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Weeds pose a persistent threat to farmers’ yields, but conventional methods for

controlling weed populations, like herbicide spraying, pose a risk to the

surrounding ecosystems. Precision spraying aims to reduce harms to the

surrounding environment by targeting only the weeds rather than spraying

the entire field with herbicide. Such an approach requires weeds to first be

detected. With the advent of convolutional neural networks, there has been

significant research trialing such technologies on datasets of weeds and crops.

However, the evaluation of the performance of these approaches has often been

limited to the standard machine learning metrics. This paper aims to assess the

feasibility of precision spraying via a comprehensive evaluation of weed

detection and spraying accuracy using two separate datasets, different image

resolutions, and several state-of-the-art object detection algorithms. A

simplified model of precision spraying is proposed to compare the

performance of different detection algorithms while varying the precision of

the spray nozzles. The key performance indicators in precision spraying that this

study focuses on are a high weed hit rate and a reduction in herbicide usage. This

paper introduces two metrics, namely, weed coverage rate and area sprayed, to

capture these aspects of the real-world performance of precision spraying and

demonstrates their utility through experimental results. Using these metrics to

calculate the spraying performance, it was found that 93% of weeds could be

sprayed by spraying just 30% of the area using state-of-the-art vision methods to

identify weeds.

KEYWORDS

automated weeding, computer vision, weed detection, object detection, dataset,
precision spraying, spot spraying
1 Introduction

The requirement to feed an increasing global population means that effective methods

to control weed populations and protect yields are as important as ever. However, effective

weed control is becoming more challenging as climate change and intensification increase

the competitiveness of weeds (Storkey et al., 2021). The mainstream approach to weed
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control is broadcast spraying, which involves spraying the entire

field with a selective herbicide. This approach leads to significant

wastage because much of the herbicide is applied to crops and bare

soil rather than weeds. Additionally, the excessive use of herbicide

increases harm to the surrounding ecosystems through leaching. An

alternative approach, known as precision spraying, aims to target

only the weeds with herbicide by first detecting them. Such an

approach could have both environmental and economic benefits.

There have been numerous attempts to apply computer vision

to the problem of weed detection. Most took a standard approach of

collecting and annotating datasets, training detection algorithms,

and evaluating the accuracy of crop and weed detection using

standard machine learning (ML) metrics like mean average

precision (mAP). These metrics are important when comparing

detection approaches, but they do not offer much insight into

whether the accuracy is sufficient to make precision spraying

feasible. In order for precision spraying to be a feasible

replacement for broadcast spraying, precision spraying must

achieve a hit rate close to that of broadcast spraying—around

98%. In addition, precision spraying must result in a significant

reduction in herbicide use. Lastly, detection must be fast enough

such that weeds can be detected and sprayed in a single pass of the

field without a significant reduction in vehicle speed compared to

broadcast spraying.

This study aims to account for these three feasibility factors

using three additional metrics. This paper introduces a new metric

weed coverage rate (WCR), which identifies the proportion of

weeds in the dataset that fall within the target area of a sprayer

given a set of detections. While WCR is influenced by the accuracy

of the model, it accounts for the precision of the spray nozzles and

captures the interaction between these two factors. This gives

insight into whether a detection strategy and nozzle configuration

could achieve a suitable hit rate. Note that here we consider nozzle

configuration at an abstract level; a detailed investigation of specific

nozzle designs and performance is beyond the scope of this paper.

Moreover, we propose area sprayed, which represents the

proportion of the area in the dataset that would be targeted for a

particular detector and nozzle precision. This indicates whether a

detector and nozzle configuration would result in a reduction of the

area sprayed with herbicide. This metric is a proxy for herbicide usage

and provides some insight into the wastage that any particular

approach might incur. Lastly, inference speed is measured to

determine whether detection is fast enough, using a single graphics

processing unit (GPU), to facilitate real-time detection and spraying.

Due to on-vehicle power constraints, detection methods need to be

fast and compute efficiently as it is not possible to simply introduce

more GPUs to overcome inference speed limitations.

The contribution of this paper is to establish the feasibility of

precision spraying by evaluating a variety of deep learning-based

vision methods applied to weed detection, not only using standard

ML metrics, like mAP and inference speed, but also task-specific

metrics as introduced in this paper: WCR and area sprayed.

Section 2 reviews the literature on weed detection and

automated weeding. Section 3 describes the methodology, and

Section 4 outlines the experiments conducted as well as presents
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the results and some analysis of the results. Section 6 considers the

implications of the findings, and Section 7 concludes the paper.
2 Related work

Approaches to weed detection have evolved over the last two

decades. Early approaches to detecting weeds relied on hand-crafted

features to classify weeds based on color, shape, and texture features

—for example, Nguyen Thanh Le et al. (2019) used local binary

patterns with support vector machines for plant discrimination.

While this approach only requires a small dataset for development,

it may fail to generalize under varying light conditions.

Deep learning-based approaches were first implemented in

work such as those of dos Santos Ferreira et al. (2017), which

classified images containing weeds, and Dyrmann et al. (2016),

which performed pixelwise segmentation of images of crops and

weeds. These approaches proved more robust to variations in

lighting conditions than the hand-crafted feature-based

approaches. This work was followed by object detection-based

approaches using popular object detection algorithms such as

Faster-RCNN (Adhikari et al., 2019), YOLOv3 (Gao et al., 2020)

and CenterNet (Jin et al., 2021). Other works have sought to

improve the accuracy of deep learning-based weed detection. In

Dang et al. (2023), an extensive range of Yolo models were tested to

detect weeds in cotton crops, and data augmentation was shown to

improve accuracy. In Wang et al. (2022), attention mechanisms

were utilized to improve detection accuracy. In these studies, the

results were evaluated using standard metrics such as mAP and

inference speed. These metrics are useful in that they enable a

comparison between detectors, but they do not provide an insight

into the efficacy of the weed management.

Following improvements in weed detection technology, robotic

weed control systems that enable precision weed management have

been studied. “Spot” or “selective” spraying, the application case in

this paper, involves switching an individual nozzle on or off to

deliver chemicals only to the weeds (Hussain et al., 2020; Hussain

et al., 2021). However, there is also work evaluating the efficacy of

non-chemical systems that rely on mechanical tools (Wu et al.,

2020) and laser-based tools (Mathiassen et al., 2006).

A variety of different approaches have been taken to trialing

spraying systems. In Tufail et al. (2021), a detection system is

deployed onto a Raspberry Pi and a spraying system is proposed,

but the spraying performance of the system is not evaluating. In

Ruigrok et al. (2020), YOLOv3 was integrated into a spraying

system, and the hit rate was assessed in sugar beet and potato

fields by evaluating the location of wet patches in the soil left by the

sprayer. Similarly, Li et al. (2022) integrated YOLOv5 detection into

a spraying system and assessed the hit rate using water-sensitive

paper. These approaches provide an insight into the weed hit rat

given a particular detector and a spraying system in a particular

location. A similar approach was taken in Farooque et al. (2023),

but they also published data on the herbicide savings made during

their field tests. Their results showed 50% savings in herbicide use

compared to broadcast spraying. In Zheng et al. (2023), the weed
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killing rate of the proposed system was compared with a broadcast

approach as well as the herbicide saving.

These field trials reveal that the physical configuration of the

system and the accuracy of the detection affect the overall precision

of spraying. However, it is challenging to conduct field trials using a

variety of prototype systems. The study described in this paper

proposes a model to assess the suitability of different deep learning-

based object detectors by taking into account different nozzle

precisions and different field environments. The evaluation of

each approach will balance optimal inference speed, weed

coverage rate, and area sprayed for a weed sprayer in a field

environment, and this assessment will be contrasted with an

evaluation using standard ML metrics. In this way, the proposed

approach will estimate the spraying performance of several

detectors and nozzle configurations like a field trial, but with the

reproducibility of studies using datasets.
3 Methodology

The scenario that this paper considers is shown in Figure 1. This

consists of a sprayer boom, equipped with cameras, fixed a short

distance ahead of nozzles that dispense herbicide, and mounted on

the back of a farm vehicle. This enables the cameras to process

images of an area before the nozzles pass over that area. Depending

on whether weeds are present in the image, nozzles can then be

actuated as the corresponding region passes beneath the nozzles.
3.1 Detection accuracy evaluation

Object detection algorithms locate objects of interest within

images and demarcate them using bounding boxes. Deep learning-

based object detectors learn from a set of labeled training images

how to locate objects within an image. The accuracy of a detector

can then be determined by evaluating the detection performance on

a set of labeled test images.

A conventional metric to evaluate the performance of object

detectors is mean average precision (mAP). To calculate mAP, a
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threshold is first defined for the intersection over union (IoU) value,

and this is used to distinguish between true positive (TP), false

positive (FP), and false negative (FN) detections. IoU measures the

accuracy of the predicted bounding box circumscribing the object

identified and is equal to (G ∩ D)/(G ∪ D), where G is the area of the

ground-truth (labeled) bounding box and D is the area of the

bounding box predicted by the model.

Precision (P) is the proportion of correctly classified objects

over all objects detected, TP/(TP + FP).

Recall (R) is the proportion of correctly classified objects over all

labeled objects, TP/(TP + FN). These metrics are used to calculate

average precision (AP):

AP =o
n
(Rn − Rn−1) :Pn

where n is the IoU threshold rank. Because AP is dependent on

the IoU threshold value, mean AP or mAP averages the AP over

several threshold values. This article uses the COCO standard (Lin

et al., 2014) of 10 IoU thresholds between 0.05 and 0.95 that are

0.05 apart.

While mAP is a good measure of the performance of an object

detector, it focuses on identifying the object very precisely. In

practice, for a sprayer, the level of precision for spraying is limited

by the spray nozzle, and as we will see, it is possible for an object

detector that has a relatively low mAP to still be good enough to be

effective in ensuring that weeds are covered with herbicide.
3.2 Spray precision evaluation

In order to understand how the accuracy of a detector impacts

the potential weed hit rate, a new metric was devised, called WCR.

This estimates, given a particular number and density of nozzles,

how many weeds would be hit if the detector aimed to hit all

detected weeds. The metric is calculated using a simple model of

spraying. Given the i-th image from a dataset with I images, a

sprayer moving parallel to the width of the image (Wi) would have a

spray boom that runs parallel to the height of the image (Hi) as

illustrated in Figure 2.

The precision of the spray nozzles can vary from spraying an

area 500 mm wide, used in broadcast spraying, to around 100 mm

for precision spraying. This variation is dictated primarily by the

nozzle type, although pump pressure has an impact on the area

sprayed by the nozzle, too. In order to understand how varying the

spray nozzle precision impacts the hit rate, given a set of detections,

different nozzle configurations are modeled. This is shown in

Figure 2. The image is split into n horizontal strips along its

height, each with width Wi pixels and height Hi/n pixels, which

represents the area of the image where a particular nozzle could

spray. When n is one, the whole height of the image is targeted by

one nozzle; by contrast, when n is four, a smaller section of the

image is targeted by a more precise nozzle. Assuming a standard

deployment camera, such as a RealSense D435i with a focal length

of 1.93 mm and F-number of f/2.0, situated at a standard height

from the canopy (∼500 mm), the image would cover an area of

∼670 mm by ∼380 mm. Since the spray boom is aligned along the
FIGURE 1

A top-down view of a small precision sprayer. The boom carries five
cameras, and the nozzles would be positioned along the boom as
well. Each camera captures images as the vehicle over the field in
the direction of travel indicated. Each row of images represents the
set captured by the cameras at the same point in time; each column
represents the passage of time as the tractor drives. The images
here do not overlap.
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shorter height of the image (Hi) by varying the nozzles from one to

four, the area that each nozzle covers is varied from 380 to 95 mm.

The i-th image in the dataset has Ji detected weed bounding

boxes, each with width wi,j and height hi,j. For each strip that

intersects with a detected weed bounding box, a spray area Bi,k, is

proposed in that strip, where Bi,k is the k-th spray area proposed in

the i-th image. Bi,k has the height of the strip, and its width is max

(Hi/n,wi,j). In the i-th image, there are Ki of these spray areas

proposed. To derive Si, which is the total spray area within the i-th

image, to the exclusion of overlapping regions, the union of the

proposed spray areas is calculated as follows:

Si = ∪
Ki

k
Bi,k (1)

where both Si and Bi,k are measured as the number of pixels

enclosed in the area. The generation of Si is illustrated in Figure 2.

The spray area is larger than just the bounding boxes because

the size is partly determined by the width of the spray (compare

Figures 2A, B). WCR differs frommAP because that additional area,

while increasing the herbicide used and decreasing mAP, will

sometimes “hit” weeds that have evaded detection. WCR is

defined as follows. A weed is counted as having been sprayed if it

is wholly contained in the spray area:

Sprayed(Gi,m) =
1, if Gi,m ⊆ Si

0, otherwise

(
(2)

where Gi,m is the area of the m-th ground truth weed bounding

box in image i. Then, the WCR for a dataset is the fraction of the

weeds that are counted as having been sprayed:

Weed coverage rate (I) = oi∈Iom∈Mi
Sprayed(Gi,m)

oi∈IMi
� 100 (3)

whereMi is the total number of ground truth weed detections in

the i-th image. In addition, we compare the area that has been

sprayed with the total area of all the images in the dataset:

Area sprayed (I) = oiSi∈I

oi∈IWi � Hi
� 100 (4)
Frontiers in Plant Science 04
where the areas are measured in pixels. Since the area sprayed is

a proportion of the total area that would be covered by broadcast

spraying, the volume of herbicide saved is proportional to 100 –

Area sprayed. These metrics measure the number of weeds that we

spray and the amount of herbicide used. The higher the WCR, the

more plants we hit, and the higher the area sprayed, the more

herbicide is used. A farmer would typically want to maximize WCR

while minimizing the area sprayed.
3.3 Inference speed evaluation

In order to establish the frame rate requirements, we need to

make some assumptions about the design of a sprayer. The boom on

a typical sprayer is 24 m, and the recommended height to operate the

boom above the crop canopy is 500 mm. We established empirically

that, at this height, a typical camera with a 1.8:1 aspect ratio can cover

670 mm × 380 mm. It is widely considered best practice to limit the

application speed to around 15 mph or 6.7 m/s to prevent spray drift

and ensure a consistent herbicide application. According to a recent

survey, the 15 mph or 24.1 kmph limit is broadly adhered to by

farmers (Virk and Prostko, 2022). With the long edge of the image

aligned along the spray boom, we need 35 cameras, and each camera

can cover 380 mm in the direction of travel. At 6.7 m/s, we will need

to process 28 frames per second (assuming no overlap). Thus, across

all 35 cameras, the required frame rate will be 980. With the short

edge of the image aligned along the boom, we would need 64 cameras

and process 16 frames a second per camera, giving a required frame

rate of 1,024 frames per second (FPS).
4 Experiments

4.1 Datasets

Two sugar beet and weed datasets were used: the Lincoln beet

(LB) dataset, which was annotated as part of this work, and the

Belgium beet (BB) dataset, which is from Gao et al. (2020). The
BA

FIGURE 2

(A) Two nozzles. (B) Four nozzles. Example of how spraying areas are proposed with detected bounding boxes containing weeds dij (red) and a
detected beet (blue) for the same image and with two and four nozzles. The green boxes are derived from the union of the individual spraying areas
Bij as a result of merging the overlapping spraying areas. The total area of all the green boxes in the images is Si.
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images contain pictures of sugar beet and weeds with their

respective bounding box locations. The BB dataset contains 2,506

images of 1,800 × 1,200 pixels. The LB dataset consists of 4,405

images of 1,920 × 1,080 pixels.

Images in the LB dataset were extracted from videos taken in

three different sugar beet fields. Frames were taken such that they

were sufficiently far apart to avoid repetition in the dataset. Unlike

the images in the BB dataset, which we all collected in a single day,

the LB images were collected at different times over the crop’s early

growing period. The data collection spanned May–June 2021, where

each field was scanned, at minimum, on four different dates a week

apart to record weeds at different stages of growth. For all the data

collection sessions, the distance from the camera to the ground was

approximately 500 mm. Two cameras were used: one with 12

megapixels, 26 mm focal length, and f1.6 aperture; the other with

64 megapixels, 29 mm focal length, and an aperture of f2.0. The

original size of the pictures from both cameras was 2,160 ×

3,840 pixels.

The fields used for the LB dataset are near Lincoln, UK. They

are situated in different locations with varying conditions as to the

type of soil, distribution of the plants, and weed varieties. Two of the

fields, called the Near 30 and the BBRO, are typical of commercial

sugar beet fields in the UK, while the third field, known as the

walled garden, is a small plot in an enclosed brick-walled garden

which is less representative of a commercial operation in the UK. In

Gao et al. (2020), an overall mAP of 0.829 was achieved using the

BB dataset. This was composed of amAP of 0.761 for the weed class

and 0.897 for the sugar beet class. Figure 3 shows examples of the

BB dataset and the three fields used to create the LB dataset.

Both datasets present different item distributions and

visibilities. The BB dataset has a lower number of items per

picture than the LB dataset. In terms of visibility, the items in the

LB dataset are proportionally smaller than the items in the BB

dataset, and the items in the BB dataset have higher levels of
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interitem occlusion. Table 1 shows the visibility and distribution

characteristics of both datasets and the characteristics of each of the

items in the dataset.
4.2 Data preparation

For the experiments, each dataset was randomly split into

training, test, and validation sets with 70%, 20%, and 10% of the

dataset images, respectively. For training and testing, we resized the

images and labels in both datasets to make the large side of

the image fit in a 640-pixel dimension while maintaining the

width/height ratio of the raw images.
4.3 Models and parameters

For the identification of weeds, both one-stage detectors and

two-stage detectors were implemented. Two-stage detectors tend to

produce more cautious predictions than the one-stage detectors. By

contrast, one-stage detectors tend to be faster. By implementing

both approaches, it is possible to determine whether the speed of the

one-stage detectors or the cautious predictions of the two-stage

detectors would have any impact on the metrics used (Soviany and

Ionescu, 2018). The one-stage models are Yolov5s, Yolov5m,

Yolov5l, Yolov5x (Jocher et al., 2021), and Yolov3 (Redmon and

Farhadi, 2018), where all models use Darknet-53 (Redmon and

Farhadi, 2018) (DN-53) as a backbone. The two-stage detectors are

based on Faster R-CNN (Ren et al., 2015) with three different

backbones: one with a ResNet-50 backbone (He et al., 2016) and a

Feature Pyramid Network (Lin et al., 2017) (FPN) neck—namely,

ResNet-50-FPN (R-50-FPN); one with ResNet-101-FPN (He et al.,

2016) (ResNet-101-FPN); and another detector with ResNeXt-101-

FPN (Xie et al., 2017) (Rx-101-FPN).
FIGURE 3

Examples from the Belgium beet dataset and the three different fields in the Lincoln beet dataset.
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During training, for the one- and two-stage models, the

optimizer was stochastic gradient descent, the learning rate was

1 × 10−2, the momentum was 0.937, and the learning decay was 5 ×

10−4. In both model varieties, the networks were pre-trained on the

COCO dataset (Lin et al., 2014). For testing, the confidence

threshold was 0.05, and the intersection over the union threshold

was 0.5. These values are obtained from a grid search maximizing
Frontiers in Plant Science 06
the mAP. For the sake of consistency, no data augmentation was

applied in the training of these models, although using data

augmentation may improve the accuracy. The models were

trained and tested on a GTX2080Ti processor with 11 GB

of VRAM.

For all detectors, the batch size (the number of images fed to the

models simultaneously) used for training was the maximum

number of images that can fit in the GPU’s VRAM, alongside the

detector. The number of epochs for training was 300. For each

model, the model weights used for testing were the ones with the

highest mAP on the validation set during the training process.
5 Results

We evaluated the trained models in several ways across both the

BB and LB datasets and report both mAP and inference speed as

well as our new metrics: weed coverage rate and area sprayed.
5.1 Accuracy

Figure 4 provides a conventional evaluation giving mAP for

each model and image size. The mAP for both classes in the LB

dataset is lower than in BB. This could be because of the higher

density and smaller size of the plants in the LB dataset as well as the

greater diversity of plant sizes and field environments. Figure 4

shows that the YoloV5 models typically achieved a higher mAP

than the other models. YoloV3 performed comparably to YoloV5

on the LB dataset but less well on the BB dataset. The Faster R-CNN

models produced a lower mAP than either the YoloV5 models or

YoloV3. Reducing the resolution from 960 to 640 in the Yolo

models had a negligible impact onmAP in most cases, while it had a
TABLE 1 Characteristics of the Belgium beet (BB) and Lincoln beet (LB)
datasets at dataset level (top) and at item level (bottom).

BB
dataset

LB
dataset

Number of images 2,506 4,402

Number of items 5,578 39,246

Average items per picture 2.22 8.915

Average percentage of the bounding box that is
occluded

0.02187 0.0176

Average area of the image occupied by
bounding boxes

0.09883 0.0717

Number of sugar beets 2,654 16,399

Average sugar beet plants per picture 1.059 3.725

Number of weeds 2,924 22,847

Average weed plants per picture 1.166 5.190

Average area occluded in sugar beet bounding
boxes

0.0239 0.0324

Average area occluded in weed bounding boxes 0.0159 0.001

Average image area occupied by a sugar beet
bounding box

0.0899 0.033

Average image area occupied by a weed
bounding box

0.0360 0.002
FIGURE 4

Swarm plots show a comparison of mAP between models. Small perturbations in the x-value have been applied so that all markers can be seen.
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bigger impact for the Faster R-CNN models. Similarly, reducing the

resolution from 640 to 320 resulted in a slight reduction in mAP in

the Yolo models but a much larger reduction in the Faster R-CNN

models. The mAP for the weed class was lower than for the sugar

beet class in both datasets. The difference in accuracy between

classes is more significant in the LB dataset than in the BB dataset.
5.2 Accuracy at different growth stages

The LB dataset provides metadata for the time the image was

taken and in which field. From this, it is possible to analyze how the

mAP changes as both the sugar beet and weeds grow. Figure 5

shows the mAP changes over time in each of the fields where the

images were taken. Figure 5A shows that themAP clearly improved

over time for the sugar beet class. The improvement is more marked

initially possibly due to increases in plant size, which was eventually

being offset by the increasing occlusion. Figure 5B shows that, for

the weed class, there is a more subtle improvement over time and

more variation in the mAP between collections. Similarly, in the

weed class, the improvement plateaus suggest the benefits of

increasing the plant size and the differentiation being offset by

some occlusion. Lastly, it is interesting to note that all the models

follow a similar trend with mAP falling and rising at the same

points. This suggests that all the models are learning similar sets of

features. Since image collection spanned a month during the early

growth stages of the sugar beet, it should be noted that the collection

ended before the canopy closure caused a significant occlusion.

Therefore, these results only reflect changes in detection accuracy

during the early growth stages of both weeds and sugar beet.
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5.3 Speed

Figure 6 shows how inference speed (measured in FPS) changes

over different batch sizes on each dataset. Figure 6 shows that

YoloV5s on 320 resolution has the fastest inference speed by a

significant margin. All models ran faster with lower-resolution

images, and models running inference on lower-resolution images

saw much greater gains in speed as the batch size increased. In

general, the Yolo models outperformed Faster R-CNN models, and

the Yolo models showed greater improvements in inference speed

as a result of reducing the resolution than Faster R-CNN models.
5.4 WCR and area sprayed

Figure 7 reports the WCR and area sprayed for one to four

nozzles. On the BB dataset, Figure 7 shows a significant decrease in

WCR when the density and precision of the nozzles increased. At

each nozzle configuration, the Yolo models achieved a slightly

higher WCR than the Faster R-CNN models. However, the Yolo

models showed a small increase in area sprayed compared to Faster

R-CNN models. Interestingly, the Yolo models with lower-

resolution 320 × 320 images had a higher WCR than the other

Yolo models despite achieving a lower mAP. This increased

coverage achieved by lower-resolution Yolo models was only

associated with a slight increase in area sprayed compared to the

other Yolo models.

On the LB dataset, Figure 7 shows that the coverage remained

close to 100% for all the Yolo models, regardless of resolution, even
B

A

FIGURE 5

(A) Sugar beet. (B) Weeds. The mAP of the YoloV5l model at different collection dates from the three fields where data was collected—namely, the
Near30, the BBRO, and the Walled Garden. The trend for other models is similar, and the plots for these models are available in the Supplementary
Material.
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as the precision and density of the nozzles increased. Faster R-CNN

performed less well but still retained coverage above 85% for all

nozzle configurations at 960 and 640 resolutions. Only Faster R-

CNN models using 320 × 320 images saw a significant decrease in

WCR as the nozzle precision and density increased. While Yolo and

Faster R-CNN had a comparable coverage using higher-resolution

images, the Yolo models sprayed a much larger area to achieve that

level of coverage across nozzle configurations. Equally, while the

coverage achieved by the Faster R-CNNmodels with low-resolution

images is significantly lower than the other Faster R-CNN models,

the area sprayed is quite comparable.
5.5 Comparison of weed coverage rate and
area sprayed with mAP

The WCR and area sprayed results indicate that models with

comparatively low mAP values can perform as well as models with

higher mAP values. In order to better understand the relationship

between WCR and area sprayed, Figure 8 plots the WCR and area

sprayed against mAP. Figure 8 shows that, on the BB dataset, there

is almost no correlation between mAP and coverage. WCR remains

fairly constant even as mAP increased significantly. Similarly, there

is no clear relationship between the area sprayed and mAP.

On the LB dataset, Figure 8 shows that there is a weak

correlation between WCR and mAP. However, as discussed in

Section 5.4, the coverage is the same for higher-resolution Faster

R-CNN models and Yolo models despite the mAP being different.
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On the LB dataset, Figure 8 shows that the area andmAP are weakly

positively correlated. This suggests that some models with a high

mAP actually spray a greater area in some cases.

In order to clarify why some models have a comparable WCR

while the area sprayed varies, the quantity and area of predicted

bounding boxes, which form the basis of these metrics, are plotted

in Figures 9 and 10, respectively. Figure 9 shows the number of

detections plotted against the proportion of detections that are false

positives, while Figure 10 shows the distribution of areas of the

predicted bounding boxes for each model.

For the BB dataset, the distribution is similar for all models,

with Faster R-CNN bounding boxes only slightly larger on average.

The distribution of bounding box areas also closely matches the

areas of the ground truth bounding boxes. Figure 9 shows that more

bounding boxes are predicted for Faster R-CNN, but more of them

are false positive. Therefore, Faster R-CNN predicts a greater

quantity of larger bounding boxes, but the area sprayed is still

low compared to Yolo. This suggests that Faster R-CNN predicts

clusters of bounding boxes, more of which are false positive,

compared to Yolo that predicts fewer bounding boxes that are

more scattered with fewer false positives. This also explains why

Faster R-CNN’s lower mAP is not reflected in coverage or area

sprayed, as the extra false positives are closely clustered to

true positives.

On the LB dataset, Figure 9 shows that Yolo models produce far

more detections than Faster R-CNNmodels. However, both models

produced a large number of false positives relative to

total detections.
B

A

FIGURE 6

(A) Belgium beet dataset. (B) Lincoln beet dataset. Inference speed of models (in frames per second, fps) and image sizes.
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Whenmodels produce a large number of detections, it can affect

the inference speed. Non-maximum suppression is used to remove

duplicate bounding boxes. Since it has a complexity of O(n2), where

n is the number of detections, models that produce a large number

of detections can have slower inference speeds. This discrepancy is

shown in Figure 6, where YoloV5s has a slower inference speed on

the LB dataset compared with the BB dataset. This is explained by

the difference in the number of detections YoloV5s produces on

each dataset, as shown in Figure 9.

Figure 10 shows that Faster R-CNN models produce larger

bounding boxes on average than Yolo’s predicted bounding boxes

or the ground truth bounding boxes. On average, Yolo models’

bounding boxes are slightly smaller than the ground truth bounding

boxes. There are far more very large bounding boxes, represented as

outliers, predicted by all models on the LB dataset compared to the

BB dataset. While Faster R-CNN produces larger bounding boxes

on average, this is not offset by the greater number of detections

produced by Yolo models, most of which will be false positive, that

account for the larger area sprayed. The large number of false

positives as a proportion of detections accounts for the far lower

mAP on the weed class on the LB dataset.

Overall, when comparing our new metrics tomAP, it is clear that

our metrics elucidate factors in how the models detect weeds and how
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those detections will be used by a sprayer to spray herbicide—factors

that are not accounted for in the mAP calculation.
6 Discussion

Initially, we evaluated our model according to standard mAP

metrics and found that Yolo models were more accurate and

faster than Faster R-CNN models. On the BB dataset, YoloV5l

achieved a mAP of 94.0 and 82.8 on the sugar beet and weed

class, respectively. This is compared to mAP of 0.897 and 0.761

for the sugar beet and weed class, respectively, in the previous

work using this dataset (Gao et al., 2020). However, in this study,

we wanted to examine these results in more depth and assess the

practical feasibility of deep learning-based methods for precision

spraying applications.

Firstly, we investigated how the accuracy of detection

improved as plants matured through the early growth stage.

Our results show that, in general, detection accuracy improves

during the period captured in the LB dataset for both sugar beet

and weeds.

Secondly, we investigated the inference speed of different

models using images of different resolutions to verify whether
FIGURE 7

Coverage and area sprayed with different numbers of nozzles. Perturbations in the x-values have been added to make the markers more visible
where they would otherwise overlap.
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FIGURE 8

The top row shows the relationship between coverage and mAP, and the bottom row shows the relationship between the area sprayed and mAP.
FIGURE 9

Number of detections from each model.
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inference could be performed fast enough for real-time precision

spraying. Yolov5s with 320 × 320 images had the highest

inference speed out of all the models tested, achieving 833 FPS

on the BB dataset and 1,000 FPS on the LB dataset. This is in the

right ballpark to achieve our target pace of 15 mph (6.7 m/s)1

that would make in-the-field spraying with YoloV5s using 320 ×

320 feasible using GTX 2080Ti.

Lastly and most importantly, we propose the new metrics

WCR and area sprayed that aim to directly measure the

performance of herbicide spraying based on the detections

from an object detector. Area sprayed followed the same trend

of decreasing as the density and precision of nozzles increased in

both the BB dataset and the LB dataset. By contrast, the WCR

results were quite different with coverage being less affected by a

change in nozzle configuration in the LB dataset than in the BB

dataset. These differences are likely explained by the overall area

sprayed being much greater in the LB dataset, leading to many

more off-target hits.

When using the metrics to compare models, our results

demonstrate the need to trade off WCR and area sprayed rather

than select the model with the highestmAP—for example, Faster R-

CNN had a lower area sprayed across nozzle configurations and

datasets while mostly retaining a comparable WCR at higher

resolutions despite having a lower mAP. A further analysis

suggested that the lower area sprayed was a result of Faster R-

CNN producing fewer false positive detections. These results

suggest that increases in false positives that may not influence the

mAP to a significant degree may still have a significant impact on

herbicide usage. It follows that mAP alone does not provide the

granularity to be certain that a detector is the optimal choice for

weed detection in precision spraying. Overall, our results help

illustrate that the choice of model is a trade-off between WCR,

area sprayed, and inference speed.

A limitation of the results presented in this paper is that

they were computed on non-contiguous images. This means

that the entire spray area needs to fit within the image.

However, if the images were contiguous, it would be possible

to allow the spray area to run over into the next frame.
1 As per Section 3, that would be a frame rate of 980 or 1024, depending on

the number of cameras.
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Additionally, there are other factors that affect the hit rate

that were not modeled here, such as spray drift and variation in

nozzle actuation time. Modeling these aspects will be addressed

in future work.
7 Conclusions and future work

This paper proposes a method for evaluating the feasibility of

different state-of-the-art object detection methods applied to

selective spraying.

The WCR metric demonstrates that many state-of-the-art

object detectors can achieve a hit rate close to that of broadcast

spraying; however, this is dependent on the precision of the nozzles

in the spraying system as well as the field environment. The work

shows that a high WCR needs to be balanced with other factors like

inference speed and herbicide usage. Herbicide usage was proxied

via the area sprayed metric which estimates the overall area to

which herbicide would be applied by targeting the detections. This

metric highlights options that produce clear reduction in area

sprayed and, hence, herbicide required. As with many multi-

criteria optimization problems, there is no single clear winner;

however, these metrics help highlight the advantages and

drawbacks of different approaches, demonstrating that when it

comes to practical deployment, it is not just about mAP.

The method proposed in this work gives an insight into how

detection accuracy and nozzle configuration interact to affect

spraying performance. In practice, these metrics could be used to

find the optimal physical configuration and detector for a precision

sprayer used on a particular crop. One limitation is that there may

be other factors that influence weed coverage and area sprayed that

this method does not account for.

Future work will aim to improve the frame rate achievable on a

single GPU. Additionally, in order to make WCR and area sprayed

estimations better reflect real-world spray accuracy, contiguous

images will be used and more properties of the sprayer will be

accounted for, including nozzle response times and spray drift. In

this work, a single crop is used, so an extension of this work may

cover a variety of crops. Lastly, a prototype precision sprayer will be

used to measure WCR and area sprayed in real field environments.

These real-world measurements could then be compared to the

values calculated using the proposed method.
FIGURE 10

Distribution of bounding box areas for all models across resolutions. The width of the box goes from the lower to the upper quartile with the line
through the middle of the box representing the median. The line through the box runs from the lower extreme to the upper extreme. Outliers are
represented by the markers after the extremes.
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