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Research on the local path
planning of an orchard mowing
robot based on an elliptic
repulsion scope boundary
constraint potential field method
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Ke Fei1, Xinrui Qiu1, Runpeng Jiang1 and Jun Li1,2*

1College of Engineering, South China Agricultural University, Guangzhou, China, 2Guangdong
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In orchard scenes, the complex terrain environment will affect the operational

safety of mowing robots. For this reason, this paper proposes an improved local

path planning algorithm for an artificial potential field, which introduces the

scope of an elliptic repulsion potential field as the boundary potential field. The

potential field function adopts an improved variable polynomial and adds a

distance factor, which effectively solves the problems of unreachable targets

and local minima. In addition, the scope of the repulsion potential field is

changed to an ellipse, and a fruit tree boundary potential field is added, which

effectively reduces the environmental potential field complexity, enables the

robot to avoid obstacles in advance without crossing the fruit tree boundary, and

improves the safety of the robot when working independently. The path length

planned by the improved algorithm is 6.78% shorter than that of the traditional

artificial potential method, The experimental results show that the path planned

using the improved algorithm is shorter, smoother and has good obstacle

avoidance ability.

KEYWORDS

mowing robot, artificial potential field, path planning, local minimum, boundary
potential field
1 Introduction

With the development of science and technology, mobile robots are increasingly used

in agriculture. In orchards, mowing robots with autonomous navigation ability are a hot

research topic. As a key autonomous navigation technology, path planning has attracted

increasing attention from researchers.

According to the degree of a mobile robot’s mastery of the information in an area, path

planning can be divided into two types: one is global path planning based on complete area
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information (Li et al., 2022), and the other is local path planning

based on local area information (Wu et al., 2022). Algorithms to

solve global path planning include particle swarm optimization

(PSO) (Delice et al., 2017; Wang et al., 2018), visibility methods

(Zimmermann and König, 2016; Salman et al., 2023), and link

graph methods (McCammon and Hollinger, 2021) and topology

method (Jin and Choi, 2011). Algorithms to solve local path

planning include artificial potential field methods (Khatib, 1986),

the ant colony algorithm (Gao et al., 2023; Li et al., 2023), the A*

algorithm (Zhang et al., 2022), artificial immune methods (Lin et al.,

2023) and rolling window methods (Xin et al., 2023). Real-time

mowing robot obstacle avoidance mainly utilizes local robot path

planning algorithms. Because of the advantages of a simple

structure, easy understanding, small calculation and real-time

capability, artificial potential field methods are widely used in the

robot field.

The basic idea of an artificial potential field (APF) method is

constructing a virtual APF that senses the positions of the robot,

obstacles and target points in an environment using sensors so that

the mobile robot can be influenced by the target points and

obstacles at the same time. In the potential field, the robot is

attracted by the target points and moves toward them while being

repelled by the obstacles and moves away from them. Therefore,

under the action of this resultant force, the robot avoids obstacles

and moves toward the target points, thus planning a collision-free

path. Compared with other classical obstacle avoidance algorithms,

an APF method has the advantages of fewer calculations, solving

local obstacle avoidance problems and solving sudden challenges.

Therefore, this algorithm is widely used in obstacle avoidance

methods. However, an APF method has the following

obvious disadvantages:
Fron
1. Target unreachable problem: When the robot is far away

from a target point, the attraction will become extremely

large. If the relatively small repulsion force can be ignored,

the robot may encounter obstacles on its path. When there

are obstacles near the target point, the repulsion force will

be very large, and the attraction will be relatively small,

making it difficult for the robot to reach the target point.

When the distance between the robot and the target point is

very close, if there is an obstacle near the target point, the

attraction on the robot is approximately zero relative to the

large repulsion, and the robot will always wander around

the target point and cannot reach the target point.

2. Local minimum problem: The robot relies on the

overlapping of the potential fields detected from all

directions to obtain the overlapping field, and the

direction and size of the overlapping field are used to

determine the next trajectory. However, if the

overlapping field is close to zero, the robot will not move

and stop.

3. Poor adaptability in a complex environment: The more

obstacles there are in the overlapping field, the higher the

probability that the overlapping field is zero, and the easier

it is to stagnate, leading to the local minimum problem.
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In this regard, many scholars have invested much energy in

research and improvement. Based on an artificial immune

algorithm, Hou YB (Hou et al., 2012) adopted a potential field

function method in an APF method to easily obtain the optimal

path and improve the quality of path planning. Q. Song (Q. Song

et al., 2012) To effectively solve the local minimum problem of APF

methods, the force function of the potential field was improved

using a velocity vector, and the repulsive potential field coefficient

was adjusted in real time by combining it with a fuzzy control

algorithm, which overcomes the robot easily falling into a local

minimum and alleviates the oscillation problem. Li G (Li et al.,

2013) proposed an improved APF method based on a regression

search method, redefined the potential field function to solve the

local minimum and oscillation problems, improved a wall-

following method to solve the unreachable problem, and

optimized the planned path using a regression search algorithm

to obtain a better and shorter effective path. To solve the problems

of local minimum and inefficiency of classical APF methods,

Abdalla T Y (Abdalla et al., 2017) proposed a fuzzy control

algorithm to improve the APF method, and the proposed

problems were successfully solved. A fuzzy logic controller was

used to control the movement of the robot, and a particle swarm

optimization algorithm was used to optimize the membership

function of the controller. Rostami S M H (Rostami et al., 2019)

proposed an improved APF method to address the optimal path

and solve the problems of local minima and unreachable targets in

the APF algorithm, realizing effective robot obstacle avoidance

without falling into local minima. Orozco-Rosas U (Orozco-Rosas

et al., 2019) proposed a membrane evolution APF method for robot

path planning, combining membrane calculation using a genetic

algorithm and APF method to find suitable parameters, thus

generating a feasible and safe path. This method consists of

limited separated regions, in which there are several groups of

parameters evolving according to biochemical inspiration to

minimize the path length. Compared with classical APF methods,

it shows better performance in path length. Jiachen Yang (Yang

et al., 2022) proposes a Residual-like Soft Actor Critic (R-SAC)

algorithm for agricultural scenarios, which improves the efficiency

of reinforcement learning through offline experts experience pre-

training methods, and optimizes the reward mechanism of the

algorithm by using multi-step TD error, which solves the dilemma

that may occur in the training process, and is a stable and efficient

path planning method.

The author analyzes the above three problems in detail and

proposes three improvement methods:
1. A target point distance factor is introduced into the

attraction and repulsion potential field functions to

reduce the resultant attraction and repulsion force

received near a target point when the algorithm is far away;

2. An improved variable polynomial is used in the repulsion

potential field function, which minimizes the distorted

obstacle potential field when the robot is not near the

target point and simultaneously ensures that the robot takes

the global minimum at the target point;
frontiersin.org
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3. The scope of the repulsion potential field is changed to an

ellipse, and a fruit tree boundary potential field is added to

reduce the environmentally potential field complexity so

that the robot can avoid obstacles in advance without

crossing the fruit tree boundary.
The effectiveness of the improved algorithm is verified through

simulation and field tests.
2 Improved artificial potential field
method with boundary constraints

2.1 Attractive potential field with distance
factor introduced

The distance between the robot and a target point in a

traditional APF method directly determines the attractive

potential field function or the attractive force. When the distance

between the robot and the target point is very large, the attractive

potential field function or attraction will also become very large. In

other words, the attraction plays a major role, while the repulsion

plays a very small role in the robot motion control, which will easily

lead to collisions between the robot and obstacles. To solve the

collision risk of robots in an obstacle environment when

considering the deviation of path planning, the attractive

potential field function of the APF method is optimized, and a

target point distance factor is added to reduce the attraction of the

algorithm when the target point is far away. The improved

attractive potential field function is defined as follows:

Uatt(X) =
1
2 k · r

2(X,Xg), r(X,Xg) ≤ d = 2r0
1
2 k · d · r(X,Xy), r(X,Xg) > d = 2r0

 

(
(1)

where k is the attractive gain coefficient, d is a constant

determined by the environment, X(x,y) is the current position of

the robot, r(X,Xg) is the distance between the robot and the target

point, and r0 is the influence radius of the obstacle.
The improved attractive function is shown in Formula (2):

Fatt(X) =
−k · r(X,Xg) ·∇(X,Xg), r(X,Xg) ≤ d = 2r0

− 1
2 k · d ·∇(X,Xg), r(X,Xg) > d = 2r0

(
(2)
2.2 Improved elliptic repulsion potential
field with variable polynomials

In the actual operation process, a mowing robot is limited by the

orchard environment and its own performance, so the obstacle

repulsion potential field influence range is different from that of a

traditional APF method. Therefore, the repulsion potential field

influence range is improved as follows: the longitudinal distance of

the influence range is increased so that the mowing robot can

correct its direction in advance and enter the obstacle avoidance

mode; the lateral distance of the influence range is reduced to ensure
tiers in Plant Science 03
that the mowing robot can avoid obstacles safely. After

modification, the influence range becomes oval, as shown

in Figure 1:

In this study, the major axis and minor axis of the influence

range of the repulsive potential field are r0 and r1 =
r0
2 .

By improving the repulsive potential field function, the local

minimum and the oscillation around obstacles are solved. To

address the problems in an APF, a method of adding a rotating

force is adopted to improve the repulsion function (Gao et al., 2023)

by applying a polynomial factor not less than zero to the repulsion

potential field, which becomes zero when the robot reaches the

target position. When the superimposed potential fields are all equal

to zero at the target position, the robot position is the global

minimum. This polynomial is the squares (Yang et al., 2016; Xin

et al., 2022) of the distance from the robot to a target point. This

form of the repulsive potential field greatly distorts the shape of the

repulsive potential field when the robot is not near a target point

while ensuring the global minimum of the target point. Therefore,

in this study, an improved variable polynomial is used to minimize

the distorted obstacle potential field when the robot is not near a
FIGURE 1

Influence range of the elliptic repulsion potential field.
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target point and at the same time ensure that the robot has the

global minimum at the target point. The improved repulsion

potential field function is defined in Formula (3):

Urep(x) =

1
2 h · ½ 1

r(X,X0)
− 1

r0
� · 1 − e

r2(X,Xg )

R2

� �
,Xϵ (x−x0)

2

r  20
+ (y−y0)

2

r  21
= 1

0,X ∉ (x−x0)
2

r  20
+ (y−y0)

2

r  21
= 1

8>><
>>: (3)

where h is the repulsion gain coefficient, r0 is the major axis of

the influence range of the obstacle, r1 =
r0
2 is the minor axis of the

influence range of the obstacle, R is the radius of the robot, X0(x0,y0)

is the position of an obstacle, Xg(xg,yg) is the position of a target

point, r(X,X0) is the Euclidean distance between the current

position of the robot and the position of obstacle X0 and r(X,X0)

is the Euclidean distance between the robot and target point. When

the robot moves to the target position, the total potential field Utotal

(X) is equal to zero. Therefore, when the robot moves to the target

position, the robot will stop moving at the target position when the

speed drops to zero, so the total potential field of the robot at the

target position is equal to zero.

The improved repulsion function is shown in Formula (4):

Frep(X) =
Frep1(X) + Frep2(X),Xϵ

(x−x0)
2

r  20
+ (y−y0)

2

r  21
= 1

0,X ∉ (x−x0)
2

r  20
+ (y−y0)

2

r  21
= 1

8><
>: (4)

where Formula (5) Frep1(X) means that the robot is far away

from an obstacle along the line connecting it with the obstacle, and

it decreases with the decrease in the distance between the robot and

the target point; Formula (6) Frep2(X) means that the robot

approaches the target position along the line connecting the robot

and target position.

Frep1(X) =
1
2 h · 1

r2(X,X0)
· 1 − e

r2(X,Xg )

R2

� �
·∇(X,X0),Xϵ

(x−x0)
2

r  20
+ (y−y0)

2

r  21
= 1 (5)
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Frep2(X) =
1
2 h · ½ 1

r(X,X0)
− 1

r0
� · e

r2(X,Xg )

R2 ·
2r(X,Xg )

R2

� �
·∇(X,Xg)

,Xϵ (x−x0)
2

r  20
+ (y−y0)

2

r  21
= 1

(6)
2.3 Introduction of a fruit tree boundary
potential field

When a mowing robot operates in an actual orchard, it needs to

consider the influence of the surrounding environment while

considering the obstacles. When the mowing robot moves to avoid

obstacles, it cannot hit the fruit trees. In most orchards, facilities such as

water and fertilizer irrigation and green prevention and control are

installed among the fruit trees, as shown in Figure 2. If the fruit trees are

regarded as individual obstacles, a large number of obstacles will easily

make the mowing robot fall into the local minimum, and it is

impossible to drive to the target point. At the same time, according

to the operating characteristics of the mowing robot, it is easy to

damage the facilities when driving into a fruit tree row. Therefore,

adding a repulsive potential field to each fruit tree row as a boundary

can effectively reduce the environmental potential field complexity and

prevent orchard facilities from being damaged. According to mowing

robot operating experience, the fruit tree boundary is the area with the

highest risk factor, followed by the middle area of the path, as shown in

Figure 3. According to the above distribution of the path danger degree,

a path boundary potential field function is considered in sections.

When the mowing robot is located in the area between paths, a

function with a relatively gentle change trend is adopted; however,

when it is close to the fruit tree boundary area, because of the high risk

coefficient, a function with a large change trend is adopted. Based on
FIGURE 2

Facilities installed in fruit tree intervals.
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the above factors, the orchard path is divided into four parts, and a fruit

tree boundary potential field function is established as shown in

Formula (7):

Uedge(X) =

hedge · v · e
x−xl , x ≤ xl

1
3 hedge · x

2, xl < x < 0

− 1
3 hedge · x

2, 0 ≤ x < xr

hedge · v · e
x−xr , xr ≤ x

8>>>>><
>>>>>:

(7)

wherehedge is the potential energy gain coefficient near the fruit tree
boundary, 1

3 hedge is the potential energy gain coefficient of the middle

part of the path, Xl = − L
4 is the dividing line near the left boundary,

Xr =
L
4 is the dividing line near the right boundary, and L is the

path width.

In summary, the total potential field function of the improved

APF method is:

Utotal(X) = Uatt(X) +o
n

i=1
Urep(X) + Uedge(X) (8)
3 Algorithm test and result analysis

To verify the effectiveness of the improved APF method designed

in this study. Written the improved algorithm, and validated the code

through the MATLAB simulation platform, defining a path planning
Frontiers in Plant Science 05
evaluationmodel. The simulation results of the improved algorithm are

compared with those of the traditional artificial potential field method,

and the practical test of the improved artificial potential field method is

conducted on the self-developed mowing robot platform.
3.1 Path planning evaluation model

To directly evaluate the quality of different path planning

methods, a path planning evaluation model is established in

combination with a practical application, which mainly includes

the following three key evaluation parameters:
3.11 Path planning evaluation
The primary goal and basic requirement of path planning is to

generate a safe collision-free path. If the robot collides with an

obstacle or cannot reach the target during the path planning, the

path planning is invalid, which is a typical 0-1 problem.

fsuccess =
1, success

0, fail

(
(9)
3.12 The total length of the planned path
When the robot actually moves and runs, the total length of the

planned path can be equated to the cost of energy and time
FIGURE 3

Boundary potential field.
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consumed by the robot. The shorter the total length of the planned

path is, the better the path planning result. Assuming that the

planned path is divided into N sections and the path length of time

period i is Si, the total length of the planned path is:

Stotal =o
N

i=1
Si (10)
3.13 Maximum turning angular velocity
In the real working environment space, the path planned by the

robot is often a curve due to the existence of obstacles, so it is easy to

know that the course of the robot changes in real time. The heading

angular velocity of the robot is the first derivative of the heading

angle with respect to time. The smaller the angular velocity of the

robot is, the smoother the planned path, and the better the stability

and maneuverability of the robot.

Let the heading of the i time period be qi and the heading of the i
+ 1 time period be qi+1; then, the heading angular velocity of the

robot is:

Dqi =
qi+1−qi
stepi

, (i = 1, 2,…N − 1) (11)

where stepi is the time consumed in planning period i. In the

whole path planning cycle, the maximum absolute value of the

heading difference may be taken as the maximum turning angular

velocity, that is,

wmax = max Dq1,…,Dqi,…,Dqn−1f g,   (i = 1, 2,…,N − 1) (12)

Based on the above three parameters, the path planning is

evaluation model determined, and the evaluation function value is

VF, as shown in Formula (13):

VF = fsuccess · (
r1

Stotal
+ r2

wmax
) (13)

where r1 and r2 are greater than zero and satisfy r1 + r2 = 1. By

definition, the larger VF is, the higher the quality of the

planned path.
3.2 Test steps and parameter settings

3.2.1 Simulation test steps and parameter settings
The lawn mower robot obstacle avoidance path planning of

based on the improved APF method can be divided into the

following steps:
Fron
S1, setting the positions of the starting point and the target

point of the mowing robot, initializing the parameters, and

establishing an environmental model around the robot

using sensors mounted on the robot for environmental

perception;

S2, calculating the attraction potential field function;

S3, calculating the repulsion potential field function;

S4, calculating the boundary potential field function;

S5, calculating the magnitude and direction of the attraction

and repulsion exerted by the robot, calculating the
tiers in Plant Science 06
components of the attraction and repulsion in the

horizontal direction and the vertical direction, and

determining the magnitude and direction of the total

potential force exerted by the robot;

S6, setting the mowing robot moving step and updating the

robot coordinates.
x(k + 1) = x(k) + l cos q (14)

y(k + 1) = y(k) + l sin q (15)

Guided by the total potential force of the APFmethod, the robot

moves to a target point and the coordinates are updated. When the

robot does not reach the target point, it continues to run under the

combined force. When the mowing robot reaches the target point, it

stops running. Thus, the planning path that meets the mowing

robot operating requirements is obtained.

The attraction gain coefficient k =15, the repulsion gain

coefficient h = 20 and the boundary repulsion gain coefficient

hedge = 35 in the improved APF method are set through

continuous experimental tests, and the major axis r0 = 2 m, minor

axis r1 = 1
2 r0 = 1m, and step length l = 0.05 m. The traditional APF

method has an attractive gain coefficient k = 15, a repulsive gain

coefficient h = 20, an obstacle influence range r0 = 2 m, and a step

size l = 0.05 m. Considering the distance between the robot and the

target, the repulsion potential field function is improved as a

polynomial factor with an index m =1, and the other parameters

are the same.
3.2.2 Real machine test steps and
parameter settings

Using a self-developed mowing robot platform, a real machine

verification test of the improved APF method is carried out, and a

four-wheel electric differential structure is used. Equipped with 16-

wire mechanical LIDAR, it can perceive the 360° environment

around the lawn mower. The mowing robot use GPS to obtain

global absolute position information and fuse IMU high-frequency

body posture information to realize the navigation and positioning.

The mowing robot measures the wheel speed through the rotary

encoder to receive real-time feedback and control the vehicle speed,

and obtain the actual trajectory value through the path tracking

algorithm. The experimental environment is a modern standard

orchard in the school, shown in Figure 4, with a spacing of 4 m and

a length of 25 m. The real machine platform is shown in Figure 5.

According to the research objectives and content, the real-time

obstacle avoidance experiment steps of the mowing robot are

as follows:
1. A starting position (0, 0) and a target position (0,20) for the

mowing robot are set according to an actual application

scene;

2. To verify the applicability of the mowing robot, the scene is

set according to the simulation test, obstacles are randomly

placed between the starting position and the target position,

and the obstacle position information is collected and

recorded.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1184352
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1184352

Fron
3. The mowing robot and all its instruments and equipment

are started at the initial position, and the path planning

algorithm based on the improved APF method is run to

make the robot move autonomously in the obstacle scene

set in step (2) and realize real-time obstacle avoidance;

4. A data acquisition program is run during the experiment

and the GPS and IMU are used to collect the experimental

data of the mowing robot during autonomous operation;
tiers in Plant Science 07
5. The real vehicle experimental data collected in step (4) are

analyzed and compared with the planned path to verify the

feasibility and effectiveness of the designed improved APF

method.
In the Visual Studio Code software environment, the improved

APF method is compiled into a Python program, uploaded to the

vehicle controller, and the program is run in the set obstacle
FIGURE 5

Real machine platform.
FIGURE 4

Orchard environment.
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environment for a real vehicle test. The algorithm parameters are

set as follows: attractive gain coefficient k = 15, repulsive gain

coefficient h =30, boundary repulsive gain coefficient hedge = 40,

obstacle influence range major axis r0 = 3 m, minor axis r1 = 1
2 r0 =

1:5 m, and step length l = 0.1 m.
3.3 Simulation test results and analysis

Scenario 1:

In general, the obstacle environment is set as follows: there are n

obstacles, with n=6, and the obstacle positions are X0=[3 0.2; 7 -0.4;

10 0.3; 13 -0.2; 15 0.5; 17 -0.4], the starting position of the robot is

Xs=[0 0.1], and the target position is Xg=[20 0.1].

According to the established path planning evaluation model,

the path quality planned using the different model algorithms under

different scenarios is evaluated. The evaluation data are shown

in Table 1:

The scenario 1 simulation results are shown in Figures 6, 7, and

the experimental results show that both the improved APF method

and the APF method can realize collision-free effective path

planning. Among them, there is slight oscillation in the planned
Frontiers in Plant Science 08
path in Figure 6. There is no oscillation or jitter in the planned path

shown in Figure 7. From Table 1, by comparing the parameters Stotal
and wmax, it is found that the path length planned in Case 2 is the

shortest, wmax is greatly reduced, and the evaluation function VF

value is the largest, so the path planned in Case 2 is shorter,

smoother and better in quality than that planned using the

traditional APF method.

Scenario 2:

In the setting of an obstacle environment with a local minimum,

there are n obstacles, n=6, and the obstacle positions are X0=[3 0.2;

7 -0.4; 13 -0.2; 15 0.5; 17 -0.4; 17 0.5], the starting position of the

robot is Xs=[0 0.1], and the target position is Xg=[20 0.1].

According to the established path planning evaluation model,

the path quality planned using the different model algorithms under

scenario 2 is evaluated, and the evaluation data are shown

in Table 2.

The scenario 2 simulation results are shown in Figures 8, 9, and

the experimental results show that the traditional APF method is

ineffective in path planning. Among them, there is a local minimum

problem in the planned path in Figure 8, and the robot cannot

continue to move to the target position when it falls into a local

minimum. It can be seen from Figure 9 that the Case 2 method can
FIGURE 6

Scenario 1, case 1 test result using the traditional APF method.
TABLE 1 Scenario 1 path planning data quality evaluation under the same environment.

Case fcollision Stotal(m) wmax (°/s) VF

Case 1 1 21.72 72.8 0.0428

Case 2 1 20.34 15.9 0.0505
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realize effective path planning without collision, and in Table 2,

compared with the parameter wmax, the path planned in Case 2 is

smoother and has better quality.

Scenario 3:

In the obstacle environment in the case of boundary collision,

there are n obstacles, n=6, and the obstacle positions are X0=[3 0.2;

5 -0.2; 7 -0.6; 9,-0.9; 10.5 -1.2; 12 -1.5], the starting position of the

robot is Xs=[0 0], and the target position is Xg=[20 0].

According to the established path planning evaluation model,

the path quality planned using the different model algorithms under

different scenarios is evaluated, and the evaluation data are shown

in Table 3.

The scenario 3 simulation results are shown in Figures 10, 11, and

the experimental results show that the traditional APF method is

ineffective in path planning. Among them, the path planned in

Figure 10 has a boundary collision problem, and the robot collides

with the fruit tree boundary during obstacle avoidance, resulting in

obstacle avoidance failure. As seen from Figure 11, the Case 2 method

can realize effective path planning without collision and will not

collide with the fruit tree boundary. Based on the experimental results

and analysis of scenario 3, the designed Case 2 method can not only

effectively realize collision-free path planning, overcome the oscillation

or jitter phenomenon in the path planning process, and effectively

solve the problem that the robot easily falls into a local minimum but
Frontiers in Plant Science 09
also avoid the boundary collision problem in the obstacle avoidance

process and has the best comprehensive performance.
3.4 Real machine test results and analysis

Scenario 1:

In general, in the obstacle environment, the actual layout of

obstacle position information is X0=[4.0 0.6; 8.0 -0.8; 12.0 0.5; 16

-1.0]. The experimental results are shown in Figure 12. Among

them, the dark blue point in the figure is the starting point of the

mowing robot, the green point is the target point, the red points are

obstacles, the black straight line is the orchard boundary, the blue

curve represents the reference path planned based on the improved

APFmethod, and the purple dotted line represents the experimental

results of obstacle avoidance for the real vehicle.

The experimental results of scenario 1 obstacle avoidance

verification are analyzed, and the analysis data are shown in Table 4.

Scenario 2:

When there is a local minimum, the actual obstacle position

information is X0=[4.0 0.2 8.0 -0.8; 16.0 0.7; 16 -0.6]. The

experimental results are shown in Figure 13.

The experimental results of obstacle avoidance verification in

scenario 2 are analyzed, and the analysis data are shown in Table 5.
TABLE 2 Scenario 2 path planning data quality evaluation under the same environment.

Case fcollision Stotal(m) wmax (°/s) VF

Case 1 0 16.92 68.4 0

Case 2 1 20.24 10.1 0.0543
FIGURE 7

Scenario 1, case 2 test result 1 using the improved APF method.
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Scenario 3:

In general, in the obstacle environment, the actual layout of

obstacle position information is X0=[4.0 -0.2; 6.5 0.5; 9.0 1.0; 11.5

-0.6]. The experimental results are shown in Figure 14.

The experimental results of obstacle avoidance verification in

scenario 3 are analyzed, and the analysis data are shown in Table 6.
Frontiers in Plant Science 10
The test results of scenario 1 are shown in Figure 12 and

Table 4. Compared with the planned path, the actual path has a

length of 2.59% and a maximum rotation angle of 22.2%, with a

maximum deviation of 0.137 m in the X direction and 0.051 m in

the Y direction. As shown in Figure 13 and Table 5, the test results

of scenario 2 show that the actual path is 2.3% longer than the
FIGURE 9

Scenario 2, case 2 test result using the improved APF method.
FIGURE 8

Scenario 2, case 1 test result using the traditional APF method.
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FIGURE 10

Scenario 3, case 1 test result using the traditional APF method.
FIGURE 11

Scenario 3, case 2 test result using the improved APF method.
TABLE 3 Scenario 3 path planning data quality evaluation under the same environment.

Case fcollision Stotal(m) wmax (°/s) VF

Case 1 0 13.69 51.95 0

Case 2 1 20.17 6.97 0.0589
F
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planned path, and the maximum rotation angle is 12% smaller, of

which the maximum deviation in the X direction is 0.105 m and the

maximum deviation in the Y direction is 0.048 m. The test results of

scenario 3 are shown in Figure 14 and Table 6. Compared with the

planned path, the actual path length is 2.7% longer and the

maximum rotation angle is 7.1% smaller, of which the maximum

deviation in the X direction is 0.126 m and the maximum deviation

in the Y direction is 0.053 m. The above situation shows that the gap

between the actual path and the planned path is small, and the

maximum displacement error is kept within 0.15 m, which meets

the design needs.

The experimental results show that in an actual orchard

environment, the mowing robot can effectively solve the local

minimum problem and effectively avoid obstacles in the obstacle

environment. The robot successfully completes the path planning

from the initial position and avoids all obstacles to reach the target

position safely. In the actual driving process, due to the influence of

the orchard ground environment, the actual driving path deviates
Frontiers in Plant Science 12
from the planned path, but it meets the control requirements of the

mowing robot within the allowable control error.
4 Conclusion

The artificial potential field method has been widely used in local

path planning because of its simple and real-time characteristics. To

further improve the performance of the algorithm, many scholars have

studied improving the method algorithms. In this study, the following

methods are adopted: by improving the attractive field model, the

problem of colliding with obstacles when the distance is too far and the

attraction is too large is avoided; on the basis of the original repulsive

force field, considering the influence of the relative position and speed

between the target and the robot, a new repulsive function is

introduced, and the repulsive potential field strength of obstacles

near the target is reduced by adding a rotating force, thus solving the

local minimum problem.
FIGURE 12

Real machine obstacle avoidance verification scenario 1.
TABLE 4 Real machine obstacle avoidance verification experimental data analysis.

Path Planning path Actual path

Path length (m) 20.20 20.725

Maximum rotation angle (degree) 5.705 6.972

Maximum relative deviation in x direction (m) 0 0.137

Maximum relative deviation in y direction (m) 0 0.051
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FIGURE 13

Real machine obstacle avoidance scenario 2 verification.
TABLE 5 Real machine obstacle avoidance verification experimental data analysis.

Path Planning path Actual path

Path length (m) 20.12 20.592

Maximum rotation angle (degree) 5.63 4.975

Maximum relative deviation in x direction (m) 0 0.105

Maximum relative deviation in y direction (m) 0 0.048
FIGURE 14

Real machine obstacle avoidance verification scenario 3.
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The actual operation requirements of a mowing robot require path

planning in complex environments. This study combines the

advantages of these two methods, considers the environmental

constraints in an actual orchard, modifies the scope of the

repulsive potential field, and introduces boundary potential field

constraints to ensure that the algorithm can realize planning path

that meets the actual operation requirements of mowing robots.

To address the shortcomings of traditional APF path planning

algorithms, an improved APF path planning algorithm suitable for

orchard mowing robots is proposed. The simulation experiment in

this study can be divided into three parts: first, the robustness of the

improved APF method compared with a traditional APF method is

verified, and the planning path is smoother and shorter. Second, it is

verified that the improved algorithm has a stronger ability to solve

local minimum problems. Finally, an actual orchard working

environment is simulated, and it is verified that the improved

APF method has better adaptability to the orchard environment

and can successfully avoid boundary collisions and complete

obstacle avoidance to reach the target point. At the same time,

according to the scenario set up in the simulation experiment, the

corresponding practical verification experiment of the improved

APF method is carried out. The experimental results verify the

effectiveness and reliability of the improved algorithm. This

provides a new method for the path planning of this kind of

mowing robot working in orchard environments.
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