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biomass production
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and Cornelia Spetea1

1Department of Biological and Environmental Sciences, University of Gothenburg,
Gothenburg, Sweden, 2Department of Biological, Chemical and Pharmaceutical Sciences and
Technologies (STEBICEF), University of Palermo, Palermo, Italy, 3SWEMARC, The Swedish Mariculture
Research Center, University of Gothenburg, Gothenburg, Sweden, 4Department of Life Sciences-
Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
The overall goal of this study was to provide solutions to innovative microalgae-

based technology for wastewater remediation in a cold-water recirculating

marine aquaculture system (RAS). This is based on the novel concept of

integrated aquaculture systems in which fish nutrient-rich rearing water will be

used for microalgae cultivation. The produced biomass can be used as fish feed,

while the cleaned water can be reused, to create a highly eco-sustainable

circular economy. Here, we tested three microalgae species Nannochloropis

granulata (Ng), Phaeodactylum tricornutum (Pt), and Chlorella sp (Csp) for their

ability to remove nitrogen and phosphate from the RAS wastewater and

simultaneously produce high-value biomass, i.e., containing amino acids (AA),

carotenoids, and polyunsaturated fatty acids (PUFAs). A high yield and value of

biomass were achieved for all species in a two-phase cultivation strategy: i) a first

phase using a medium optimized for best growth (f/2 14x, control); ii) a second

“stress” phase using the RAS wastewater to enhance the production of high-

value metabolites. Ng and Pt performed best in terms of biomass yield (i.e., 5-6 g

of dry weight, DW.L-1) and efficient cleaning of the RAS wastewater from nitrite,

nitrate, and phosphate (i.e., 100% removal). Csp produced about 3 g L-1 of DW

and reduced efficiently only nitrate, and phosphate (i.e., about 76% and 100%

removal, respectively). The biomass of all strains was rich in protein (30-40 % of

DW) containing all the essential AA except Methionine. The biomass of all three

species was also rich in PUFAs. Finally, all tested species are excellent sources of

antioxidant carotenoids, including fucoxanthin (Pt), lutein (Ng and Csp) and b-
carotene (Csp). All tested species in our novel two-phase cultivation strategy thus

showed great potential to treat marine RAS wastewater and provide sustainable

alternatives to animal and plant proteins with extra added values.

KEYWORDS

Carotenoids, Chlorella,Nannochloropsis, Phaedactylum tricornum, proteins, PUFA, RAS
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1 Introduction

Over the last 40 years, aquaculture has become one of the

fastest-developing food-production activities worldwide (FAO,

2022). To satisfy the growing demands for fish with high

nutritional values (i.e., high content of proteins and long chain

omega-3 (n-3) polyunsaturated fatty acids, LC n-3 PUFAs), the

aquaculture sector needs sustainable development. Two of the main

current bottlenecks encountered by this industry are the treatment

of the wastes produced by the fish, and the need for fish sustainably

produced feed (Lenzi, 2013).

The intensification of the aquaculture industry mostly using

open-water systems has led to some environmental concerns, such

as the eutrophication caused by the leakage of nitrogen-rich

nutrients into the environment, (Pahri et al., 2015). Land-based

closed containment systems such as recirculating aquaculture

systems (RAS) are better alternatives as they allow for a high

degree of water reuse as well as ensure better control of the

farming practices (Van Rijn, 2013; Ahmad et al., 2021; Ahmed

and Turchini, 2021; Øvrebø et al., 2022).

At present, in RAS, nitrifying bacteria convert the ammonium

(NH +
4 ) produced by the fish into nitrate (NO −

3 ), via nitrite (NO −
2 ),

in the presence of oxygen (O2). As a result, NO −
3 can slowly

accumulate over time and reach concentrations that could affect

the fish’s health and welfare (Camargo et al., 2005; Roques, 2013;

Van Rijn, 2013; Roques et al., 2021). High NO −
3 can later be

managed through the biological conversion of NO −
3 to nitrogen

gas (N2) in anaerobic biofilters with denitrifying bacteria, anammox

bacteria, or by regular water exchanges (Chen, 2002; Preena et al.,

2021; Micolucci et al., 2023). The use of microalgae as a filter could

be a promising alternative or complement to the current water

remediation techniques, and in addition the biomass obtained

could, later, be valorised into animal feed or feed supplements

(Tejido-Nuñez et al., 2019; Tossavainen et al., 2019; Villar-Navarro

et al., 2022).

In the last decades, the demand for fish meal and oils, mainly

produced from the catch of small pelagic fish species, as aquaculture

feedstock has increased tremendously (World Bank, 2013; FAO,

2020). However, the massive use of fish at the base of the marine

food chain has led to increased prices and a shortage of natural fish

stocks. Rapidly, plant-derived protein and oils have therefore been

introduced as fish feed ingredients. However, their utilization is

limited by the presence of a wide variety of anti-nutritional

substances (Francis et al., 2001). In addition, the production of

plant-derived protein and oils for fish feed requires arable lands and

freshwater, which are both limited and could be instead directly

used for human consumption (Hardy, 2010; Flachowsky et al., 2017;

FAO, 2020). Therefore, alternative technologies such as microalgae

cultivation has great potential as an eco-sustainable source of fish

feed (Camacho-Rodrıǵuez et al., 2018).

Microalgae are currently used in the aquaculture sector as live

feed for different marine organisms, such as zooplankton, molluscs,

crustaceans, and some species of fish (Koyande et al., 2019). The

interest for use of microalgae in the food sector is because some

species are as rich in proteins as food sources of animal (e.g., meat,

fish, eggs, and milk) and vegetable origin (e.g., soy, Bleakley and
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Hayes, 2017). Microalgae are also a source of LC n-3 PUFAs (e.g.,

eicosapentaenoic acid, EPA, and docosahexaenoic acid, DHA),

important for both fish and human health. However, the

cultivation and harvesting of large volumes of microalgae, as well

as the extraction of the molecules of interest, are energy-consuming

and expensive processes. For this reason, despite their abundant

presence in nature, to date, only a few marine species are marketed

and used in the food industry as biomass (e.g. including species

from the genus Nannochloropsis, Phaeodactylum, and Chlorella) or

as extracts (e.g., b- carotene, fucoxanthin, EPA, DHA, proteins)

(Sathasivam et al., 2019). Microalgae are also a sustainable

alternative to heterotrophic bacteria and chemicals in wastewater

treatment. Indeed, some microalgae species can convert both

inorganic and organic pollutants from wastewater into high-value

molecules (Samer, 2015).

Here, we investigated the ability of three industrially relevant

microalgae species; Nannochloropsis granulata (Ng), Phaeodactylum

tricornutum (Pt) and Chlorella sp (Csp) to grow in wastewater from a

RAS producing high-value metabolites and at the same time cleaning

the water. Ng and Pt are marine microalgae able to produce biomass

enriched in EPA-rich lipids if grown under specific conditions (Abida

et al., 2015; Villanova et al., 2017; Cheregi et al., 2021; Villanova et al.,

2022). Csp can grow and significantly reduce both inorganic nitrogen

and phosphorus in various types of wastewater (Asadi et al., 2019;

Lima et al., 2020). For this reason, a strain of the genus previously

isolated from a Sicilian coastline Csp was also included in this study

(Arena et al., 2021). Moreover, the three selected species are rich in

high-value carotenoids such as fucoxanthin and b-carotene, whose
concentrations vary with the growth conditions (Arena et al., 2021;

Villanova et al., 2021b; Villanova et al., 2022). A two-phase

cultivation strategy was applied to obtain high-yield and high-

quality biomass. At the end of the 19-22 days cultivation, the

biochemical composition of the biomass and the nutrient removal

efficiency were determined and compared among the strains.
2 Materials and methods

2.1 Microalgal species and
preculture cultivation

The microalgae species used in this study were Ng, Pt, and Csp,

obtained from the Gothenburg University Marine Algal Culture

Collection (GUMACC https://www.gu.se/en/marina-vetenskaper/

about-us/algal-bankgumacc, accessed on 1 March 2023). The

cultures were not axenic, but 100 μg L-1 of ampicillin was added

at the beginning of the cultivation to control the bacterial growth.

Precultures were maintained in 100 mL flasks at 16°C, with a

light intensity of about 20 μmol photons m−2 s−1 and a 12/12 h light/

dark cycle. The medium used was natural seawater collected from a

depth of 30 m at the Tjärnö Research Station (University of

Gothenburg, Strömstad, Sweden) supplemented with 14-fold

concentrated nutrients (f/2 14x) to obtain a high concentration of

biomass (Villanova et al., 2022). The seawater was filtered using two

0.4 μm GF/F glass fibre filters, the salinity was adjusted with

deionized water to 26 practical salinity units (PSU), and it was
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sterilized by autoclaving at 121°C for 20 min. Finally, the nutrient

stock solution from the standard f/2 marine cultivation medium

(NaNO3, NaH2PO4, microelements, vitamins, Guillard and Ryther,

1962) was sterilized with cellulose filter paper (with a pore size of

0.22 μm) and 14 mL of each stock solution was added to 1 L of

autoclaved seawater.
2.2 RAS wastewater

RAS wastewater (10 L, Table 1) was collected from the aquarium

facilities of the University of Gothenburg (Gothenburg, Sweden),

hosting a pilot scale research and development facility for the

development of land-based seawater RAS at low temperatures (ca.

10°C). The fish species in the marine RAS were rainbow trout

(Oncorhynchus mykiss) and Atlantic wolffish (Anarhichas lupus). In

June 2020, the RAS wastewater was first filtered and then stored in 5 L

plastic containers at 4°C until use. A subsample of filtered water was

used for physiochemical characterization. The pH and salinity were

measured using a Multimeter (pHenomenal MU 6100 H, VWR

International, Radnor, PA, USA). The subsample was subsequently

frozen (-80°C) and sent for determination of NH +
4 -N, NO

 −
2 -N, NO

 −
3

-N, and PO 3−
4 -P to an accredited laboratory (Eurofins, Linköping,

Sweden). Table 1 shows the physiochemical characterization of both

RAS wastewater and f/2 14x before algae cultivation. Nitrogen is one

of the most important nutrients for microalgae growth (Abida et al.,

2015) for this reason the same concentration of NaNO3 in f/2 14x was

added to RAS wastewater in one-phase cultivation.
2.3 One-phase cultivation

Ng and Pt were grown in f/2 14x or RAS wastewater added with

14-fold concentrated NaNO3 (14N) using a Multicultivator MC

1000 OD (Photon System Instruments, Drásov, Check Republic) in

flasks containing 80 mL of liquid culture at 22°C with a constant

light intensity of 100 μmol photons m−2 s−1 and with air bubbling.

The cultures were grown in triplicates until the stationary phase was

reached (i.e., 18 days).
2.4 Two-phase cultivation

Ng, Pt, and Csp were grown in the Multicultivator system

described above. A two-phase-cultivation mode was used, which

includes a first phase (phase I) using a medium and conditions for

optimized growth to reach high biomass, and a second phase (phase
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II) using the RAS wastewater and stress conditions to stimulate the

production of secondary metabolites. The experimental design of

the two-phase cultivation is summarized in Figure 1. In phase I, the

cultures were grown in f/2 14x at 22°C and the intensity of the light

(cool white light) was increased over 19-22 days gradually from 100

to 800 μmol photons m-2 s-1, according to the specific algal growth

performance. Phase I ended when the stationary phase was reached

(19-22 days). In phase II, 40 mL cultures from phase I were

inoculated in new flasks containing 40 mL of RAS wastewater. It

contains inorganic nitrogen only in low concentrations and is

relatively high in salinity, factors that can be stressful for

microalgae growth but can produce high concentrations of certain

molecules of interest, e.g., lipids and carotenoids. By contrast the

phosphate concentration was the same in both 14x and RAS

wastewater. These new cultures were grown at the same

temperature as the RAS was maintained (10°C) and at a constant

light intensity of 40 μmol photons m−2 s−1. The experiment ended

when the stationary phase was reached (9-12 days). Four replicates

of Ng and Pt, and two replicates of Csp were grown in parallel.

Algal growth was monitored every two days by measuring

chlorophyll a fluorescence expressed in relative fluorescence units

(RFU), using a Varioscan Flash Multimode Reader (Thermo Fisher

Scientific, Vantaa, Finland), in a 96-well microplate. A total of 250

μL of each sample was added into separate wells of the microplate

(in triplicate) and incubated for 10 min in darkness. Dilutions were

performed when required (i.e., RFU > 30). Chlorophyll fluorescence

was detected using a wavelength of 425 nm for excitation and 680

nm for emission (Cheregi et al., 2021; Villanova et al., 2022). In

addition, the growth of both bacteria and algae was monitored as

absorbance at 750 nm using a Thermo Scientific Evolution 60S UV-

Visible Spectrophotometer (Thermo Fisher Scientific,

Vantaa, Finland).

After the stationary phase was reached in both cultivation

phases, the biomass yield was determined and expressed as g of

dry weight (DW) L-1. A total of 5 mL of final cultures was filtered

through pre-weighted dried GF/F (47 mm) Whatman filters

(Cytiva, Marlborough, MA, USA), and then washed with 10 mL

of 0.5 M ammonium carbonate to remove the excess salt. Finally,

the filters containing the culture were incubated at 100°C for 24 h

and weighed for DW determination according to the following

formula:

DW   (g) =
(weight   (filter + biomass,   in   g)) − (weight   of   filter,   in   g)

0:005   L   (volume   of   filtered   culture)

Moreover, at the end of the two-phase cultivation, cells were

collected by centrifugation and the pellets were immediately freeze-

dried for further analysis.
TABLE 1 Physicochemical characteristics of the RAS wastewater and f/2 14x prior algae cultivation.

Parameter Salinity
(PSU)

pH NH4
+

(mg-N L−1)
NO2

−

(mg-N L−1)
NO3

−

(mg-N L−1)
PO4

3−

(mg-P L−1)

Method Multimeter Multimeter ISO 15923-1:2013 Annex B SS-EN ISO 13395:1997 SS-EN ISO 13395:1997 ISO 15923-1:2013 Annex F

RAS wastewater 34 5.45 0.87 0.0021 100 70

f/2 14x medium 26 8 0 0 1050 70
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2.5 RAS wastewater analysis before and
after cultivation

On the first and last day of growth in phase II cultivation, cells

were centrifuged for 5 min at 4000 g and the supernatant was

collected and filtered. The supernatants were analysed immediately

or preserved at -20°C until analysis.

The total nitrogen (TN) was calculated based on the

concentrations of NH +
4 , NO −

2 , and NO −
3 . Salinity and pH

were measured using a multimeter (pHenomenal MU 6100 H,

VWR International, PA, Radnor, USA). The NH +
4 and NO −

2

concentrations were determined using the powder pillow methods

(salicylate method, 8155, and diazotization method, 8507,

respectively, Hach-Lange, Dusseldorf, Germany) and the DR-2800

(Hach-Lange, Dusseldorf, Germany). The concentrations of (NO −
3

were determined using ion-exchange chromatography (HPLC 20A;

Shimadzu, Kyoto, Japan) with a Shodex Asahipak NH2P-50 4D

anion column (Showa Denko, Tokyo, Japan) and UV-VIS detector

(SPD-20AV, Shimadzu) after filtration of samples through 0.2-mm
pore-size PTFE membranes (Advantec, Tokyo, Japan) (Mojiri et al.,

2020). The detection limits were 0.01, 0.002, and 0.5 mg-N L−1 for

NH +
4 , NO

 −
2 and NO −

3 , respectively. Finally, PO
 3−
4 analysis was done

using a commercial kit (114842 Spectroquant, Merck, Darmstadt,
Frontiers in Plant Science 04
Germany) according to the manufacturer’s recommendations

(detection limit: 0.5 mg-P P L−1). The data are presented as means

± standard deviation of four replicates of the supernatant from Ng

and Pt, and two replicates of Csp and expressed as removal efficiency

relative to the initial nutrient concentration (Table 2).
2.6 Biochemical analysis of the biomass

2.6.1 Protein content and amino
acid composition

Freeze-dried biomass was bead-beaten for 2 min at 30 Hz

(QIAGEN Tissuelyser II, Qiagen, Hilden, Germany) before the

determination of total protein content. The total protein content

of microalgal extracts was then determined by colorimetric analysis

at 750 nm using the DC protein kit (Bio-Rad Laboratories,

Hercules, CA, USA) following a sequential hot trichloroacetic

acid (TCA) and alkaline extraction of the biomass (Slocombe

et al., 2013). For the quantification, a standard curve of bovine

serum albumin in the range of 0.225–1.35 mg L-1 was used.

For the determination of amino acid (AA) content, a known

amount of freeze-dried biomass was resuspended in 4 mL of 6 N

HCl in glass tubes followed by flushing with nitrogen gas for 30 s.
TABLE 2 Removal efficiency of total nitrogen (TN), NH4
+, NO2

−, NO3
− ad PO4

3− at the end of phase II.

Species TN removal (%) NH4
+ removal (%) NO2

− removal (%) NO3
− removal (%) PO4

3−

removal (%)

Nannochloropsis granulata 85.4 ± 11.4 41.2 ± 18.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Phaeodactylum tricornutum 86.7 ± 3.5 27.5 ± 14.8 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Chlorella sp 50.0 ± 2.8 -* -* 75.7 ± 1.4 100.0 ± 0.0
frontiersin.o
Data are presented as means ± standard deviation of two to four biological replicates. *Increase of in the nutrient concentration as compared to the initial condition.
FIGURE 1

Overview of two-phase microalgae cultivation for cleaning of RAS wastewater and production of high-value biomass. Ng, Nannochloropsis
granulata, Pt, Phaeodactylum tricornutum, and Csp, Chlorella sp.
rg
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The samples were then hydrolysed at 110°C for 24 h, after which

they were filtered (syringe filter, PES, 0.2 mm) (VWR, Radnor, PA,

USA) and diluted before AA determination using LC/APCI-MS as

described previously (Forghani et al., 2022). All analyses were

performed in duplicate.

2.6.2 Fatty acid content and composition
Freeze-dried biomass was powdered and put into pre-weighed

furnaced glass tubes. Fatty acids (FAs) were then extracted and

methylated as previously described (Forghani et al., 2022). A known

amount of powdered biomass was suspended in 400 mL of

chloroform, and 200 mL of internal standard (i.e., heptadecanoic

acid 100 mL mL-1) was added to the tubes. Samples were sonicated

on ice for 1 h and transesterification was performed by adding 0.75

mL of HCl/MeOH (5% v/v) and incubating at 90°C for 90 min.

After cooling, FA methyl esters (FAMEs) were extracted by adding

2 mL of hexane and mixing vigorously for 30 s followed by shaking

at 300g for 20 min. The samples were then centrifugated at 2000g

for 5 min and the upper phase was transferred into a clean tube. The

extraction was repeated one more time for increasing the recovery

of FAMEs. After the evaporation of hexane, measurement of

FAMEs was carried out by using an Agilent Technologies 7890 A

GC system connected to Agilent Technologies 5975 inert MSD

(Kista, Sweden). Acquisition, identification, and quantification of

FAME peaks were performed by their comparison with the 37-

component FAME standard mix (Supelco, Bellefonte, PA, USA,

Cavonius et al., 2014) by using Masshunter Quantitative Analysis

software (version B.09.00, Agilent Technologies, Santa Clara, CA,

USA). FA analyses were done in duplicate.

2.6.3 Pigment composition
A known amount of freeze-dried biomass was mixed with 5 mL

of 90% (v/v) acetone in falcon tubes covered with aluminium foil to

prevent light penetration. The samples were ground in a glass

homogenizer and incubated at 4°C for 4 h. After this period, the

samples were centrifuged at 3000 g for 5 min. The supernatant was

filtered using a filter with a pore size of 0.2 μm and used for pigment

analysis. The pigment composition was obtained by using HPLC

coupled with a PDA detector (Villanova et al., 2022). 100 μL of

samples were analysed in a Shimadzu UFLC system (Shimadzu

corporation, Kyoto, Japan) equipped with an Alltima C18 (RP18,

ODS, Octadecyl) 150 × 4.6 mm column. The pigments were eluted

through a low-pressure gradient system constituted by solvent A

with methanol and 0.5 M ammonium acetate buffer (85:15, v/v),

solvent B with acetonitrile and milliQ water (90:10, v/v), and solvent

C with 100% ethyl acetate. The following program was used: 100%

B:0% C: (8 min), 90% B:10% C: (8.6 min), 65% B:35% C (13.1 min),

31% B:69% C (21 min), and 100% B:0% C (27 min). The

identification of pigments was done by comparison of their

retention time and spectra with standards (DHI, Hørsholm,

Denmark) run under the same conditions. The quantification of

the pigment concentration was then obtained by comparing the

area of the corresponding standard. The pigment concentration was

then normalized for freeze-dried biomass and expressed as μg mg-1
Frontiers in Plant Science 05
of DW. Four replicates were processed for Ng and Pt, and duplicates

for Csp were used.

2.6.4 Statistical analysis
The biochemical composition of the biomass was compared

among the different species using a two-way analysis of variance

(ANOVA) test (GraphPad 9.5.1 Software, San Diego, CA, USA). p-

values were used to quantify the variability among the three

different species. Differences were considered significant for p-

values< 0.05.
3 Results

3.1 Microalgal growth in f/2 and
RAS wastewater

The physicochemical characteristics of the RAS wastewater and

f/2 14x before the start of the algae cultivation were different

(Table 1). For this reason, the RAS wastewater composition was

slightly adjusted for optimal algae cultivation and the modified

substrate named RAS wastewater 14N. As nitrogen compounds, the

RAS wastewater contained NH +
4 , NO

 −
2 , and NO

 −
3 , but the latter was

much less abundant than in f/2 14x. Moreover, RAS wastewater

was characterized by lower pH and slightly higher salinity than f/2

14x (Table 1). Therefore, the RAS water was supplemented

with NO −
3 and pH was adjusted to reach the same levels as in f/2

14x. In a one-stage cultivation, Pt and Ng were able to grow in

undiluted RAS wastewater 14N similarly to f/2 14x, which can

be explained by their similar nutrient composition (Table 1) after

a lag phase during the first eight cultivation days (Supplementary

File 1A, B). The biomass yields were similar, but Pt showed a higher

yield than Ng in the tested conditions (i.e., 3 and 2 g DW L-1,

respectively) (Supplementary File 1C).

To reduce the lag phase and produce a high yield and value of

biomass, the three microalgal strains were grown using a two-phase

cultivation strategy. The growth conditions used for the different

species in two-phase cultivation are shown in Figure 2A-C.

Figure 2D-F shows the growth monitored as chlorophyll

fluorescence (RFU) along the cultivation time in the two-phase

cultivation. Ng and Pt grew better than Csp in phase I. Moreover,

after the 1:1 dilution in RAS wastewater in phase II, Ng and Pt

reached a similar RFU as at the end of phase I. In contrast, Csp in

phase II was not able to recover the maximum RFU obtained in

phase I. The dry weight (DW) of the biomass was determined at the

end of phase I and phase II (Figure 2G). Ng and Pt reached

significantly higher DW than Csp (5-6 and 3 g L-1, respectively)

in phase I. Moreover, both Pt and Ng yielded similar DW at the end

of phase II. In contrast, Csp produced only about 2 g DW L-1 after

phase II, confirming previous observations on growth profiles. This

can be explained by the fact that Chlorella species are mostly

freshwater microalgae, hence not adapted to the high salinity of f/

2 and RAS wastewater (i.e., 26 and 34 PSU, respectively) (Darienko

et al., 2019).
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3.2 Biochemical composition of
the biomass

To determine the industrial potential of the tested microalgae

species as fish feed, a biochemical analysis of the biomass collected

at the end of phase II was performed. In particular, to test the

microalgae as an eco-sustainable alternative to terrestrial animal

and plant proteins, the protein content and AA profile were

determined. The biomass of Ng and Csp contained about 40%

protein of DW as compared to 30% in Pt (Figure 3A). The proteins

from the all three species contained all essential AA (i.e., Arginine,

Arg; Histidine, Hys; Isoleucine, Ile; Leucine, Leu; Lysine, Lys;

Phenylalanine, Phe; Threonine, Thr; and Valine, Val) except for

Methionine (Met) and Tryptophane (Trp), the latter, which is not

captured by the applied method. Only slight differences in the

content of essential AA were detected between the three species.

Both Ng and Pt contained Glutamic acid (Glu) and Aspartic acid

(Asp) as main AA, with about 13-14% and 10-11% of the total,

respectively. Csp contained Proline (Pro) and Glu as the main

amino acids, with about 16% and 11 % of the total ,

respectively (Figure 3B).

FA content and profile were also analyzed due to their

importance in both fish and human nutrition. The highest FA

content was obtained in Ng followed by Pt and Csp with about 13, 9,

and 8 % of DW, respectively (Figure 4A). FAs can be classified as
Frontiers in Plant Science 06
saturated (SFAs), monounsaturated (MUFAs), and PUFAs to

indicate the presence of only carbon single bonds, one double

bond, and two or more double bonds respectively. SFAs were

more abundant in Pt and Csp (i.e., about 50% of total FA) as

compared to Ng (i.e., about 30% of total FA). Pt and Ng showed

higher MUFAs (i.e., about 27-28% of the total) than Csp (i.e., about

16% of the total). Finally, Ng showed the highest content of PUFAs

followed by Csp and Pt with 39, 32, and 27% of the total,

respectively (Figure 4B). The FA profile was similar for Ng and Pt

and dominated by C13:0 (i.e., about 13 and 23% of TFA,

respectively), C16:0 (i.e., about 12 and 10 %, respectively), C16:1

(i.e., about 24 and 26%, respectively), and EPA (i.e., 25-30%). The

main FAs in Csp were C16:0 (i.e., about 10% of TFA), C17:1 (i.e.,

about 13%), and alpha-linolenic acid (C18:3 n-3, i.e., about 42%).

Moreover, Pt also contained a low concentration of DHA (about

1%) (Figure 4C). The relative content of n-3 PUFAs was about 30,

26, and 29%, respectively in Ng, Pt, and Csp. The corresponding

percentages of LC n-3 PUFAs (i.e., EPA+DHA) were about 29 and

26%, in Ng and Pt, respectively. LC n-3 PUFAs were not detected

in Csp.

Finally, the pigment content was analyzed as an important

source of antioxidants for stabilization of the microalgae biomass or

products derived thereof. Also, some studies have revealed

importance of antioxidants in animal and human nutrition

(Miyashita et al., 2011; Tan and Hou, 2014; Petrushkina et al.,
A B

D E F

G

C

FIGURE 2

Growth conditions (A–C) and growth curve of (D) Nannochloropsis granulata (Ng, dark green line), (E) Phaeodactylum tricornutum (Pt, brown line),
and (F) Chlorella sp (Csp, light green line) in a two-phase system in Multicultivator. (G) Biomass concentration obtained at the end of phase I and
phase II cultivation in Ng (dark green bar), Pt (brown bar), and Csp (light green bar). Data shown in (D–G) are the means ± standard deviation of four
biological replicates for Ng and Pt, and two biological replicates for Csp. Different letters indicate significant differences among the species (p< 0.05).
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2017; Dawood et al., 2018). Pt had as main pigments chlorophyll a,

fucoxanthin, and b-carotene with about 6, 10, and 0.4 mg per mg of

DW, respectively. Ng was characterized by about 1.5 mg of

chlorophyll a, 0.01 mg of lutein/zeaxanthin, and 0.07 mg of b-
carotene per mg of DW. Ng also showed traces of astaxanthin and

canthaxanthin. Finally, Csp contained chlorophyll a, lutein/

zeaxanthin, and b-carotene as main pigments with about 6, 1,

and 0.3 mg per mg of DW, respectively (Figure 5). Csp also produced

a small amount of astaxanthin. Raw data for all biochemical

analyses are available in Supplementary File 2.
3.3 Nutrient removal from RAS wastewater

To determine the potential of the different microalgae species to

clean the RAS wastewater, the removal efficiency of each nitrogen

compound was calculated at the end of phase II. Ng and Pt

performed best in terms of cleaning the RAS wastewater from

NO −
2 , NO

 −
3 (i.e., 100% removal) as compared to Csp which reduced

about 76% of NO −
3 and none of the NO −

2 . NH
 +
4 was reduced by 41.2

and 27.5% in Ng and Pt, respectively. The concentration of NH +
4

was instead increased in Csp at the end of phase II, indicating some

different nitrogen degradation pathways in Chlorella species. The

sum of nitrogen compounds (NH +
4 , NO

 −
2 , NO

 −
3 ) was not equal to

the total nitrogen (TN) in all the tested samples, indicating that

many organic nitrogen compounds (e.g., protein and AA origin) are

released in the medium by the microalgae. Finally, all tested species
Frontiers in Plant Science 07
efficiently and completely removed all PO 3−
4 contained in the RAS

wastewater (Table 2).
4 Discussion

In this study, we demonstrate the ability of three microalgal

species (i.e., Ng, Pt, and Csp) to grow in RAS wastewater. Our results

are in line with previous studies for Nannochloropsis,

Phaeodactylum tricornutum, and Chlorella species, along with

other species (Sirakov and Velichkova, 2014; Tejido-Nuñez et al.,

2019; Villar-Navarro et al., 2021). However, Pt, Ng, and Csp showed

about 10, 22, and 2.5-fold, respectively, higher biomass productivity

than related species grown in RAS wastewater to date (Table 3).

These results demonstrate the importance of two-phase cultivation

to increase algal production capabilities in terms of high-quality and

quantity of biomass. This novel strategy is based on the concept that

each microalgae species grows best in certain (optimal) conditions,

which however do not necessarily correspond to the conditions for

the highest production of molecules of interest (e.g., PUFAs and

carotenoids). Here, we grew Ng, Pt, and Csp in the following

conditions: i) Phase I: each species was cultivated at 22°C with a

gradual increase along growth to avoid photoinhibition phenomena

(Aléman-Nava et al., 2017; Ali et al., 2021; Karpagam et al., 2022)

and in enriched medium (i.e., f/2 14x); ii) phase II: the cells were

transferred to a medium containing RAS wastewater in stress

conditions (e.g., low nutrients, low temperature, high salinity) to
BA

FIGURE 3

Protein content (A) and amino acid profile (B) of Nannochloropsis granulata (Ng, dark green bar), Phaeodactylum tricornutum (Pt, brown bar), and
Chlorella sp (Csp, light green bar) grown in two-phase system in Multicultivator. Data shown are the means ± standard deviation of four biological
replicates for Ng and Pt, and two biological replicates for Csp. Different letters indicate significant differences among the species (p< 0.05).
B CA

FIGURE 4

Fatty acid content (A), Saturated, monounsaturated and polyunsaturated fatty acid (B) and fatty acid profile (C) of Nannochloropsis granulata (Ng,
dark green bar), Phaeodactylum tricornutum (Pt, brown bar), and Chlorella sp (Csp, light green bar) grown in a two-phase cultivation in
Multicultivator. Data showed are the means ± standard deviation of biological replicates for Ng and Pt, and two biological replicates for Csp.
Different letters indicate significant differences among the species (p< 0.05).
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increase the production of molecules of interest. Similar strategies

were previously used for Nannochloropsis oculata, Pt, and Chlorella

vulgaris resulting in increased lipid and carotenoid productivity

(Sirakov and Velichkova, 2014; Villar-Navarro et al., 2021). To our

knowledge, this is the first time that a two-phase cultivation strategy

was applied for growing microalgae in RAS wastewater. Moreover,

we show that by using this strategy the algal biomass yield can

increase in Ng and Pt by a factor of about 3 and 2, respectively, as

compared to one-phase cultivation (Supplementary File

1C; Figure 2G).

Microalgae are good candidates to partially replace fishmeal and

fish oil in fish feed. For instance, inclusions levels of 7.5-30% of

Nanochloropsis oceanica extracts gave promising results in cold-

water species such as Atlantic salmon (Salmo salar) and spotted

wolffish (Anarhichas minor) (Sørensen et al., 2017; Gong et al.,

2018; Knutsen et al., 2019). However, only a few studies focused on

the biomass composition of microalgae grown in RAS wastewater to

date (Sirakov and Velichkova, 2014; Villar-Navarro et al., 2021).

Here, we determined the content of proteins, AA, FA, and

carotenoids in the biomass derived from phase II cultivation of

Ng, Pt, and Csp to evaluate their potential as alternative sustainable
Frontiers in Plant Science 08
fish feed. We found a higher protein content in all tested microalgae

(30-40% of DW) than previous results obtained in other species or

strains grown in similar conditions (i.e., 14-37% of DW) Cho and

Kim, 2011). However, all these values are significantly lower than

the average protein content found in fish feed (i.e., 60-72%, Cho and

Kim, 2011), calling for downstream up-concentration of the

proteins. This can be done for example with the pH-shift process

commonly applied to e.g. soybeans and peas (Dumoulin et al.,

2021), but also to algae (Cavonius et al., 2015; Trigo et al., 2023). It

is well known that under nitrogen deplete conditions (i.e.,

conditions found in phase II of this work), protein concentration

can be reduced in several microalgae species, explaining our results

(Jia et al., 2015; Canelli et al., 2020; Latsos et al., 2020). Moreover,

the proteins of Pt, Ng and Csp were constituted by almost all

essential AA, confirming previous results for closely related species

(Villar-Navarro et al., 2021; Forghani et al., 2022).

Ng, Pt, and Csp showed higher PUFAs content as compared to

related species when grown in RAS wastewater (Villar-Navarro

et al., 2021; Forghani et al., 2022). The increase in PUFAs can be

explained by the use of low temperatures (i.e., 10°C) during phase II

cultivation, as concentration of PUFAs generally decreases at

increasing temperatures in microalgae, including in Pt (Qiao

et al., 2016; Santin et al., 2021). The biomasses were also rich in

n-3 PUFAs, i.e., 25-30% of FAs were constituted by EPA in Pt and

Ng and by C18:3 n-3 in Csp. These amounts were higher than the

reference values for fish oil, confirming the potential of these

microalgal strains as a substitute for fish feed (Villar-Navarro

et al., 2021).

Finally, the pigment content of the microalgae biomass was

evaluated based on their beneficial effect on animals and humans for

blocking macrophage-mediated inflammation and inflammation-

induced obesity in both in-vivo and in-vitro assays (Tan and Hou,

2014; Petrushkina et al., 2017). Fucoxanthin is the most abundant

pigment carotenoid in diatoms and can make up to 1-2.5 % of DW

(Yi et al., 2015; Guo et al., 2016). A similar fucoxanthin content was

found in Pt in our study and was 3-fold higher than in previous

results for the same species (Villanova et al., 2021b). This finding

can be explained by the use of low light intensity in phase II, often

correlated to an increase in the fucoxanthin content in Pt (Khaw

et al., 2022). Other valuable carotenoids detected in Pt, Csp, and Ng

were b-carotene and lutein/zeaxanthin, confirming previous results

(Serra et al., 2021; Villanova et al., 2022). It is known that b-
carotene concentration content can increase in microalgae
FIGURE 5

Pigment profile of Nannochloropsis granulata (Ng, dark green bar),
Phaeodactylum tricornutum (Pt, brown bar), and Chlorella sp (Csp,
light green bar) grown in a two-phase system in Multicultivator. Data
shown are the means ± standard deviation of four biological replicates
for Ng and Pt, and two biological replicates for Csp. Different letters
indicate significant differences among the species (p<0.05).
TABLE 3 Comparison of microalgal biomass productivity from this study with previous studies in RAS wastewater.

Species Biomass productivity
(mg DW L−1 d−1)

Cultivation condition Reference

Nannochloropsis granulata 270 ± 13 Two-phase cultivation This study

Phaeodactylum tricornutum 225 ± 49 Two-phase cultivation This study

Chlorella sp 105 ± 7 Two-phase cultivation This study

Nannochloropsis gaditana 23 ± 1 Batch cultivation (Villar-Navarro et al., 2021)

Phaeodactylum tricornutum 32 ± 1 Batch cultivation (Villar-Navarro et al., 2021)

Chlorella vulgaris 42.6 Continuous cultivation (Gao et al., 2016)
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cultivated under salt stress (Villanova et al., 2021a). The salinity in

the tested RAS wastewater was only slightly higher than in the

microalgae cultivation medium (Table 1). This can explain why we

did not detect a significant increase in the concentration content of

this carotenoid.

The last part of this work was focused on the determination of

the capability of Ng, Pt, and Csp to remove the nutrients present in

RAS wastewater. In RAS, NH +
4 is oxidized into NO −

3 via NO −
2 by

nitrifying bacteria in a biofilm reactor. All these compounds can

accumulate over time in RAS and if not appropriately managed

through regular water changes or denitrification, may negatively

affect the fish. High NH +
4 is neurotoxic for fish (Wilkie, 2002). NO −

2

converts hemoglobin into methemoglobin, which is not capable to

bind O2 (Russo and Thurston, 1977; Williams and Eddy, 1986).

NO −
3 toxicity is thought to be similar to that of NO −

2 , but to a lower

extent (Stormer et al., 1996; Camargo et al., 2005). As most of the

RAS nowadays are partial RAS (i.e., without denitrification), (NO −
3

can slowly accumulate over time and reach concentrations which

could affect fish health and welfare (Russo and Thurston, 1977;

Wilkie, 2002). High NO −
3 can be managed through the biological

conversion of NO −
3 to nitrogen gas (N2) in anaerobic denitrifying

biofilters, or by regular water exchanges (Williams and Eddy, 1986;

Camargo et al., 2005). The concentration of NH +
4 , NO

 −
2 and NO −

3

measured in our RAS wastewater are quite typical for a

conventional RAS with only nitrification, with NH +
4 values below

1 mg-N L−1, NO −
2 below 0.5 mg-N L−1 and accumulation of NO −

3

up to 100-1000 mg-N L−1 (Brazil et al., 1996; Krumins et al., 2001;

Van Rijn and Ebeling, 2007; Roques, 2013; Ciji and Akhtar, 2020;

Sikora et al., 2022). Our results showed that all three microalgae

species were able to remove efficiently NO −
3 from their

environment. In particular, Pt and Ng were able to completely

remove NO −
3 and NO −

2 and are therefore the two most promising

candidates to treat RAS wastewater. Despite a decent removal

efficiency of NO −
3 (75.7%), Csp did not remove any other

nitrogenous waste compounds, and even increased the

concentration of NH +
4 and NO −

2 . This relatively low performance

could again be linked to the fact that Csp is a mostly freshwater

microalgae species and its performance in this study was probably

affected by the exposure to the relatively high salinity of both f/2 and

RAS wastewater (Darienko et al., 2019). The NH +
4 removal

efficiencies of Pt and Ng were also quite limited (27.5 and 41.2%,

respectively), which was quite expected as NO −
3 seems to be the

preferred substrate of these microalgae. NH +
4 seems to inhibit the

uptake of NO −
3 in Pt (Cresswell and Syrett, 1979). Yongmanitchai

and Ward (1991) used NH +
4 , NO

 −
3 and urea as nitrogen sources for

Pt, showing that the growth was inhibited in the culture

supplemented with NH +
4 alone or in combination with NO −

3 or

urea Nannochloropis species can use either NH +
4 , NO

 −
2 or NO −

3 as

the sole nitrogen source, but NO −
3 and NO −

2 seem to be the

preferred substrates for these species, as introduced NH +
4 acidify

the pH conditions of the medium (Sauer et al., 2001; Liu et al.,

2017). As a result, Pt and Ng are great candidates to remove NO −
3

from marine RAS wastewater, but they should be used in

combination with other treatment solutions to also remove excess

NH +
4 (e.g., nitrifying bacteria).
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To conclude, all species tested in this study showed great

potential as a sustainable alternative to fish oil and meal and as a

source of antioxidants for fish feed. These species also showed great

potential as a multifunctional vegan protein ingredient for various

food products in which also n-3 PUFAs and antioxidants are

wanted. Moreover, the two-phase cultivation can be used as a

strategy to i) increase the productivity and content of high-value

molecules in the biomass of the tested strains, and ii) recycle the

RAS wastewater. Different growth conditions and microbial species

should be tested to further optimize this process.
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SUPPLEMENTARY FILE 1

Growth curve and final biomass of microalgal strains from GUMACC

collection in one-phase cultivation. Growth curve of (A) Phaeodactylum

tricornutum (Pt, brown lines) and (B) Nannochloropsis granulata (Ng, dark
green lines) in f/2 14x (continuous lines) and RAS wastewater 14N (dotted

lines). (C) Final biomass concentration of Ng and Pt grown in both f/2 14x and
RAS wastewater 14N. Data shown are themeans ± standard deviation of three

biological replicates.

SUPPLEMENTARY FILE 2

Biochemical analysis of the biomass produced in phase II cultivation.
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