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Introduction: In their natural environment, microalgae can be transiently
exposed to hypoxic or anoxic environments. Whereas fermentative pathways
and their interactions with photosynthesis are relatively well characterized in the
green alga model Chlamydomonas reinhardltii, little information is available in
other groups of photosynthetic micro-eukaryotes. In C. reinhardtii cyclic
electron flow (CEF) around photosystem (PS) I, and light-dependent oxygen-
sensitive hydrogenase activity both contribute to restoring photosynthetic linear
electron flow (LEF) in anoxic conditions.

Methods: Here we analyzed photosynthetic electron transfer after incubation in
dark anoxic conditions (up to 24 h) in two secondary microalgae: the marine
diatom Thalassiosira pseudonana and the excavate Euglena gracilis.

Results: Both species showed sustained abilities to prevent over-reduction of
photosynthetic electron carriers and to restore LEF. A high and transient CEF
around PSI was also observed specifically in anoxic conditions at light onset in
both species. In contrast, at variance with C. reinhardtii, no sustained
hydrogenase activity was detected in anoxic conditions in both species.

Discussion: Altogether our results suggest that another fermentative pathway
might contribute, along with CEF around PSI, to restore photosynthetic activity in
anoxic conditions in E. gracilis and T. pseudonana. We discuss the possible
implication of the dissimilatory nitrate reduction to ammonium (DNRA) in T.
pseudonana and the wax ester fermentation in E. gracilis.
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Euglena gracilis, Thalassiosira pseudonana, fermentation, photosynthesis, hydrogenase,
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1 Introduction

Some microalgae must cope with long or frequent hypoxic (low
oxygen) or anoxic (no oxygen) events in many natural
environments such as marine sediments, eutrophic standing
shallow waters or ice (Drew, 1997; Banti et al., 2013; Catalanotti
et al,, 2013). This implies that these organisms are endowed with
metabolic capacities such as fermentative pathways and associated
electron acceptors which ensure the maintenance of the energy
balance (ATP, NAD(P)H) in the dark, and in the light to restore
photosynthetic activity. The green unicellular alga Chlamydomonas
reinhardtii is the microalgal species whose fermentative pathways
have been best characterized (Catalanotti et al., 2013). In anoxic
conditions, C. reinhardtii synthesizes formate, acetate and ethanol
as major terminal products (Kreuzberg, 1984; Mus et al., 2007) and
some minor products such as hydrogen, lactate, glycerol and carbon
dioxide (Atteia et al,, 2013; Catalanotti et al., 2013). Three enzymes
allow pyruvate conversion into acetyl-CoA: (i) the pyruvate
dehydrogenase complex in aerobic conditions and (ii) the
pyruvate formate lyase (PFL) and the pyruvate ferredoxin
oxidoreductase (PFO) in anaerobiosis (Catalanotti et al., 2013). In
the chloroplast, PFO generates acetyl-CoA and CO, by oxidative
decarboxylation of pyruvate and generates reduced ferredoxin
(FDX), which can be reoxidized by hydrogenases (HYDA1 and
HYDAZ2), that catalyze proton reduction into H, (Catalanotti et al.,
2013). Under anoxic conditions the excess of reduced equivalents
may also affect photosynthetic linear electron flow (LEF) by
increasing the redox state of pools of electron carriers and
electron acceptors such as plastoquinones (PQ), FDX and
NADPH. In C. reinhardtii, this is reflected by a marked decrease
of variable chlorophyll (chl) fluorescence under anoxic conditions
(Ghysels et al., 2013; Godaux et al., 2013; Clowez et al., 2015). In
addition, a low ATP/NADPH ratio in the chloroplast impairs the
activity of Calvin-Benson-Basham cycle (CBB) and therefore limits
LEF from water to NADPH. In C. reinhardtii, two alternative
photosynthetic electron flows (AEFs) contribute to restoring the
balance of the ATP/NADPH ratio in the chloroplast upon
illumination after acclimation to dark-anoxic conditions: the
oxygen-sensitive HYDA1 hydrogenase that reoxidizes FDX
reduced by photosystem (PS) I (Hemschemeier and Happe, 2011)
and the cyclic electron flow (CEF) around PSI which recycles
electrons from PSI acceptor side to intersystem electron carriers
(PQ or cytochrome bgf complex) (Clowez et al., 2015; Godaux et al.,
2015). In C. reinhardtii, the absence of hydrogenase maturation
factors (HYDG or HYDEF) impairs electron transfer during the
first seconds of illumination under anoxic conditions (Ghysels et al.,
2013; Godaux et al,, 2013). In green plants, PGR5 and PGRLI are
the two main proteins that participate in CEF around PSI
(DalCorso et al,, 2008). In C. reinhardtii, the pgrll mutant
showed an enhanced H, photoproduction (Tolleter et al., 2011;
Godaux et al,, 2015) while the double mutant pgrll hydg cannot
reactivate photosynthesis under anoxic conditions (Godaux
et al., 2015).

A previous genomic survey identified that among the
eukaryotes with secondary plastids, the diatom Thalassiosira
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pseudonana and the excavate Euglena gracilis have the most
pronounced anaerobic capabilities (Atteia et al., 2013). In anoxic
conditions, the excavate Euglena gracilis degrades its reserve
polysaccharide, paramylon (B-1,3-glucan) (Iwasaki et al., 2019)
into myristyl myristate (wax esters) composed of saturated fatty
acids and alcohols with chain lengths of 10-18 (Hoffmeister et al.,
2005; Inui et al., 2017). During this process, a mitochondrial
anaerobic respiration takes place with complex I reducing
rhodoquinone that is reoxidized by fumarate reductase
(Nakazawa et al, 2018). Unlike common fermentation products
described in C. reinhardtii, wax esters are accumulated in cells
instead of being excreted (Inui et al., 1982; Catalanotti et al., 2013).
In addition to wax esters, E. gracilis can produce other fermentative
metabolites such as lactate and succinate (Tomita et al., 2016). E.
gracilis also possesses a mitochondrial pyruvate: NADP"
oxidoreductase (PNO), an enzyme close to PFO (Rotte et al,
2001; Nakazawa et al, 2003). In a work in 1963, a hydrogenase
activity has also been mentioned in E. gracilis without any
supporting data though (Hartman and Krasna, 1963).

In some diatoms, it was previously demonstrated that an
anaerobic respiration pathway called dissimilatory nitrate
reduction to ammonium (DNRA) is active during the first hours
under anoxic conditions (Kamp et al., 2011; Catalanotti et al., 2013;
Kamp et al., 2013; Kamp et al., 2016). Nitrate accumulated at a high
intracellular concentration is reduced into nitrite by Nitrate
reductase (NR) in the cytosol and nitrite is reduced in the
chloroplast into ammonium by a Nitrite reductase (NIR) using
FDX as electron donors. Finally, ammonium is excreted out of the
cell rather than being assimilated (Lomas and Glibert, 2000; Kamp
et al, 2011; Kamp et al, 2013; Kamp et al, 2015). Based on a
genomic data survey in four diatoms (Thalassiosira pseudonana,
Phaeodactylum tricornutum, Fragilariopsis cylindrus and Pseudo-
nitzschia) it was found that only T. pseudonana nuclear genome
also codes for PFO, PFL and HYDAI1 (Atteia et al., 2013).

In E. gracilis and T. pseudonana, this raises the question of the
role of hydrogenase in photosynthetic electron transport under
anoxic conditions. In addition, previous studies indicated that CEF
around PSI is very low in oxic condition in diatoms (Bailleul et al.,
2015) and in E. gracilis (Gain et al., 2021). However, the activity of
CEF under anoxic conditions has never been studied. Therefore, in
this work, we have measured photosystems and hydrogenase
activities of T. pseudonana and E. gracilis in anoxic conditions.

2 Material and methods
2.1 Strains and growth conditions

Axenic strain of Thalassiosira pseudonana (CCMP 1335) is a
gift from Angela Falciatore and Benjamin Bailleul (IBPC, Paris,
France). T. pseudonana was grown under low photosynthetic
photon flux density (PPFD) of 50 umol photons.m 257" [white
light-emitting diode (LED)], 12 h light — 12 h dark) at 18°C, in
artificial sea water (salinity of 33 g.L”") F/2 liquid medium (Guillard
and Ryther, 1962; Guillard, 1975) with silica (Sigma-Aldrich,
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G9903). Axenic strain of Euglena gracilis (SAG 1224-5/25, obtained
from the University of Gottingen; Sammlung von Algenkulturen,
Germany), and axenic strain of Chlamydomonas reinhardtii (C1’
from our collection, derived from 137c strain) were grown under
continuous low light (PPFD of 50 umol photons.m >.s™'; white
LED) at 25°C in Tris-Acetate-Phosphate (TAP) liquid medium
(Hutner et al., 1950; Sueoka, 1960; Gorman and Levine, 1965)
supplemented with a mix of vitamins (biotin 10~ %, B12 vitamin
1077 % and B1 vitamin 2x10™> %) in the case of E. gracilis (Perez
et al.,, 2014), either on solid (1.5% [w/v] agar (Select Agar, Sigma-
Aldrich) or in liquid medium. All cultures were performed under air
(i.e. 21% atmospheric O,). All experiments were conducted with
cells harvested in the middle of the exponential phase of growth.
Cell concentration was determined by a Beckman Coulter Z2
Counter Analyser (Z2; Beckman, Indianapolis, IN, USA) with a
parameter size around 4 um (7. pseudonana), 8 um (C. reinhardtii)
and 15 pm (E. gracilis).

2.2 Methods to achieve anoxic conditions

Liquid cultures were centrifuged (4 min at 4,000 g for T.
pseudonana and 10 min at 1,500 g for E. gracilis) and cell pellets
were resuspended in fresh medium (F/2 for T. pseudonana and TAP
for E. gracilis) at 107 and 10° cells.mL™" for T. pseudonana and E.
gracilis, respectively. Cells were kept in the dark 30 minutes before
inducing anoxia. All steps were performed at room temperature (RT,
22 + 2°C). Erlenmeyer flasks containing cell suspension were
transferred in a homemade closed chamber containing less than 0.1
UM of oxygen and bubbled in the dark with nitrogen gas (N,).
Alternatively, cell suspensions were transferred into sealed 4 mL
polystyrene cuvettes in presence of glucose (10 mM, Sigma-Aldrich),
glucose oxidase (GOX, 2 mg.mLfl, ROTH) and catalase (1000
UmL™, Sigma-Aldrich). Depletion in O, (time 0) was determined
using O, sensor spots and optical fibers from Pyroscience (Aachen,
Germany). GOX activity produces gluconolactone and H,0, from
glucose and O, (Bankar et al., 2009). We found that gluconolactone
addition in oxic conditions inhibits photosynthetic activity of T.
pseudonana (Supplementary Figure S1). Therefore, unless specifically
specified, the N, method was employed to achieve anoxia in this
marine diatom. Oxic condition corresponds to aerated cultures (i.e.
21% atmospheric O,).

2.3 Inhibitors preparation

3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), PSII
inhibitor, was used at a final concentration of 10 uM. Stock
solution of 1 M DCMU was prepared in DMSO. 2-
hydroxyacetaldehyde (glycolaldehyde, GA) was used at a final
concentration of 20 mM. GA dimer powder was solubilized in
water and heated at 65°C for 10 min to obtain 2 M of monomer
(Anderson et al., 2007; Roberty et al., 2014). 3-bromopyruvic acid
(3BP), was used at a final concentration of 2 mM for T. pseudonana
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and 10 mM for E. gracilis. Stock solution of 1 M 3BP was prepared
in water.

2.4 In vivo chlorophyll fluorescence
measurements

In vivo chl fluorescence measurements were performed on cell
suspension, at room temperature (RT, 22 +/- 5°C), with a JTS-10
spectrophotometer (Biologic) with a 640 nm LED source as actinic
light. The effective photochemical yield of PSII (®PSII) was
calculated as (Fyy — Fs)/Fyr and the maximal quantum yield of
PSII (Fy/Fy) was calculated as (Fyy — Fo)/Fy , where Fy is the
fluorescence value of dark-acclimated cells, Fg is the fluorescence
level in response to a given actinic light, and Fy; , Fyp are the
maximum fluorescence level induced by a 150 ms pulse of

2s71). The relative
2

saturating light (3,500 umol photons.m™
Electron Transfer Rate (rETRpgy, pmol electrons.m™ s was
calculated by multiplying ®PSII by PPFD used (Genty et al,
1989). All samples were illuminated only once.

2.5 Measurement of P700 oxidation

P700 oxidation was measured on cell suspension in presence of
10% (w/v) ficoll by using a JTS-10 spectrophotometer (Biologic,
France) at RT as described in Roberty et al. (2014). The quantum
yield of photochemical energy conversion by PSI, was calculated as
(Pm = P)/(Py — Py) (Klughammer and Schreiber, 2008). Py is the
absorption level when P700 is fully reduced, Py is the absorption
level when P700 is fully oxidized in the presence of 10 mM DCMU
(PSII inhibitor) upon saturating continuous illumination, Py is the
absorbance level under continuous illumination, and Py is the
maximal absorption level reached during a saturating light pulse

(3,500 pmol photons.m™>s™"

) on top of the actinic light. The
maximal P700 absorbance change was estimated by using the Py,
value. The relative Electron Transfer Rate (rETRpg, pmol
electrons.m™.s™") was calculated by multiplying ®PSI by PPFD

used. All samples were illuminated only once.

2.6 H, measurement

H, was measured using a hydrogen microsensor (Unisense,
UNISENSE A/S, Denmark). The entire set-up was placed in a
plastic tent (Glas-Col 108D XX-1H Glove Bag, Templeton Coal
Company Inc.) saturated in N, to maintain anoxia. C. reinhardtii, T.
pseudonana and E. gracilis cell suspensions (107, 10” and 10° cells.
mL ™", respectively) were incubated in anoxia during 16 h, and then
transferred into a liquid-phase electrode chamber (DW1/AD,
Hansatech Instruments) at RT for H, measurement. For each
measurement and after stabilization of the signal in the dark, the
slope (linear) was determined after 1 min of illumination (200 pmol
photon.m'z.s'l; RGB LED), during 5 min.
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2.7 Phylogeny analysis

We used sequences of PGRL1, PGR5 of E. gracilis, T.
pseudonana and C. reinhardtii, and of HYDAL of C. reinhardtii
and T. pseudonana to retrieve sequences using homology searches
by BLAST against sequences of the non-redundant protein
sequence database of the NCBI and sequences from other
databases (MMETSP and data publicly available). We retrieved

19and

the top 2000 sequences with an E-value cut-off lower than le~
aligned them using MAFFT with the quick alignment settings
(Katoh and Standley, 2013). Block selection was then performed
using BMGE (Criscuolo and Gribaldo, 2010) with a block size of 3
for PGR5 and PGRL phylogeny and a block size of 4 for HYDAL1
and the BLOSUM30 similarity matrix. We generated preliminary
trees using Fasttree (Price et al, 2010) and “dereplication” was
applied to robustly supported monophyletic clades using
TreeTrimmer (Maruyama et al., 2013) to reduce sequence
redundancy. Then a second tree was obtained using MAFFT and
BMGE with the same settings, and we used this tree to select
manually the final set of sequences. Finally, proteins were realigned
with MUSCLE (Edgar, 2004), block selection was carried out using
BMGE with the same settings as above, and trees were generated
using IQ-TREE with 100 bootstrap repetitions with the
LG4X model.

2.8 Statistical analyses

Experiments were performed with at least two independent
biological replicates. Comparisons between two treatments were
made using two-tailed #-tests, comparisons involving more than two
treatments were made using a one-way ANOVA and the variation
amongst means in relation to treatments was tested by using two-
way ANOVA. All statistical analyses were performed using
Microsoft Excel software with a threshold of significance at 0.95
(p < 0.05).

3 Results

3.1 Distinct chlorophyll fluorescence
signatures in anoxic conditions in E. gracilis
and T. pseudonana

We compared chl a fluorescence kinetics (3 seconds of
illumination at subsaturating light) of E. gracilis and T.
pseudonana cells during dark acclimation under oxic or anoxic
conditions. In oxic conditions, no change in fluorescence curves, or
significant differences in maximal quantum efficiency of PSII (Fy/
Fy) (Figures 1A, B), and relative electron transfer rate of PSII
(rETRpgy;) values could be observed over time in the dark for both
species (Figures 1E-H). In E. gracilis, Fy/Fy; in anoxia is always
slightly reduced (Figure 1E) while rETRpgy is decreased by 31%
from 2 h of anoxia and up to 86% after 24 h (Figure 1G). After 24 h,
this is accompanied by a progressive increase of the fluorescence
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signal during the first seconds of illumination (Figure 1C),
indicating a progressive limitation in the availability of electron
acceptors. In T. pseudonana in anoxic conditions, there is a
progressive decrease of Fy/Fy (from 0.6 in control conditions to
ca. 0.4 after 24 h in anoxia) (Figure 1F). The rETRpgy; after 3 s also
progressively significantly decreases over time in anoxic conditions
(by ca. 40% after 24 h) (Figure 1H). After 24 h, this is accompanied
by a peculiar signature in the fluorescence curves: in a few ms, the
fluorescence signal reaches a maximal transient value which is close
to Fy; and then it decreases (Figure 1D).

3.2 3-Bromopyruvate impairs PSII
activity at the onset of light under
anoxic conditions

After dark anoxic incubation, the occurrence of significant
rETRpgy; after 3 s of illumination in E. gracilis (Figures 1C, G)
and T. pseudonana (Figures 1D, H) reflects the availability of
oxidized photosynthetic electron acceptors, and therefore the
activity of at least one pathway able to reoxidize photosynthetic
electron acceptors in anoxic conditions. To determine if the
availability of oxidized photosynthetic electron acceptors during
the onset of light depends on a catabolic pathway, we tested the
effect of 3-bromopyruvic acid (3BP). 3BP has a large range of
possible targets pertaining to the catabolism (Honer Zu Bentrup
et al., 1999; Shoshan, 2012; Pedersen, 2012; Sprowl-Tanio et al.,
2016). We selected 3BP concentrations (2 mM for T. pseudonana
and 10 mM for E. gracilis) that inhibit after 10 min about 80% of the
dark oxygen consumption rate by the mitochondrial respiration in
oxic conditions (Supplementary Figure S2). In both species,
addition of 3BP under anoxic conditions 10 min before
illumination almost fully abolished Fy/Fy; and rETRpgy (at least
by 80%) while it had a lesser impact on rETRpgy; and Fy/Fy; in oxic
conditions (Figure 2). These results suggest that in both species
resuming photosynthetic chain activity is more dependent on
catabolism under anoxic conditions than in oxic conditions in
both T. pseudonana and E. gracilis.

3.3 No evidence for a sustained
hydrogenase activity in anoxic conditions
in T. pseudonana and E. gracilis

C. reinhardtii tTETRpgy; at the onset of light under anoxic
conditions depends on the activity of an oxygen-sensitive
hydrogenase (HYDAL) that oxidizes FDX, the acceptor of PSI
(Godaux et al, 2013; Godaux et al, 2015). When turning our
attention to hydrogenase phylogeny, no gene coding related to C.
reinhardtii HYDA1 hydrogenase could be identified in E. gracilis. A
search performed with the sequences of other hydrogenases (Ni-Fe
and Fe-only hydrogenases, from Hydrogenovibrio marinus
(KDN94743.1) and C. reinhardtii (AAR04931.1), respectively) also
yielded no result. The only sequence found was a protein closely
related to the NAR (nuclear architecture related) protein family
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FIGURE 1

(A-D). Representative chlorophyll fluorescence kinetics obtained with 3 seconds illumination (185 umol photons.m™.s%) after 1 h and 24 h of
incubation in dark oxic (A, B) or dark anoxic (C, D) conditions in E gracilis (A, C) and in T. pseudonana (B, D). Maximal fluorescence values (Fy) were
normalized to 1. (E—-H). Photosynthetic parameters in function of the incubation times in anoxic (grey) or oxic (black) conditions for E gracilis and T.
pseudonana: Fy/Fu(E, F) and rETRps; measured after 3 s of illumination at 185 umol photons m=2 s~ (G, H). For E gracilis, anoxia was induced by the
GOX method. For T. pseudonana, anoxia was induced by N, bubbling except for TO for rETRpg; [(H) GOX]. Data are presented as mean + standard
deviation (SD). All measurements were performed for three biological replicates (n=3). Vertical bars indicate the SD and different letters represent the

statistical differences between conditions (Anova I, p < 0.05)

(EG_transcript_7200). In contrast, a sequence related to C.
reinhardtii hydrogenase HYDA1 is found in T. pseudonana
(B8CGB6_THAPS) and in a limited number of other
Coscinodiscophyceae representatives such as Cyclotella
meneghiniana and Skeletonema marinoi while grouping strongly
with high bootstraps value (BS=100) with different bacteria
(Proteobacteria). We were however unable to retrieve clear,
expected, taxonomic groups (Figure 3), questioning vertical
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evolution of mechanisms linked to hydrogen. In both E. gracilis
and T. pseudonana cells maintained in anoxic conditions, max H,
evolution rates were around 5 pmol min™' ug chl™ and they did not
increase upon subsequent illumination under anoxic conditions.
These values were not different from the values measured in dark
oxic conditions (Figure 4). In C. reinhardtii, used as a control, H,
evolution rate was also very low in dark anoxic or oxic conditions
(ca. 6 pmol min™ pg chl™). However, in C. reinhardtii in anoxic
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Time (h) of dark incubation

Impact of 3-bromopyruvic acid (3BP, 10 mM for E. gracilis and 2 mM for T. pseudonana) on Fy/Fy (A, B), and rETRpg) (3s illumination at 185 pmol
photons.m 2571 C, D) in function of dark incubation under oxic (control, black and white) or anoxic (grey) conditions on E. gracilis (A, C) and T.
pseudonana (B, D). Data are presented as mean + SD. All measurements were performed for three biological replicates (n=3). 3BP (anoxic solution)
was added 10 min before illumination. Different letters represent the statistical differences between conditions (Anova I, p < 0.05).

conditions, as expected (Godaux et al., 2013), it strongly increased
during subsequent illumination, at about 2.5 nmol min™ pg chl™
and almost 90% of this H, evolution rate in the light was inhibited
in the presence of DCMU (Figure 4).

3.4 The increase in PSII activity
depends on the reactivation of CBB
under anoxic conditions

In parallel to measurement of in vivo H, evolution in
continuous light, we monitored rETRpgy. In E. gracilis and in T.
pseudonana we observed a progressive increase of rETRpgy; which
saturates at similar values after several minutes of illumination in
both oxic and anoxic conditions (Figure 5). In E. gracilis, despite the
low initial rETRpg;; in anoxia, the kinetics of reactivation are similar
to the one in oxic condition (i.e. half-maximum rate is achieved
after 30-60 s) (Figure 5A). In T. pseudonana, there is a short lag (<
30 s) before rETRpgy; increases in anoxia (Figure 5B). After 24 h in
anoxia, this delay is associated with a slower reactivation compared
to the oxic conditions (Figure 5B).

In C. reinhardtii, such an increase of rETRpg; is due to the
reactivation of the Calvin-Benson-Bassham (CBB) cycle (Cournac
et al., 2002; Godaux et al., 2015). To determine if it is also the case
for E. gracilis and T. pseudonana, we first tested the effect of
different concentrations of glycolaldehyde (GA), reported to
inhibit the last enzymatic step of the CBB cycle
(phosphoribulokinase), on photosynthetic electron transfer
capacity in oxic conditions. In E. gracilis, despite
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phosphoribulokinase is present (Petersen et al., 2006), addition of
GA (up to 100 mM) had no effect on photosynthesis in oxic
conditions (Supplementary Figure S3A) and was therefore not
tested in anoxic conditions. In T. pseudonana, the higher is the
GA concentration, the higher is the inhibition of photosynthetic
activity (Supplementary Figure S3B). On light-acclimated cells in
oxic conditions, the addition of GA (20 mM) led to inhibition of
24% of rETRpgy; under low light (185 pmol photons.m’z. s") and up
to 72% of rETRpsy; under high light (2840 umol photons.m™.s7")
(Supplementary Figure S3C). Addition of 20 mM GA was then
added on T. pseudonana cells acclimated during 24 h to anoxic
conditions in the dark and it fully prevented the increase of rETRpgy;
during 10 min continuous illumination in anoxic conditions
(Figure 6A). GA addition also partly inhibited rETRpgy; after 3 s
of illumination in oxic conditions, while it had a lesser effect, or no
effect on the rETRpg; after 3 s of illumination in anoxic
conditions (Figure 6B).

3.5 PSl is more active than PSII at the onset
of light in anoxic conditions

In C. reinhardtii, the reactivation of the CBB cycle from dark
anoxic conditions requires CEF around PSI in addition to
hydrogenase activity (Godaux et al, 2015). To determine if CEF
around PSI occurs in anoxic conditions in E. gracilis and
T. pseudonana, we compared the values of rETRpg and rETRpgyy in
oxic and after 24h of anoxic conditions (Figure 7). After 30 s of
illumination, the ratio between rETRps; and rETRpgy is higher in
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FIGURE 3

Hydrogenase (HYDA1) phylogenetic tree. The tree is midpoint rooted and represents the tree obtained with maximum likelihood approach. We used
IQTREE under the LG4X model and performed bootstraps analysis with 100 bootstraps repetition. Bootstrap values > 50% are mapped into the
nodes. The scale bar shows the inferred number of amino acid substitutions per site. Sequences are highlighted in grey for Bacteria, in brown for
Stramenopila, purple for Haptophyta, light green for Viridiplantae, red for Rhodophyceae, light blue for Glaucophyta while other eukaryotes are in
black. Sequences of C. reinhardtii and T. pseudonana are in bold.

anoxic conditions (3.4 * 0.1 for E. gracilis and 4.9 + 1.4 for
T. pseudonana) than in oxic conditions (0.9 + 0.1 for E. gracilis and
1.5 £ 0.1 for T. pseudonana). After 5 min of illumination, this ratio
significantly decreased in anoxic conditions in both species (1.8 + 0.1
for E. gracilis and 1.5 + 0.5 for T. pseudonana) while it remained stable
in control conditions. These values suggest that in both species, CEF
around PSI is active in anoxic conditions. In green plants, the main
proteins involved in CEF are PGRL1 and PGR5 (DalCorso et al, 2008).
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We conducted a phylogenetic analysis to identify putative PGRL1 and
PGRS5 orthologous genes in E. gracilis and in T. pseudonana.
(Figure 8). The presence of E. gracilis (HBDM01013327), T.
pseudonana (TP04G05420), and C. reinhardtii (CR07G05890)
indicates a conservation of PGRLI in those lineages. We also
observe in T. pseudonana (TP04G06740) an orthologous gene of C.
reinhardtii PGR5 (CR05G02540) while no clear PGR5 could be
retrieved in E. gracilis.
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4 Discussion

In their natural environment, some microalgae can be exposed
to hypoxic or anoxic environments. In the model green alga C.
reinhardtii, light-dependent oxygen-sensitive hydrogenase activity,
and cyclic electron flow around photosystem I, both contribute to
restoring photosynthetic linear electron flow in anoxic conditions
(Godaux et al,, 2013; Godaux et al., 2015). In this work, we analyzed
photosynthetic electron transfer after incubation in dark anoxic
conditions in T. pseudonana and E. gracilis, two model microalgae
species that possess canonical fermentative enzymes (Atteia et al,

2013), but also peculiar fermentative pathways (Nakazawa et al.,
2003; Kamp et al,, 2011; Kamp et al.,, 2015; Iwasaki et al., 2019). In
both species, PSII activity measured as its relative electron transfer
rate (rfETRpgyr) was low at the onset of light after acclimation in the
dark under anoxic conditions, but increased progressively
(Figure 5), reflecting an increase of photosynthetic LEF. In the
primary green alga C. reinhardtii increase of LEF in these
conditions depends on the reactivation of the CBB cycle
(Cournac et al.,, 2002; Ghysels et al., 2013; Godaux et al., 2015).
In green plants, addition of glycolaldehyde (GA), inhibits
phosphoribulokinase, an essential enzyme of the CBB cycle, and
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Relative electron transfer rate (rETRps) kinetics during continuous illumination (185 pmol photons.m 2573 for different anoxic incubation times,
compared to oxic control (dark adapted for 1 h) in E gracilis (A) and T. pseudonana (B). Data are presented as mean + SD; at least two biological
replicates. Different letters represent the statistical differences between conditions (Anova I, p < 0.05).
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therefore the photosynthetic electron transport rate (Sicher, 1984;
Takahashi and Murata, 2005). In T. pseudonana after 24h in anoxic
conditions, addition of GA prevents the increase of PSII activity
upon continuous illumination conditions (Figure 6A). Despite GA
may have side effects on other enzymes (see e.g. Jayakody et al,
2011) these results strongly suggests that increase of PSII activity is
due to resuming of CBB activity in T. pseudonana. Kinetics of
activation in both T. pseudonana and E. gracilis are similar to those
observed in C. reinhardtii (Takahashi and Murata, 2005; Godaux
et al., 2015) and in the cyanobacteria Aphanocapsa (Pelroy et al.,
1976). In this respect, the significant inhibitory effect of GA on PSII
activity after 3 s of illumination in oxic conditions in T. pseudonana
(Figure 6B) and the absence of lag in PSII activity increase in oxic
conditions in both T. pseudonana and E. gracilis (Figure 5)
reinforces the idea that CBB cycle is activated very fast in these
microalgal species. In contrast, the minor effect, or the absence of
effect of GA on the initial activity of PSII in anoxia in T. pseudonana
(3s, Figure 6B) suggest that the initial PSIT activity (3s) is
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independent of the CBB cycle activity in anoxia and therefore
relies on another electron sink.

4.1 Cyclic electron flow around PSI is
active in anoxia and may contribute to
resuming photosynthetic activity

In C. reinhardtii, two alternative electron pathways, namely
HYDALI, a Fe-Fe hydrogenase that accepts electrons at the acceptor
side of PSI, and CEF around PSI, are also required to resume
photosynthesis (Godaux et al, 2015). In E. gracilis and T.
pseudonana, rETRpg; is much higher than rETRpgy; at onset of light
under anoxic conditions (Figure 7). In green plants, including C.
reinhardtii, this observation is usually interpreted as a large fraction
of PSI operating independently of PSII, and therefore contributing to
CEF (Godaux et al., 2015; Fan et al, 2016). Our results therefore
indicate that CEF around PSI is large but transient under anoxic
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conditions, whereas in comparison it could be very weak in oxic
conditions in both T. pseudonana and E. gracilis. This is in line with our
previous studies indicating that CEF around PSI is very low in oxic
condition in diatoms (Bailleul et al., 2015) and in E. gracilis (Gain et al.,
2021). CEF is also higher in anoxic conditions than in oxic conditions
in C. reinhardtii (Alric, 2010), suggesting that the mechanisms behind
LEF and CEF partitioning may be broadly shared in photosynthetic
eukaryotes. In this respect, the main proteins involved in CEF in green
plants, PGRL1 and PGR5 (DalCorso et al, 2008), have orthologs in T.
pseudonana and at least PGRL1 has an ortholog in E. gracilis (Figure 8).
In addition, in E. gracilis two gene sequences (HBDMO01044504,
HBDMO01072671) are related to PGR proteins (Figure 8).

4.2 Very low hydrogenase activities in
T. pseudonana and E. gracilis

Based on a previous genomic survey, a gene coding for a
hydrogenase was identified in T. pseudonana (Atteia et al, 2013). It
belongs to the same [FeFe] hydrogenase family that is present in green
algae such as C. reinhardtii (Figure 3). We show here that this enzyme is
shared only by Coscinodiscophyceae among diatoms. This points to an
independent lateral gene transfer (LGT) between specific diatoms and
bacteria, but the direction is unclear (Figure 3). From a functional point
of view, this could, in case of LGT from bacteria to diatoms, correlate
with special activities or different use in T. pseudonana compared to C.
reinhardtii. In this respect, HYDEF and HYDG, two maturation factors
required for HYDAI maturation in C. reinhardtii have not been found
in the genome of T. pseudonana (Atteia et al., 2013), further supporting
the idea that the T. pseudonana [FeFe] hydrogenase does not share a
common role with C. reinhardtii HYDAL. In E. gracilis, no HYDA
hydrogenase could be identified but only a protein related to the NAR
protein family. NAR protein family most probably evolved from an
ancestral Fe-hydrogenase and are known to not produce hydrogen
(Hackstein, 2015). H, evolution was barely detectable in both T.
pseudonana and E. gracilis. These values were also not significantly
different between oxic and anoxic conditions, and more specifically not
stimulated by light in anoxic conditions (Figure 4). The maximal H,
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evolution rates in vivo measured here for C. reinhardtii are in good
agreement with previous values measured in subsaturating light (0.25 to
0.58 nmol Hz.min’l.pg chl™) (Tolleter et al., 2011; Clowez et al., 2015;
Godaux et al, 2015) or in saturating light (ca 2 nmol H,.min.ug chl™)
(Meuser et al,, 2012; Godaux et al., 2013). Overall, this makes the role of
a hydrogenase putative activity in T. pseudonana and E. gracilis in
photosynthetic electron transfer very unlikely. In this respect, C.
reinhardtii, hydrogenase-deficient mutants impaired in HYDG or
HYDEF maturation factors of HYDA1 are however still able to
resume photosynthesis provided that CEF around PSI operates
(Ghysels et al., 2013; Godaux et al, 2015). In C. reinhardtii, several
oxidases directly connected to the photosynthetic electron transfer chain
(e.g. Flavodiiron protein or Plastidial Terminal Oxidase) have also been
described as electron valves for photosynthetic electrons when O,
released by PSII becomes available (Cardol et al, 2010; Godaux et al,
2015; Burlacot et al, 2018). Still, C. reinhardtii oxidases do not
contribute to the very initial PSII activity at the onset of light
(Godaux et al,, 2013). Indeed, as in other green algae (Kessler, 1973;
Schreiber and Vidaver, 1974), PSII activity during the first seconds of
illumination after an anoxic incubation in the dark strictly depends only
on HYDAI expression (Forestier et al., 2003; Godaux et al., 2013). This
strongly suggests that in T. pseudonana and E. gracilis at least one O,-
independant alternative electron sink is also active under anoxic
conditions and contributes to the observed LEF at the onset of

light (Figure 5).

4.3 Candidate alternative photosynthetic
electron sink under anoxic conditions

At variance with C. reinhardtii (Godaux et al., 2013; Clowez et al.,
2015), a residual rETRpg;; under anoxic conditions can be measured as
soon as oxygen is depleted (time “0” in Figures 1G, H). This result
agrees with previous results obtained in E. gracilis and in P.
tricornutum, another diatom (Shimakawa et al., 2017), and suggests
that the electron sink is already present in oxic conditions. In both T.
pseudonana and E. gracilis, the decrease of rETRpgy; capacity at light
onset over time under anoxic conditions in the dark (Figures 1G, H)
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suggests that the capacity of the unknown electron sink(s) decreased.
In T. pseudonana, this is accompanied by a progressive decrease of Fv/
FM (Figures 1D, F), suggesting that the PSII acceptor pool (Q,, PQ) is
more reduced, probably due to an increase of reducing power in the
stroma. In addition, PSIT activity at light onset is abolished in presence
of 3BP to a larger extent in anoxic conditions in both species
(Figure 2). 3BP is not a specific inhibitor and may inhibit the
glyceraldehyde-3-phosphate dehydrogenase, the hexokinase II,
isocitrate lyase, some monocarboxylate transporters and directly or
indirectly some respiratory enzymes in other species (Honer Zu
Bentrup et al., 1999; Shoshan, 2012; Pedersen, 2012, Sprowl-Tanio
et al,, 2016). Thus, our results suggest that the capacity of this initial
photosynthetic electron sink in anoxic condition may depend on a
catabolic pathway, and maybe be related to glycolysis and/or some
fermentative pathways.

Under anoxic conditions, E. gracilis degrades paramylon, a $-1,3-
glucan-type polysaccharide (Barsanti et al., 2001), into wax-ester (Inui
etal, 1982; Yamada et al,, 2019). This pathway is active when anoxia is
reached because wax esters are already detected after 5 min in anoxic
conditions (Inui et al., 1982), and it involves a mitochondrial anaerobic
respiration (Nakazawa et al., 2018). In anoxic conditions, reducing
equivalents are shuttled from cytosol into mitochondria to generate
mainly NADPH (Nakazawa et al., 2021). Therefore, in E. gracilis we
hypothesize that the export of reducing power out of chloroplasts into
mitochondria occurs under anoxic conditions and contributes to the
observed electron sink at light onset to prevent over-reduction of the
photosynthetic apparatus. In Thalassiosira pseudonana, nitrate
reduction to ammonium by the ferredoxin-NIR (NIR1) activity of
the DNRA pathway (Kamp et al,, 2011; Kamp et al,, 2013) has all the
characteristics to correspond to the initial photosynthetic electron sink
identified in this work under anoxic conditions, i.e. part of the electrons
released at PSIT may be used for nitrate reduction during dark/anoxic-
to-light transition. Ammonium is excreted out of the cell rather than
being assimilated (Lomas and Glibert, 2000; Kamp et al., 2011; Kamp
et al, 2013; Kamp et al, 2015). In Thalassiosira weissflogii and
Amphora coffeaeformis, nitrate concentration decreases by half after
2 h and 6 h, respectively, under anoxic conditions (Kamp et al,, 2011;
Kamp et al, 2013). DNRA is also already active in oxic conditions
where this pathway acts as a photosynthetic electron sink to prevent an
over-reduction of the photosynthetic apparatus in high light conditions
or during an irradiance shift (Lomas and Glibert, 2000; Lomas et al,,
2000). In that respect, the rate of NH," release in T. weissflogii in the
light reaches 150 fmol NH," h™" cell at 20°C (Lomas et al,, 2000), i.e.
0.5 nmol NH," min™" pg chl™! assuming a chl content of 5 pg per cell
(Walter et al, 2015), a value of the same magnitude as the rate of
oxygen evolution (ca. 4 nmol O, min™ pg chl™) reported for T.
weissflogii in oxic conditions (Goldman et al., 2017).

5 Concluding remarks

In conclusion we have observed in T. pseudonana and E. gracilis
that resuming photosynthetic activity under anoxic conditions is
possible even in absence of an active hydrogenase. This suggests the
presence of anaerobic alternative electron flow with a similar role
than C. reinhardtii hydrogenase, which helps to prevent an over
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reduction of the photosynthetic apparatus and optimizes the CBB
reactivation at the onset of light. Further phylogenetic analyses are
required to fully understand the diversity and origins of these
pathways. In addition, the characterization of the spectrum of
fermentation products of these complex algae as well as of
photosynthesis regulation under these conditions are still poorly
studied compared to other model algae. The study of these
organisms may lead to surprising discoveries like original
anaerobic pathways (i.e. DNRA, wax esters) which can be
important for the physiology and the ecology of these algae, but
also from a biotechnological point of view with the production of
valuable compounds (e.g. wax esters).
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