis every 22–26 h (simultaneously with draining

during the semi-continuous phase). A 5-L bioreactor was used in

the initial experiments (#1-3) for model setup, whereas 2-L reactors

were used for validation experiments (#4-9). The feeding and

control strategy as well as the impeller configuration were the

same in both cases.
Cell biomass and macronutrient analysis

To determine the BY-2 cell concentration, each 100-μL sample

was diluted 1:10 by mixing with 1 mL 0.9% (m v-1) sodium chloride

containing 0.025% (m v-1) Evans blue, and the cells were counted in

a Fuchs-Rosenthal counting chamber. To determine the FM, DM

and macronutrient levels, 5.0-mL samples were applied to cellulose

filter paper in a Büchner funnel, and the medium removed by

vacuum filtration at 0.08 MPa for 5 s. For the FM, the BY-2 pellet

was transferred to a weighing dish and the FM was determined

using a fine balance. For the dry mass (DM), the weighing dish with

the BY-2 pellet was dried at 60°C for 3 days and weighed again. For

the macronutrients, the flow-through, obtained from the vacuum

filtration, was collected in a 15-mL Falcon tube and stored at –20°C
FIGURE 1

Iterative experiment-model-optimization workflow. In the first
iteration, initial experiments were carried out to collect starting data
(e.g., for nutrient consumption, cell growth and biomass formation),
a model was set up in order to identify relevant parameters (e.g.,
nutrients), and the model, once embedded in an optimization frame,
was used to predict optimal process conditions (e.g., initial nutrient
concentrations). In the second iteration, these optimized process
conditions were experimentally verified and used to update the
model calibration and/or process and for model improvement.
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before analysis using commercial assay kits for sucrose (cat.

MAK013; Merck, Darmstadt , Germany), glucose (cat .

ABIN5067615; antibodies-online, Aachen, Germany), fructose

(cat. K619-100; BioVision, Ilmenau, Germany), ammonium (cat.

MAK310; Merck), nitrate (cat. Cay780001; Biomol, Hamburg,

Germany), and phosphate (cat. KA0815; Abnova Germany,

Heidelberg, Germany).
Model fitting and multi-
criteria optimization

Calculations were performed using the dynamic programming

language Julia1. The optimization solver was Ipopt (Wächter and

Biegler, 2006). We used the default values of the termination

criteria, i.e., the (scaled) non-linear problem error (<10-8) and the

(absolute) criteria according to “dual_inf_tol” (1), “constr_viol_tol”

(10-4), and “compl_inf_tol” (10-4) 2. The performance of different

models was compared by K-fold cross-validation (Stone, 1974).

Confidence intervals (CIs) were calculated based on bootstrapping

(Dogan, 2007). Inequality constraints were used in the parameter

identification problem to ensure that values of inhibition constants

were at least equal to or more extreme than the corresponding

saturation constants.
Results and discussion

Phosphate is rapidly depleted from the
PCC medium whereas sucrose, ammonium
and nitrate are not completely consumed

In the standard setting for the BY-2 semi-continuous

fermentation (experiments #1, #2 and #3) (Figure 2 and S2, Table

S3), BY-2 cells were cultivated in MS medium in 5-L STRs, starting

with a cell density of 20 ± 5 g L-1 FM (corresponding to 0.75 ± 0.22 g

L-1 DM) at the beginning of the batch phase, and were kept at 100 ±

20 g L-1 FM during the semi-continuous phase. Under these

conditions, the initial sucrose concentration of 88 mM decreased

to 25–30 mM at the end of the batch phase and remained at 15–30

mM during the semi-continuous phase, which correlated with the

slight variation in the FM/DM ratios (Figure S2). In line with the

declining concentration of sucrose, the concentration of its

hydrolysis product glucose increased from 0 mM at t0 to 15 mM

at the end of the batch phase, and remained at 12–18 mM in the

semi-continuous phase. This is consistent with the fact that sucrose

is not only taken up by plant cells via sucrose transporters, but is

also hydrolyzed into glucose and fructose externally by invertases

bound to the cell wall, and these products are then taken up by

hexose transporters (Lemoine et al., 2013).
1 https://julialang.org/

2 https://coin-or.github.io/Ipopt/OPTIONS.html
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Like sucrose, ammonium levels decreased from 21 to 10–12

mM at the end of the batch phase and stayed at 5–10 mM during the

semi-continuous phase, correlating with the FM/DM. The decrease

in ammonium may reflect its uptake by ammonium transporters

and the intracellular detoxification of ammonium via the glutamine

synthase/glutamine oxoglutarate aminotransferase (GS/GOGAT)

cycle that produces glutamate (Bittsánszky et al., 2015). To ensure

ammonium levels remain sub-toxic, other PCC media including

Gamborg B5, Chu N6, SH medium and AA medium contain 2, 7, 3

and 0 mM ammonium, respectively, compared to the 21 mM

present in MS medium. However, Ullisch (2012) observed that

increasing the ammonium concentration in MS medium from 21 to

41 mM caused NT-1 to accumulate 20% more biomass, possibly

due to the formation of more glutamate (Ullisch, 2012). Even

though not all the ammonium is consumed, it may therefore be a

suitable target for medium optimization when aiming to accelerate

biomass formation.

The decrease in nitrate levels was much less pronounced than

the other components, falling from an initial 39 mM to 25–30 mM

at the end of the batch phase, which was maintained during the

semi-continuous phase. This small change in nitrate levels may

reflect the conversion of nitrate into ammonium by nitrate

reductase and nitrite reductase, which are subject to feedback

inhibition to ensure ammonium stays at sub-toxic levels (Behrend

and Mateles, 1975; Behrend and Mateles, 1976). Notably, increasing

nitrate levels from 39 to 139 mM reduced growth by 30%, and when

nitrate was the sole nitrogen source the plant cells did not grow at all

(Holland et al., 2010; Ullisch et al., 2012).

In contrast to sucrose, ammonium and nitrate, the initial 2.7

mM phosphate present in the MS medium was almost completely

consumed within 3 days of batch fermentation and remained at

0.1–0.3 mM during the semi-continuous phase. This agrees with

previous studies reporting that phosphate is a growth-limiting

factor during the fermentation of BY-2 cells, even if the

phosphate concentration is increased by 400% (Holland, 2013;

Vasilev et al., 2013).

Therefore, the initial set of experiments yielded plausible data

that we used for an initial model calibration.
The model for the standard cultivation
conditions in STRs suggests that sucrose
levels can be reduced without affecting
biomass formation and volumetric
biomass yield

For the standard BY-2 semi-continuous fermentation in STRs

(experiments #1, #2 and #3) (Figure 2 and S2), we applied a Monod-

type unstructured segregated model to describe the extracellular

dynamics of cell growth/biomass formation (DM increase over

time) and nutrient uptake. As proposed by Jacobs et al. (2020), we

modeled two physiological states of cell DM: viable (active) (Xa) and

dead (Xd). This yields the total DM concentration X [g L-1] (Eq. 1).

X = Xa + Xd (1)
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The model assumes an irreversible progression in which active

cells (active DM) are converted into dead cells (dead DM) (Jacob

et al., 2020) (Eq. 2).

V
dXa

dt
+ Xa

dV
dt

= mXaV − kdXaV (2)
Frontiers in Plant Science 05
where m [h-1] is the specific growth rate, kd [h
-1] is the death rate

constant of active DM, and V [L] is the volume of the cultivation

medium. Based on the volumetric change of the cultivation

medium, we calculated the feed rate Ft [L h-1] for each time point

t (Jiménez-Hornero et al., 2009a) (Eq. 3).
B

C D

E F

G

A

FIGURE 2

Nutrient consumption and cell growth/biomass formation under standard, optimal and non-optimal cultivation conditions. Experiments 1–3:
standard cultivation conditions used for model setup (iteration 1). Experiments 4 and 5: optimal cultivation conditions according to the model-based
optimization for model validation (iteration 2). Experiments 6 and 7: non-optimal cultivation conditions used for model validation (iteration 2).
Experiments 8 and 9: non-optimal cultivation conditions but different carbon sources (either fructose or glucose instead of sucrose) used for model
improvement (iteration 2). Measurement uncertainty made of a constant and proportional component (Table S4). Numbers – individual
experiments- (A) Dry mass X. (B) Sucrose S. (C) Fructose (F, D) Glucose (G, E) Ammonium (A, F) Nitrate N. (G) phosphate P.
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dV
dt

= Ft (3)

The dependency of the specific growth rate (biomass formation)

of active DM (m) on sucrose (S), ammonium (A) and nitrate (N)

concentrations can be expressed as a Monod kinetic (Eq. 4).

m = mm  
S

S + KS

KIS

S + KIS

� �
A

A + KA

KIA

A + KIA

� �
N

N + KN

KIN

N + KIN

� �

(4)

where Kr is the saturation constant and KIr the inhibition

constant of corresponding nutrient r, i.e. S, A and N in [g L-1],

and mm is the maximum specific growth rate [h-1] (Prakash and

Srivastava, 2006; Prakash and Srivastava, 2008). For each nutrient,

we used inequality constraints to force the inhibition constant to be

equal to or greater than the saturation constant during parameter

identification to enforce actual plateaus, i.e., saturation.

The phosphate concentration was modeled but its effect was not

included in the specific growth rate because it dropped below the

limit of quantification after 3 days of batch cultivation. Accordingly,

adding a term for the phosphate concentration in the specific

growth rate (Eq. 4) would have zeroed out the DM growth after 3

days, which did not agree with the observed DM increase. This

limitation of the current model might be circumvented in the future

by including intracellular phosphate levels in a structured model but

the determination of such pools was beyond the scope of this study.

The sucrose, ammonium, nitrate and phosphate concentrations

during BY-2 cultivation were modeled in Equations 5–8.

V
dS
dt

+ S
dV
dt

= FtSf − mS
S

S + KS

KIS

S + KIS

� �
XaV (5)

V
dN
dt

+ N
dV
dt

= FtNf − mN
N

N + KN

KIN

N + KIN

� �
XaV (6)
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V
dA
dt

+ A
dV
dt

= FtAf − mA
A

A + KA

KIA

A + KIA

� �
XaV (7)

V
dP
dt

+ P
dV
dt

= FtPf − mPP  V (8)

where Sf, Nf, Af and Pf are the feed medium concentrations of

sucrose, nitrate, ammonium and phosphate respectively, and mS, mN,
mA and mP denote the corresponding sucrose, nitrate, ammonium

and phosphate consumption rates [h-1]. As for equation 4, the

influence of the active DM (Xa) on the phosphate uptake in (Eq. 8)

was neglected because i) the phosphate concentration dropped close

to zero within ~90 h (Figure 2) and the “0” values would

compromise numeric stability of the resulting models and ii) the

necessary additional parameter would increase the likelihood of

overfitting given the small calibration data set (n=3). As above,

potential intracellular phosphate pools might be accounted for in

future studies to refine our model, the measurement of such pools

was beyond the scope of this study where we intended to

demonstrate rapid optimization potentials for bioprocesses

operation with a minimal number of experiments.

Parameter identification focused on calibrating the 12

parameters (Table 1) of the model (1)-(8), which is described

hereafter as the “initial model”.

Model parameters can be identified by minimizing an objective

function dependent on a norm for the error made in measuring the

process outputs (Jiménez-Hornero et al., 2009b). Here, we used the

weighted least-squares function as an objective function, which for

normally distributed errors constitutes a maximum likelihood

estimator (Eq. 9 and 10).

q* = min
q

Q(q ; ~x,~t,~y) =oH
h=1oT(h)

t=1 qh,t(q ; ~xh,~th,t ,~yh,t) (9)

qh,t(q ; ~xh,~th,t ,~yh,t) =oR(h,t)
r=1 wr 1 −

gr(q ; ~xh,~th,t)
~yh,t,r

� �2
(10)
TABLE 1 Parameter ranges and identified optimal parameter values.

Parameter Description Unit Min Max Optimal 90% CI

kd Death rate constant h-1 0 0.1 6.62 × 10-4 5.8 × 10-5

mm Maximum specific growth rate h-1 0 10 9.47 0.06

KS Sucrose saturation constant g L-1 0 100 17.64 3.5

KIS Sucrose inhibition constant g L-1 0 100 17.64 3.4

KA Ammonium saturation constant g L-1 0 1 0.796 0.040

KIA Ammonium inhibition constant g L-1 0 1 0.797 0.024

KN Nitrate saturation constant g L-1 0 5 0.133 0.057

KIN Nitrate inhibition constant g L-1 0 5 0.135 0.097

ms Sucrose consumption rate h-1 0 1 2.235 × 10-1 4.65 × 10-2

mA Ammonium consumption rate h-1 0 1 4.863 × 10-3 6.34 × 10-4

mN Nitrate consumption rate h-1 0 1 3.013 × 10-2 2.49 × 10-3

.. Phosphate consumption rate h-1 0 1 2.883 × 10-2 2.36 10-3
fro
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where index t = 1, …, T denotes the time points at which the

individual model factors r = 1,…, R (i.e. ammonium,…, sucrose as

well as the DM) were measured for each experiment h = 1, …, H

which created~t,~y pairs (~t is the time of measurement and ~y denotes

the measured value). The model solution was synthetically

described by y = g(q; t) and had R responses (in this case

represented by nutrients and DM). The term w ∈ RR is a vector

of weights for these responses to balance their priorities. Here, we

used equal values, i.e., the unit vector, giving equal weights for each

response. q represents the model parameters (Table 1 for the

initial model).

The CI for parameter estimates was processed using a residual-

based non-parametric bootstrap resampling approach (Dogan,

2007). The error matrix S was obtained by the measured data ~y
h,t,r

. Specifically, the entries of the matrix were the absolute and

proportional measurement uncertainties ur
0 and ur

%, respectively,

that were determined for each model factor r (Table S4).

o =

u01 + u%1 ~y1,1,1 … u01 + u%1 ~yt,h,1 …

u02 + u%2 ~y1,1,2 … u02 + u%2 ~yh,t,2, …

… … … …

u0R + u%R~y1,1,R … u0R + u%R~yh,t,R …

2
666664

3
777775

(11)

This approach for error estimation is preferred over the more

widely used model-data mismatch because the measurement error

is assumed known (Table S4) (Joshi et al., 2006). The error values

for model factors were resampled with replacement to create a large

pool of error matrix sets (~1,000). Subsequently, each of the

resampled error matrices was added back to the original modeled

data (i.e., model prediction) to create a pool of synthetic data sets.

Each of the generated data sets was independently processed

through least-squares estimation (Eq. 9 and 10) to identify a set

of model parameter values that formed the basis for CI calculation

as described elsewhere (Dekking et al., 2005).

The quality measure of the model prediction for the r-th output

(i.e., model factor) was quantified by the mean average error MAE

(Borchani et al., 2015), which measures the average error between

model prediction g and data ~y:

MAEh
r (q*) =

1
T(h)o

T(h)
t=1 ~yh,t,r − gr(q*; ~xh,~th,t)

�� �� (12)

Moreover, we introduced a second quality measure (nMAE)

corresponding to the MAE normalized with respect to the available

data in order to normalize the data from experiments #1 to #7

(i.e., �H  = 7).

nMAEh
r (q*) =

MAEh
r (q*)

1

o
�H
k=1

T(k)  o
�H
h=1oT(j)

t=1 ~yh,t,r
=
MAEh

r (q*)
�yr

  (13)

The indices h and k indicate subsets of the dataset when more

than one dataset D = f1, 2, :g⊆f1,…, 9g was considered at the

same time:

MAED
r (q*) =

1

ok∈DT(k)
oh∈DoT(h)

t=1 ~yh,t,r − gr(q*; ~xh,~th,t)
�� �� (14)
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The initial mass concentration of carbohydrates was 30 g L-1 in

all experiments. In experiments #1-7 carbohydrates were provided

as 88 mM sucrose whereas it was 151 mM fructose in #8 and 151

mM glucose in #9. Accordingly, experiments #1 - #7 did not contain

fructose or glucose at the start of the fermentation. Instead, the

monosaccharides formed in these experiments due to enzymatic

cleavage of sucrose during fermentation. Because glucose was

rapidly taken up by the BY-2 cells, the glucose concentrations in

the culture medium of #1-7 was only in the 15–21 mM range. This

was approximately 10-fold lower than the 151 mM fructose and

glucose present at the start of experiments #8 and #9 respectively.

Therefore, experiments #8 and #9 were not considered during

this analysis.

Parameter identification in equations (9) and (10) for the model

(1)-(8) considered all available initial experiments, namely #1, #2

and #3. Therefore, the following quality measures refer to the

“training” set, because the same data adopted to establish the

model were used to evaluate model performance. For the DM, the

MAE was 0.64 [g L-1] (Figure 3). This corresponds to a nMAE of

0.13. For sucrose, the MAE was 6.58 [mM] (nMAE = 0.22), for

ammonium it was 2.21 [mM] (nMAE = 0.22), for nitrate it was 3.48

[mM] (nMAE = 0.11), and for phosphate it was 0.497 [mM] (nMAE

= 0.79) (Figure 3). Later, the quality measures will be evaluated

based on a “test” set, namely on unseen data that has not been used

for parameter identification. A higher MAE in the test set than the

training set would indicate model overfitting.

Interestingly, in case of all three nutrients (S, N, A) the

inhibition constants were close the respective saturation constants

(Kr ≈ KIr) (Table 1). We had defined the constraint Kr≥KIr during

parameter identification to reflect a typical activity plateau of

enzymes and to exclude an actual reduction in growth at high

substrate concentrations. However our observation that parameter

optimization favors inhibition constant close to the value of the

saturation constants indicates that an actual substrate inhibition,

i.e., reduced growth at high concentrations, can occur and therefore

allowing for “free-floating” values of KIr might be a better option in

future models.

For sucrose and nitrate, the inhibition and saturation constants

were lower than the initial standard concentrations, whereas the

constants were higher for ammonium. This suggests that the initial

concentrations of sucrose and nitrate can be reduced without

significantly changing the specific DM growth (Eq. 4). The

predicted phosphate trajectory was satisfactory only during the

batch stage (Figure 3), i.e., the MAE was ≤0.03 [mM].
Model-based multi-criteria optimization
suggests that reducing the amount of
sucrose maximizes the yield and
minimizes the process time for most
of the Pareto front

Based on the model fitted to the standard BY-2 semi-

continuous fermentation setting, we solved a multi-criteria (short
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time, high yield) optimization problem in which multiple objective

functions, were “simultaneously” minimized (Eq. 15):

min
x∈X

  (f1(x), f2(x),…, fr(x)) (15)

where is the independent variable (e.g., process time, nutrient

concentration or starting DM). In the single objective case (i.e., r =

1), this results in one optimal solution. For r > 1, the result is given

by the so-called Pareto optimal set in which one objective can only

be improved if the values of the other objectives are worsened

(Miettinen, 1998). To solve the multi-objective problem (15), it

must be transformed into a single objective problem by

mathematical scalarization (Finlayson et al., 2015).

Here, we used two objective functions, i.e., maximized the

dimensionless yield of the active DM (Eq. 16), i.e., the gram DM

at fermentation end (Xa(t)) divided by the inoculum (i.e., starting)

cell DM (X0):

Ya = Xa(t)=X0 ⇒
t→min

Y*a = X*a (t*)=X0 (16)

evaluated at time t* (i.e., Ya*), and, simultaneously, minimized

the time (t*) at which the maximum active DM was achieved (i.e.,

the process time), whereby the active DM presented a maximum

that was due to both limited cell growth and increasing cell death

(Figure 4A). To maximize the active DM, we used the sucrose

concentration S0 and the inoculum DM concentration (X0) as

variables (i.e., degrees of freedom). The first was varied between

17 and 88 mMwhile the second was varied between 0.3 and 1.5 g L-1

in order to investigate whether lowering the sucrose concentration
Frontiers in Plant Science 08
would be beneficial. The range of the inoculum concentration

included the values of the existing experiments. Based on the

previous experiments (#1, #2 and #3), we assumed that the initial

concentration of the dead DMwas zero. The scarcity of data did not

allow us to test the model before optimization. Therefore, we

limited the degrees of freedom to the inoculum and sucrose,

leaving out nitrate and ammonium. Hence, the bi-criteria

optimization problem was formulated as follows (Eq. 17):

min
X0,  S0

− Y*a (X0,   S0),     t*(X0,   S0) (17)

The ϵ-constraint or weighted sum methods can be used for

scalarization (Finlayson et al., 2015). The weighted sum method

identified the convex portion of the Pareto front whereas the

ϵ-constraint method identified the remaining (non-convex)

section of the front (Figure 4B). To ease the solution of the

optimization problem, we implemented an iterative approach.

First, we identified the maximal Ya* (~28) and recorded the

associated t*max (the minimal time at which Ya* is maximized;

~180 h; top right orange star in Figure 4B). Then, we minimized t*

under the side condition that the first derivative of Ya* is ~0. This

corresponded to the minimal time t*min at which Ya* peaks, i.e., the

earliest maximum of Ya* (bottom left orange start in Figure 4B; ~96

h). We continued by handling t* as a degree of freedom too (in

addition to X0 and S0). Specifically, in the ϵ-constraint method, the

process time t* was allowed to adopt a set of pre-defined values that

were uniformly distributed across the range spanned up by t*min

and t*max (96–180 h) with a step-width of 3 h (i.e., 28 steps) to cover
B

C

A

FIGURE 3

Time trajectories of measured and predicted data (continuous line) for the model set representing the cultivation of BY-2 cells under standard
conditions (experiments #1, #2 and #3) (A–C) Iteration 1. Measurement uncertainty made of a constant and proportional component (Table S4).
A, ammonium; F, fructose; G, glucose; N, nitrate; P, phosphate; S, sucrose; V, volume; X, cell dry mass. See Table S3 for measured initial values.
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the entire Pareto front (yellow stars in Figure 4B). According to the

Pareto front, the shortest t* (i.e., 102 h) is obtained with the highest

initial DM concentration (1.5 g L-1) (Figure 4C). However, the

highest DM yield Ya* of 27.9 (Eq. 16 with Xa evaluated at t*) would

be achieved with the maximum sucrose concentration (88 mM) and

the minimum possible initial DM concentration (0.3 g L-1) at a time

t* of 185 h (Figure 4C). This is to be expected because under such

conditions the specific concentration of carbohydrate per cell is

highest at fermentation start, facilitating the highest relative

biomass increase as expressed with Ya*. Importantly, alternative

definitions of the objective function can be used. For example, the

dimensionless biomass yield Ya* can be replaced by the biomass

concentration at fermentation end Xa(t*).

Moreover, moving along the Pareto front, reducing the sucrose

concentration by 25% from 88 mM to 67 mM would increase the

active yield and reduce the t* compared to standard conditions

(Figure 4C). Accordingly, compared to 88 mM sucrose and 0.68,

0.58 and 1.00 g L-1 DM in experiments #1, #2 and #3, respectively,

we proposed two experiments taken from the Pareto front (#4 and

#5) with values of S0 = 67 mM and DM = 0.80 and 0.56 g L-1,

respectively. For comparison and model validation, we also set up

two further experiments that were not Pareto optimal (#6 and #7),

with 47 mM sucrose/0.92 g L-1 DM and 87 mM sucrose/1.25 g L-1

DM, respectively, the latter representing the standard BY-2 cell

cultivation conditions.
Frontiers in Plant Science 09
Reducing the sucrose concentration
does not affect biomass formation or
volumetric biomass yield when using
Pareto optimal conditions

In the optimized setting for the semi-continuous fermentation

according to the Pareto front (experiments #4 and #5), the BY-2 cells

were cultivated with a starting biomass of 17 g L-1 FM (0.80 g L-1 DM)

and a sucrose concentration of 67 mM (#4), or a starting biomass of

14 g L-1 FM (0.56 g L-1 DM) and a sucrose concentration of 67 mM

(#5), at the beginning of the batch phase (Figures 2, 4; S3) in 2-L

STRs. We choose a smaller bioreactor volume to accommodate the

number of verification runs, i.e., 6 vs the initial 3 runs for model

calibration (see also next section). In our hands, both reactor settings

(2-L and 5-L) had performed equally in the last 8 years in terms of, for

example, oxygen supply, biomass build-up etc. (data not shown).

The validation experiments that were not Pareto optimal started

with a biomass of 17 g L-1 FM (0.92 g L-1 DM) and 47 mM g L-1

sucrose (#6) or 22 g L-1 FM (1.25 g L-1 DM) and 87 mM sucrose

(#7), the latter as the standard BY-2 cell cultivation conditions

(Figures 2, 4 and S3). Moreover, because the maximum predicted

biomass was not achieved under standard cultivation settings

(experiments #1, #2 and #3) because the semi-continuous stage

started at 100 g L-1 FM, in these experiments the batch stage lasted

until the sucrose in the medium was depleted.
B C

A

FIGURE 4

Results of multi-criteria optimization. (A) Representative time trajectory of two Pareto solutions relative to active DM. (B) Pareto front in the objective
and (C) design space. Experiments #1–3 were used for model setup, experiments 4 and 5 had an optimal cultivation medium, and experiments 6
and 7 were performed for comparison and model validation purposes (dry mass X, sucrose S, process time t*, active yield Ya* at time t*, initial dry
mass X0, initial sucrose S0).
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In experiments #4 and #5, the FM reached 207.90 g L-1 (10.88 g

L-1 DM) and 181.70 g L-1 (10.04 g L-1 DM) by the time the sucrose

was depleted (within 6 days). The sucrose was hydrolyzed into

glucose and fructose, which resulted in a transient peak of 15–17

mM on days 3–4, which declined to <5 mM on day 6. The

ammonium was depleted along with the sucrose, but nitrate levels

fell by only ~50% from 39 to 19 and 23 mM in experiments #4 and

#5, respectively. As observed in experiments #1, #2 and #3,

phosphate was almost completely consumed with 2 days during

batch fermentation.

In experiment #6, the biomass increased to 172.20 g L-1 FM

(7.92 g L-1 DM) and the starting concentration of sucrose was also

depleted in 6 days. Glucose and fructose peaked at 13–16 mM on

day 4. Ammonium was depleted by day 6, but nitrate levels fell by

only 38%, from 39 to 25 mM.

In experiment #7, a control repeating the standard BY-2

cultivation settings that was not included in the initial model

setup, the biomass increased to 270.80 g L-1 FM (13.76 g L-1 DM)

before the sucrose was depleted within 6 days. The transient peak of

glucose and fructose (19–22 mM) was observed on day 3 but also

declined by day 6. In contrast to sucrose, the ammonium was

completely consumed by day 5, and nitrate levels declined by 66%

from 39 to 14 mM on day 6. Phosphate was depleted within 3 days.

These data indicate that (1) once the FM exceeded a threshold

of 50–60 g L-1 FM (3.0–3.5 g L-1 DM), the glucose and fructose

resulting from sucrose hydrolysis were immediately consumed, (2)

the conversion of nitrate to ammonium appeared less efficient than

ammonium uptake into cells and its conversion to glutamate and

glutamine, and (3) the depletion of sucrose, ammonium and

phosphate did not appear to limit the cell growth. To understand

the discrepancy between nutrient depletion and cell growth, it may

be necessary to include the intracellular metabolism of nutrients in

future models. Nevertheless, the relative cell growth was apparently

not affected by the lower sucrose concentration and inoculation cell

density. Importantly, whereas there was some variability in the

fresh-to-dry mass ratio of the inoculum across the set of 9

experiments (21.8 ±4.0, ± standard deviation), that ratio was

consistent at the end of the batch phase (19.7 ±1.5, ± standard

deviation) indicating that there was no substantial difference in the

biomass obtained from the different experiments (i.e., conditions)

in terms of water content as it can arise from water uptake into

the vacuole.
Model calibration based on optimized
cultivation conditions confirms the
biomass yield increase caused by
reducing the initial sucrose concentration

The data from the Pareto optimal experiments (#4 and #5) and

non-optimal comparators (#6 and #7) (Figures 2 and S3) allowed us

to test the Monod-type model against unknown data (test set). The

MAE was 1.02 [g L-1] for DM and 8.18 [mM], 1.38 [mM] and 1.86

[mM] for sucrose, ammonium and nitrate, respectively (Figures 3, 5),

confirming in principle that the model could fit the observed nutrient
Frontiers in Plant Science 10
consumption and biomass formation. Therefore, the MAE for

nutrients in the test set was lower than or equal to that in the

training set, but the MAE for DM was higher in the test set.

The model was able to fit the cell growth until the DM reached

8 g L-1 but underestimated the real values above this threshold

(MAE = 0.30 [g L-1] for DM <8 g L-1) (Figure 6). There are two

possible explanations. First, the data used for model fitting

(experiments #1, #2 and #3) did not include DM values > 8 g L-1.

Second, specific cell growth (Eq. 4) was directly dependent on

nutrients such as sucrose and ammonium, and the model was not

able to calculate DM values when at least one nutrient was close to

zero (the case when DM > 8 g L-1). Even fitting the model to the data

(#4, #5, #6 and #7) did not improve the prediction quality. These

considerations, together with the absence of model overfitting (i.e.,

the MAE of the nutrients in the test set never exceeded that in the

training set when DM < 8 g L-1), suggested the need for a more

complex model, for example, one that includes the hydrolysis of

sucrose and/or intracellular metabolism.

To compare DM growth in different experiments with distinct

initial inoculum DM values (0.56–1.25 g L-1), all measured and

predicted DM trajectories were normalized against their initial DM

values (Figure 7). However, there was a mismatch that caused the

model either to underestimate (e.g., experiment #1) or overestimate

(e.g., experiment #3) the biomass formation. Due to this mismatch,

despite experiments #1, #2, and #3 using the standard initial sucrose

concentration (88 mM) and differing only in DM, the model

predicted a growing biomass yield for decreasing initial DM

values, whereas the measured biomass yields were maximum and

minimum at intermediate values of the initial DM (Figure 7A).

Independently, measured and predicted trajectories confirmed that

the model did not fit cell growth accurately when DM >8 g L-1

(Figure 7B). The assessment of the model’s prediction errors is

therefore an important task for future investigations. Nevertheless,

we confirmed that a 25% reduction in the concentration of sucrose

can increase the volumetric biomass yield by 13%, confirming that

model-based optimization of the cultivation medium can improve

the performance of BY-2 cell suspension cultures.
An improved model including glucose and
fructose enables the prediction of cell
growth at low sucrose concentrations

Given that the model could not predict DM concentrations

>8 g L-1 when any of the nutrients reached zero, we used a

s e cond uns t ru c tu r ed mode l (Eq . 2 -3 , 5 - 8 , 18 -20 ) ,

accommodating the hydrolysis of sucrose into fructose and

glucose (Eq. 18-20). Therefore, the specific growth term

depended on glucose and fructose but not on sucrose.

Moreover, the influence of ammonium and phosphate were

included in the maximum specific growth as additive terms

because including them as factors would have zeroed out the

growth rate for times >90 h as the phosphate concentration

approaches zero, which did not agree with experimental

observations as discussed above.
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KIN
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dF
dt

+ F
dV
dt

= mSFa
S

S + KS

KIS

S + KIS

� �
XaV

− mF
F

F + KF

KIF

F + KIF

� �
XaV (19)

V
dG
dt

+ G
dV
dt

= mSGa
S

S + KS

KIS

S + KIS

� �
XaV

− mG
G

G + KG

KIG

G + KIG

� �
XaV (20)

The sucrose to glucose or fructose DM conversion parameters

(mSG and mSF) were set at 0.526 because one mole of sucrose always

produces one mole each of glucose and fructose (Puad et al., 2017).

This model is defined hereafter as the “improved model”. It has 20

parameters to identify, including the death rate constant kd ,

maximum specific growth rate mm, maximum specific growth rate

for ammonium and phosphate mAm, mPm, saturation and inhibition

constants Kh and KIh , hydrolysis constant a, and consumption rates

mh. Coefficients dA, dP can be interpreted as the minimal
Frontiers in Plant Science 11
ammonium and phosphate concentration in the medium at

which cell growth occurs. They were assumed known in the

context of this study to limit the model complexity and avoid

overfitting and their values were set to 10% of the starting

concentrations. This allowed a nearly constant growth

contribution when they are not depleted as observed in the

experiments. As the number of experiments available for model

calibration iteratively increase, the two parameters can be fitted too.

We used K-fold cross-validation to show the better prediction

capability of the improved model compared to the initial one

(Stone, 1974). With K = 4 full data sets available, i.e., all

experiments performed so far in which fructose and glucose were

measured: #4-7. Experiments #1-3 were not considered since the

improved model would need the initial concentrations of fructose

and glucose. The k-th fold consists of splitting the data so that the k-

th set is used for testing, while the remaining K–1 are used for model

setup (i.e., model training). It follows that for each model (i.e., initial

and improved), k parameter identifications were performed (each

relying on 3 experiments) with the performance measures estimated

on the corresponding test set. The improved model was supposed to

have a lower average validation (i.e., test) error than the initial one:

aMAEi =
1
Ko

K
k=1 = 1K  MAEk

i (q*k ) (21)

Analogously:

anMAEi = aMAEi=�yi (22)
B

C D

A

FIGURE 5

Time trajectories of measured and predicted data (continuous line) for the initial model validation representing the cultivation of BY-2 cells under
optimal (experiments #4 and #5) and non-optimal (experiments #6 and #7) conditions (A–D) Iteration 2. Measurement uncertainty made of a
constant and proportional component (Table S4). A, ammonium; F, fructose; G, glucose; N, nitrate; P, phosphate; S, sucrose; V, volume; X, cell dry
mass. See Table S3 for measured initial values.
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Whereas the MAE is a quality measure that refers to a single set

of model parameters q*, the aMAE is the average MAE over

different models (i.e., different parameter sets). The following

analysis allowed a fair comparison between models and the

aMAE provided an estimation of the modeling prediction error

on unseen data.

Compared to the initial model, the improved model had a lower

or equal aMAEi for all outputs (Table 2). The most significant

improvements occurred for the DM (the anMAEX dropped from
Frontiers in Plant Science 12
0.214 to 0.149) and sucrose (the aMAES was 30% lower in the

improved model). The average error of the prediction for

ammonium and nitrate remained the same. Such results indicated

the better modeling capability of the improved model, in particular

the ability to capture high DM values (Figure 8). For DM greater

than 8 [g L-1], anMAEX dropped from 0.371 to 0.097 (Table 2).

The improved model was then retrained with all available full

data sets (i.e., experiments #4-7) resulting in the proposed identified

parameters (Table 3). The MAEi estimated on the training data
B

C D

E F

A

FIGURE 6

Predicted and measured time trajectories of dry mass under standard, optimal and non-optimal cultivation conditions (batch stage). Text indicates
initial DM [g L-1] and sucrose [mM] in each experiment. (A) Experiment #1. (B) experiment #2. (C) experiment #3. (D) experiment #4. (E) experiment
#5. (F) experiment #7. S0 – starting sucrose concentration; t – process time; X – cell dry mass; X0 – starting dry mass. See Table S3 for measured
initial conditions of the process parameters.
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(Figure 9) was 0.58 [g L-1] for DM and 4.31, 1.35, 3.03 and 0.02

[mM] for sucrose, ammonium, nitrate, and phosphate respectively.

The MAE was equal or lower (Figure 9) compared to the initial

model (Figure 3) in all model outputs. Nevertheless, this did not

necessarily imply a better performance because different data sets

were used and the MAE relied on training data. The MAEs for

fructose and glucose, not included in the initial model, were 3.81

and 2.29 [mM] with nMAE values of 0.409 and 0.261, respectively.

Among the nutrients, fructose showed the highest nMAE and its

concentration was thus most difficult to predict (Figure 9). The

reason for the low predictability is unknown but may reflect a staged
Frontiers in Plant Science 13
metabolism that is not solely dependent on fructose alone and

would require a modification of the kinetic model (Eq. 5). CIs were

in the same order of magnitude as the values of the identified

parameters (Table 3). Such a result is not desirable because it

indicates a moderate predictive power of the underlying model

and can hamper the identification of relevant differences between

samples/conditions (O’Brien and Yi, 2016). However, wide CIs were

expected because of the large number of parameters and the small

data set. The effect of the wide CIs on the predictive ability of the

models was assessed by generating 1,000 random sets of model

parameter values q, uniformly sampled from inside the CIs. These
B

A

FIGURE 7

Predicted and measured normalized time trajectories of dry mass under standard optimal and non-optimal cultivation conditions. Text following the
experiment number indicates initial DM [g L-1] and sucrose [mM] of each experiment. (A) Measured values. (B) predicted values. Ya – active yield
(Eq. 16). Numbers represent the individual experiments. See Table S3 for measured initial conditions.
TABLE 2 Average and average normalized test MAE values for initial and improved models.

Model aMAEX [g L-1]
(anMAEX [-])

aMAEX>8
[g L-1]

(anMAEX>8 [-])

aMAES [mM]
(anMAES [-])

aMAEA [mM]
(anMAEA [-])

aMAEN [mM]
(anMAEN [-])

Initial 1.069 (0.214) 1.850 (0.371) 5.841 (0.198) 1.983 (0.194) 3.082 (0.101)

Improved 0.741 (0.149) 0.488 (0.097) 4.541 (0.153) 1.808 (0.177) 3.232 (0.106)
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sets were then used to create model predictions and estimate the

model-data mismatch based on MAE (Eq. 12), aMAE (Eq. 21) and

anMAE (Eq. 22) for each model factor using experiments #4-7 as

references (Figure 10). In case of the initial model, the anMAE was

equal to 26%, 17%, 8%, 5% for DM, ammonium, nitrate, and
Frontiers in Plant Science 14
phosphate, respectively, which was less than the sum of the

model independent process parameter uncertainties (Table S4),

which was approximately 27%. For this sum, constant and

proportional measurement uncertainties of each process

parameter were unified under a single relative uncertainty,
B

C D

A

FIGURE 8

X - cell dry mass time trajectories of measured and predicted data for the initial and improved models representing the cultivation of BY-2 cells
under optimal and non-optimal conditions (experiment #4, … #7). (A–D) Iteration 2.
TABLE 3 Parameter ranges and identified optimal parameter values for the improved model (experiments #1 to #7 were used for model setup).

Parameter Description Unit Min Max Optimal 90% CI

kd death rate constant h-1 0 0.01 5.44 × 10-4 6.2 × 10-5

mm maximum specific growth rate h-1 0 10 0.162 0.17

mA
m maximum specific growth rate ammonium h-1 0 10 0.578 0.48

mP
m maximum specific growth rate phosphate h-1 0 10 2.1 × 10-5 0.37

KS Sucrose saturation constant g L-1 0 100 72.53 73.4

KIS Sucrose inhibition constant g L-1 0 100 100.0 73.3

KA Ammonium saturation constant g L-1 0 1 0.221 0.22

KIA Ammonium inhibition constant g L-1 0 1 0.221 0.065

KN Nitrate saturation constant g L-1 0 5 0.835 0.25

KIN Nitrate inhibition constant g L-1 0 5 1.0 0.06

KF Fructose saturation constant g L-1 0 30 1.108 0.71

KIF Fructose inhibition constant g L-1 0 30 1.404 0.51

.. Glucose saturation constant g L-1 0 30 18.0 17.1

(Continued)
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namely 3% for DM, 6% for each nutrient. This observation

suggested that the model still retained predictive validity when

model parameters q were inside the CIs because the variability of

the model predictions were in the same range as the uncertainty of

the independent process variables. The sole exception in this

context was sucrose, which had an anMAE of 34%, which was

higher than the sum of process parameter uncertainties.

In the improved model, the anMAE values were 53%, 35%, 21%,

21%, 4%, 42%, 24%, for DM, sucrose, ammonium, nitrate,

phosphate, fructose, and glucose, respectively (Figure 10), whereas

the sum of the modeled independent process parameter

uncertainties was 39%. Like the initial model, the improved
Frontiers in Plant Science 15
model suggested that, with respect to the standard cultivation

conditions, a 30% reduction of sucrose in the medium is

beneficial for the DM growth (Figure 11A, e.g., experiment #5).

Also, glucose seemed to be preferred over fructose as a carbon

source (Figures 11B, C) which was qualitatively confirmed in

experiments #8 and #9. Therefore, including the individual

carbon sources in the model allowed an improvement of the

prediction compared to the model accounting only for the

“precursor” sucrose, that is not taken up by the cells directly, but

only after breakdown to the monosaccharides.

Finally, the model was adopted to predict DM and nutrients for

experiments #8 and #9 (unseen data), in which sucrose was replaced
TABLE 3 Continued

Parameter Description Unit Min Max Optimal 90% CI

KIG Glucose inhibition constant g L-1 0 30 18.0 12.0

a Sucrose hydrolysis constant h-1 0 1 0.396 0.24

mA Ammonium consumption rate h-1 0 1 6.9 × 10-3 1.9 × 10-3

mN Nitrate consumption rate h-1 0 1 1.71 × 10-2 2.7 × 10-2

mF Fructose consumption rate h-1 0 1 8.34 × 10-2 2.9 × 10-2

mG Glucose consumption rate h-1 0 1 0.273 0.26

mP Phosphate consumption rate h-1 0 1 2.68 × 10-2 3.2 × 10-3
fro
B

C D

A

FIGURE 9

Time trajectories of measured and predicted data (continuous line) for the improved model representing the cultivation of BY-2 cells under optimal and
non-optimal conditions (experiment #4, … #7). (A–D) Iteration 2. Measurement uncertainty made of a constant and proportional component (Table S4).
A, ammonium; F, fructose; G, glucose; N, nitrate; P, phosphate; S, sucrose; V, volume; X, cell dry mass. See Table S3 for measured initial values.
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with either fructose (#8) or glucose (#9) as the sole carbon source

(Figures 2, 12, S4). The DM prediction was mediocre (MAEX = 0.37

[g L-1]), and were very good for ammonium (MAEA = 0.88 [mM])

and nitrate (MAEN = 0.92[mM]), but poor for fructose or glucose

(MAEF = 25.06[mM], MAEG = 19.60 [mM]) (Figure 12). Indeed,

MAEF and MAEG were one order of magnitude larger than in the

model setup (Figure 12). The decline in the concentrations of

fructose and glucose was underestimated by the model (50 mM

measured compared to 100 mM predicted), possibly because the

model was fitted against data sets in which the fructose and glucose

concentrations were 0–25 mM (Figure S3), whereas in experiments

#8 and #9 the concentrations were 150 mM (Figure S4).

Nevertheless, the inclusion of fructose and glucose in the model
Frontiers in Plant Science 16
enabled the prediction of cell growth and biomass formation at high

cell densities and low sucrose concentrations, and improved the

modeling capability with respect to the initial model (Table 3). To

increase the model accuracy further, the unstructured model might

be converted to a structured one that includes the intracellular

metabolism of nutrients.
Conclusions

We have shown that adopting the iterative “experiment-

modeling-optimization” workflow achieved a 13% increase in the

growth of tobacco BY-2 cell suspension cultures while reducing the
B C D E

F G H I J K L

A

FIGURE 10

MAE of model factors describing the model-data mismatch obtained with random parameter set values (~1000) uniformly sampled within
the confidence intervals (experiments #4,…,#7). (A–E) Initial model. (F–L) Improved model. A, ammonium; F, fructose; G, glucose; N, nitrate;
P, phosphate; S, sucrose; X, cell dry mass.
B CA

FIGURE 11

Time trajectories of predicted data with the improved model comparing the influence of initial carbon sources (A) Sucrose, (B) Fructose,
(C) Glucose) in the DM (experiment #5). X, cell dry mass.
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sucrose concentration in the cultivation medium by 25%. This was

based on a mechanistic unstructured segregated Monod-type model

using the sucrose concentration as a relevant parameter. However,

the initial model could not predict cell growth at high cell densities,

which was resolved by an improved model that included glucose

and fructose as sucrose hydrolysis products. Moreover, cell growth

could only be fitted if the nutrients did not reach zero, so we

removed phosphate from the model because this was completely

depleted. This shortcoming might be addressed by a structured

model that includes intracellular nutrient metabolism. Nevertheless,

the model suggested that sucrose concentration and inoculation cell

density can be reduced to maximize the yield, which we confirmed

in validation experiments. Mechanistic models can therefore be

used to maximize the productivity of cell suspension cultures while

reducing upstream production costs. This may be applicable not

only to plant cells, but also to microbial and mammalian cell

cultures used for the production of biopharmaceuticals.
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FIGURE 12

Time trajectories of measured and predicted data (continuous line) for the model set up representing the cultivation of BY-2 cells under non-
optimal culture conditions with either fructose (experiment #8) or glucose (experiment #9) as the sole carbon source for improved model
validation. (A, B) Iteration 2. A – ammonium. F – fructose. G – glucose. N – nitrate. P – phosphate. S – sucrose. V – volume. X – cell dry mass.
See Table S3 for measured initial values. Measurement uncertainty made of a constant and proportional component (Table S4).
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