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Climate change due to global warming is now affecting agricultural production

worldwide. In rice, one of the most important crops, water limitation due to

irregular rainfall in rainfed lowlands during crop growth limits yield. Dry direct-

sowing has been proposed as a water-efficient approach to cope with water

stress during rice growth, but poor seedling establishment due to drought during

germination and emergence is a problem. Here, we germinated indica rice

cultivars Rc348 (drought tolerant) and Rc10 (drought sensitive) under osmotic

stress induced by PEG to elucidate mechanisms of germination under drought.

Rc348 had higher germination rate and germination index under severe osmotic

stress of −1.5 MPa, above those of Rc10. Rc348 showed up-regulated GA

biosynthesis, down-regulated ABA catabolism, and up-regulated a-amylase

gene expression in imbibed seeds under PEG treatment compared to that of

Rc10. During germination, reactive oxygen species (ROS) play important roles in

antagonism between gibberellic acid (GA) and abscisic acid (ABA). Embryo of

Rc348 treated with PEG had significantly greater expression of NADPH oxidase

genes and higher endogenous ROS levels, together with significantly increased

endogenous GA1, GA4 and ABA contents compared to that of Rc10. In aleurone

layers treated with exogenous GA, expression of a-amylase genes was higher in

Rc348 than in Rc10, and expression of NADPH oxidase genes was enhanced with

significantly higher ROS content in Rc348, suggesting higher sensitivity of GA to

ROS production and starch degradation in aleurone cells of Rc348. These results

suggest that the osmotic stress tolerance of Rc348 is due to enhancement of

ROS production, GA biosynthesis, and GA sensitivity, resulting in a higher

germination rate under osmotic stress.
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1 Introduction

Rice (Oryza sativa L.) is one of the most important staple crops,

feeding a third of the world’s population. It is produced mainly in

Asia, largely in flooded conditions. Increasing demand for rice

production and diminishing rainfall due to climate change

profoundly affect rice production, for which reliable irrigation is

crucial (Vries et al., 2010). Rainfed lowland covers more than 30%

of rice cultivation areas globally and in major rice producing

countries (Matloob et al., 2015; Gadal et al., 2019). However,

weather fluctuations due to climate change in recent years and

the irregular rainfall in rainfed lowlands, often delay transplantation

(Ohno et al., 2018). Prolonged water stress during the transition

from vegetative stage to reproductive stage delays heading and

significantly reduces yield (Pantuwan et al., 2002). To cope with

water stress in rice, dry direct-sowing (DDS) has been proposed as a

water-efficient approach, since it uses much less water than

transplantation into puddled fields (Haefele et al., 2016). DSS

method has been adopted in many countries (Shekhawat et al.,

2020), which more than 25% of total rice production in tropical

regions in Asia, and more than 90% of rice cultivated areas in the

United States and Sri Lanka depend on DDS (Kumar and Ladha,

2011; Subedi et al., 2019). DDS is a promising approach for rainfed

rice cropping, using less labor and having no need for irrigation or

seedling preparation (Hayashi et al., 2007; Kato and Katsura, 2014).

However, it faces problems of weed infestation and poor seedling

establishment if drought occurs during germination and emergence

(Yamane et al., 2017; Ohno et al., 2018).

Germination is a crucial developmental stage and is regulated

by many factors, including the phytohormones gibberellic acid

(GA), which induces germination, and abscisic acid (ABA), which

suppresses germination (Liu et al., 2010; Ishibashi et al., 2012;

Jacobsen et al., 2020). Biosynthesis of GA involves many catalytic

enzymes, including ent-kaurene acid oxidase (KAO), GA 20-

oxidase (GA20ox), and GA 3-oxidase (GA3ox) (Hedden and

Phillips, 2000). ABA is synthesized by the enzyme 9-cis

epoxycarotenoid dioxygenase (NCED) and is biodegraded by a

cytochrome P450 monooxygenase or ABA 8’-hydroxylase (ABA8′

OH) (Millar et al., 2006). Reactive oxygen species (ROS) as

developmental and stress-signaling molecules are also involved

via an ‘oxidative window’, wherein ROS homeostasis regulates

germination (Bailly et al., 2008). ROS produced by NADPH

oxidases during seed imbibition induce the production of GA and

inhibit ABA to promote germination, which ROS homeostasis is

important for abiotic stress responses via phytohormone signaling

in many species (Oracz et al., 2007; Bailly et al., 2008; Ishibashi et al.,

2010; Ishibashi et al., 2012; Ye et al., 2012; El-Maarouf-Bouteau

et al., 2015; Shi et al., 2020; Wu et al., 2020). To degrade stored

starch, the production of a-amylases, starch-hydrolyzing enzymes,

are regulated by GA and ABA signaling factors such as GAMYB

(GA-induced MYB-like transcription factor) and PKABA (ABA-

induced protein kinase ABA-responsive protein kinase) which

induces and inhibits expression of a-amylases, respectively, in

cereal aleurone layers (Gubler et al., 1999; Gomez-Cadenas et al.,

2001; Kaneko et al., 2002; Woodger et al., 2003; Ishibashi et al.,
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2012). Under osmotic stress caused by polyethylene glycol (PEG),

a-amylase activity is inhibited, and germination is impaired

(Bialecka and Kepczynski, 2010; Muscolo et al., 2013).

Indica rice Rc348 is a newly released drought-tolerant DDS

cultivar that has a higher seedling emergence rate than the common

and widely grown drought-sensitive cultivar Rc10, resulting in

higher yield under drought stress on farm experiments in the

Philippines (Yamane et al., 2017; Ohno et al., 2018). Both

germination ability and seedling establishment are crucial for

later growth and development (Yamane et al., 2017; Ohno et al.,

2018). Although many studies have suggested drought-tolerant

traits and cultivars for DDS cropping, the molecular mechanisms

underlying drought responses of tolerant cultivars, especially in

germination, are not yet well studied.

Here, we focused on germination ability of Rc348 under

osmotic stress. We aimed at elucidating how different rice

cultivars respond to osmotic pressure, an important component

of drought stress, at the transcriptional, hormonal, and ROS levels

during seed imbibition.
2 Materials and methods

2.1 Plant materials and growth conditions

Three-week-old seedlings of indica rice (Oryza sativa L.) cvv. Rc348,

Rc10, Rc420, Rc222, andDular were transplanted into 1/2000-aWagner

pots (5 plants per pot) with 32.8 g of basal dressing compound fertilizer

(N–P–K: 4%–4%–4%) and 3.2 g of sigmoid-type controlled-release

coated urea. Topdressing of 1.88 g of ammonium sulfate (21% N) per

pot was applied during the tiller development stage and the panicle

booting stage. Plants were grown under natural conditions at Kyushu

University, Fukuoka, Japan, from mid-May to late-October in 2019.

Anthesis, the day when spikelets on the upper primary rachis branches

flowered on >50% of the population, was set as the day of flowering (0

DAF; days after flowering). Plants were harvested at 49 DAF. Harvested

seeds were dried at room temperature for 1 week and stored at −30°C to

maintain dormancy. Seed morphology of all cultivars are shown in

Supplemental Figure 1.
2.2 Seed germination test under osmotic
stress and exogenous chemical treatments

Seeds of all cultivars underwent dormancy break treatment at 45°

C in the dark for 2 weeks to ensure a uniform degree of seed

dormancy. Seeds were rested at room temperature for 1 h, sterilized

in 0.2% NaClO for 20 min and washed thoroughly in sterilized

distilled water; 30 seeds were placed in 9-cm Petri dishes with 10

mL of sterilized distilled water (control) or −0.5, −1.0, or −1.5 MPa of

PEG 4000 solution (Nacalai Tesque inc., Kyoto, Japan) to germinate at

28°C in the dark. Germination rates were recorded every 6 h until 144

h after imbibition (HAI). A seed was recorded as germinated when

shoot length was ≥0.2 cm. The germination index of each sample was

calculated as described by Coolbear and Grierson (1984).
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In the experiment with exogenous GA and ABA, embryoless

half-seeds were imbibed in 10 mL of 1 µM GA3 in −1.5-MPa PEG

solution on a filter paper in a Petri dish at 28°C in the dark, with or

without 5 µM ABA, and transcript levels of GAMYB, SAPK, a-
amylase, and NADPH oxidase genes were analyzed at 24 HAI and

endogenous ROS content was measured at 36 HAI.

In the GA sensitivity experiment, embryoless half-seeds were

imbibed in 10 mL of 1 µM GA3 in −1.5-MPa PEG solution on a

filter paper in a Petri dish at 28°C in the dark and sampled at 36

HAI for endogenous hydrogen peroxide content measurement.

In the experiment with exogenous sodium ascorbate, seeds were

imbibed in 10 mL of -1.5 MPa PEG or 5, 15 and 25 mM of sodium

ascorbate dissolved in -1.5MPa PEG solution. Germination

percentage, gene expression and endogenous hormonal levels

were analyzed at 84 HAI.

Seeds were imbibed with 6 mL of -1.5 MPa PEG supplied with

exogenous 100 mMDiphenyleneiodonium chloride (DPI) or 10, 20,

and 50 mM H2O2 with equal amount of DMSO to that of DPI

solution. Germination rates were recorded with the same

methods above.
2.3 RNA extraction and quantitative real-
time PCR analysis

Total RNA from whole seeds, embryos, and embryoless half-

seeds was extracted from frozen materials by the SDS/phenol/LiCl

method (Chirgwin et al., 1979). cDNA was synthesized from

extracted RNA with ReverTra Ace reverse transcriptase (Toyobo

co., Ltd., Osaka, Japan) according to the manufacturer’s

instructions. Quantitative real-time PCR was performed on a CFX

Connect Optics Module Real-time PCR detector system (Bio-Rad)

with SYBR Green dye (Toyobo) as described in the manufacturer’s

instructions. PCR thermal cycling conditions were as follows: initial

denaturation at 94°C for 2 min; 40 cycles of denaturation at 94°C for

20 s, annealing at a primer-specific temperature for 20 s (Table S1),

and extension at 72°C for 20 s; followed by melting and plate

reading. The data were normalized to the expression of OsActin.
2.4 Endogenous GA and ABA contents

Endogenous GA1, GA4, and ABA contents in embryos imbibed

in −1.5-MPa PEG at 72 HAI were analyzed by LC-MS/MS (Exion

LC and X500B, AB Sciex) as described by Xin et al. (2020). Three

biological replicates were measured, each comprising embryos from

300 seeds. Isotope internal standards of GA1, GA4, and ABA were

purchased from OlChemIm (Olomouc, Czech Republic).
2.5 NADPH oxidase enzyme activity

Embryos of 30 seeds from Rc348 and Rc10 (−1.5 MPa PEG at

48 HAI) were ground into fine power with liquid nitrogen. Ice cold
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2 mL of Na-phosphate buffer (pH 8.0) was added to the sample and

the contents were mixed and sonicate for 15 s prior to

centrifugation at 16,000 g for 15 min at 4°C. Crude embryo

homogenates were precipitated with acetone (9:1, acetone:

homogenate) at −30°C for 15 min. Precipitated proteins were

collected from centrifugation at 12,500 rpm for 10 min at 4°C.

Protein pallets were resuspended in reaction buffer (50 mM Tris-

HCl pH 8.0, 0.1 mMMgCl2, 0.25 M sucrose and 0.1% Triton-X100)

and used for enzyme activity assay. The reaction of NADPH-

dependent superoxide generation was measured using NBT (nitro

blue tetrazolium chloride) at 530 nm in a spectrophotometer

(Gynesys 40, Thermofisher Scientific) as previously described

(Van Gestelen et al., 1997; Sarath et al., 2007; Ishibashi et al.,

2010). Monoformazan concentrations were calculated using an

extinction coefficient of 12.8 mM-1 cm-1.
2.6 Endogenous hydrogen
peroxide content

Embryos of 20 seeds imbibed in −1.5-MPa PEG and embryoless

half-seeds imbibed in 1 µM GA1 in −1.5-MPa PEG were sampled at

24 and 36 HAI, respectively. Samples were snap-frozen in liquid

nitrogen and stored at −80°C before analysis. Samples were

homogenized in 2 mL of 0.2 M perchloric acid on ice and

centrifuged at 13,000 rpm at 4°C for 15 min. Supernatant (0.5

mL) was mixed with 0.5 mL of 4 M KOH, and samples were

centrifuged at 1000× g at 4°C for 5 min. The H2O2 content was

measured by peroxidase-based assay as described by Ishibashi et al.

(2015) and O’Kane et al. (1996).
2.7 Statistical analysis

Statistical analyses in this study were performed in SPSS

statistical software version 28.0.0.0 (IBM). Differences among

treatments were analyzed by one-tailed Student’s t-test and

Tukey’s test with biological replications described in figure legends.
3 Results

3.1 Delayed germination under
osmotic stress

Imbibition of seeds of all five cultivars in PEG suppressed

germination in a concentration-dependent manner (Figure 1A).

Under severe osmotic pressure of −1.5 MPa, Rc348 had the fastest

germination and the highest final germination rate of about 50%,

whereas those of the other cultivars were ≤20%. Rc348 had a

significantly higher GI than the other cultivars at all PEG

concentrations, and about double that of the other cultivars

at −1.5 MPa (Figure 1B). Therefore, we used this PEG

concentration in all other experiments.
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3.2 Expression of GA and ABA related
genes in imbibed seeds under
osmotic stress

As a reference, we chose the widely grown drought-tolerant

cultivar Rc348 and drought-sensitive cultivar Rc10 within all

examined cultivars (Supplemental Figure 1). We analyzed

transcript levels of GA- and ABA-metabolism-related genes and

contents of GA and ABA in seeds during imbibition at 24, 48 and 72

HAI. Among genes for GA biosynthesis, despite the significantly

lower expression of OsKAO in Rc348 at 48 HAI (1/1.9×), and no
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significant difference in OsGA3ox2 expression, Rc348 had

significantly higher OsGA20ox1 expression at 48 HAI (3.0× that

of Rc10), and marginally higher at 24 HAI. Significantly higher

OsGA3ox1 expression of Rc348 compared to that of Rc10 at 24 HAI

(2.1×) and 48 HAI (2.1×) was also observed (Figure 2). Transcript

levels of OsGA3ox2 remained stable and showed no significant

difference over time in both cultivars.

Among genes for ABA biosynthesis (OsNCEDs), OsNCED1 and

OsNCED3 expression gradually increased from 24 to 72 HAI in

both Rc10 and Rc348 under osmotic stress. On the other hands,

changes of OsNCED5 expression overtime from 24 to 72 HAI were
B

A

FIGURE 1

(A) Germination rates and (B) germination index of five indica rice cultivars under osmotic stress imposed by PEG. Control, germination in distilled
water. Values with the same letter within a treatment are not significantly different at P < 0.05 by Tukey’s test (n = 5).
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barely observed. Rc10 had significantly higher OsNCED1 and

OsNCED5 expression at 24 HAI. Rc348 showed higher expression

of OsNCED3 and OsNCED5 at 48 HAI, together with marginally

higher expression of OsNCED1 and OsNCED3 at 72 HAI

(Figure 3A). Despite no change in OsABA8’OH1 expression,

Rc348 had significantly lower OsABA8’OH3 expression at 24 HAI

(1/2.4×) and 72 HAI (1/2.2×). Overall, with fluctuations during

germination time course of ABA biosynthesis genes, significant

downregulation of OsABA8’OH3 for ABA catabolism in Rc348 was

observed (Figure 3B).
3.3 NADPH oxidase gene expression, ROS
and hormone contents in embryos under
osmotic stress

Since GA and ABA are known to be regulated by ROS in

embryos, we then analyzed the transcript levels of nine NADPH

oxidase genes (Respiratory burst oxidase homologs, OsRbohs) in

embryos during imbibition in −1.5-MPa PEG at 48 HAI

(Figure 4A). Expression of OsRbohA, OsRbohC, OsRbohF,

OsRbohG, OsRbohH, and OsRbohI was significantly higher in

Rc348 than in Rc10 (Figure 2A); OsRbohH had the highest

transcript level in OsRbohs (2.8× that in Rc10). NADPH oxidase

activity in embryos of Rc348 was also 2.0× significantly higher than
Frontiers in Plant Science 05
that in Rc10 (Figure 4B), resulting in significantly enhanced

endogenous ROS content in Rc348 embryos for 3.1× that in Rc10

(Figure 4C). These results show that osmotic stress enhanced

NADPH oxidase gene expression and increased ROS content in

Rc348 embryos. We also showed that inhibition of NADPH oxidase

by DPI significantly reduced germination rate of Rc348, where

exogenous H2O2 significantly improved Rc10 seed germination

under −1.5-MPa PEG (Supplemental Figure 2), suggesting the

role of ROS on seed germination under osmotic stress. We also

analyzed endogenous GA1, GA4 and ABA in imbibed embryos at 72

HAI. Rc348 had significantly higher content of endogenous GA1

(1.9×), GA4 (1.9×), and ABA (2.0×) than Rc10, which is explained

by upregulated GA biosynthesis and downregulated ABA

catabolism transcript levels during imbibition in Rc348 seeds

under osmotic stress (Table 1). Since enhanced endogenous ROS

stimulated GA production without decreasing ABA content to

promote germination in Rc348, exogenous sodium ascorbate

(AsA), an antioxidant to decrease endogenous ROS, was applied

to elucidate the role of ROS on GA and ABA production under

osmotic stress in Rc348 (Supplemental Figure 3). As a result,

exogenous AsA significantly reduced germination rate in dose

dependent manner under −1.5 MPa PEG (Supplemental

Figure 1A). Despite no obvious change in ABA metabolism gene

expression, Rc348 seeds imbibed with 25 mM AsA showed

significantly reduced expression of GA biosynthesis, OsGA20ox1
FIGURE 2

Relative expression of GA biosynthesis genes at 24, 48, and 72 HAI during seed imbibition under osmotic stress imposed by −1.5 MPa PEG.
Significant differences: *P < 0.05, **P < 0.01 by Student’s t-test (n = 3).
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(1/4.3×) and OsGA3ox2 (1/33.8×) compared to that of −1.5 MPa

PEG only during imbibition (Supplemental Figure 3B−C).

Consequently, endogenous GA1 content was significantly reduced

by exogenous AsA, while ABA and GA4 content remained

unchanged (Supplemental Figure 3D−F). Thus, these results

suggest that enhancement of ROS rather induce GA production

than inhibiting ABA to promote seed germination in Rc348 under

osmotic stress.
3.4 a-Amylase gene expression in imbibed
seeds under osmotic stress

a-Amylase is induced by GA and suppressed by ABA in cereal

aleurone cells (Woodger et al., 2003). During seed imbibition, the

expression of a-amylase genes (OsAmy1A, OsAmy1C, OsAmy3B,

and OsAmy3E) is induced by GA, and they are highly expressed in

rice endosperm after imbibition (Chen, 2006). We analyzed the

expression of these genes in imbibed seeds during germination

under osmotic stress (Figure 5). Rc348 had significantly higher a-
amylase gene expression than Rc10 at 48 HAI (OsAmy3B, 4.8×;

OsAmy3E, 2.6×) and 72 HAI (OsAmy1A, 1.6×; OsAmy1C, 3.4×;

OsAmy3B, 1.8×; OsAmy3E, 1.5×). These results suggest that a-
amylase upregulation during imbibition of Rc348 seeds facilitates

germination under osmotic stress.
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3.5 Responses of starch degradation and
ROS accumulation in aleurone cells to
exogenous GA and ABA

Rc348 imbibed seeds had significantly higher expression of a-
amylase genes (Figure 5). In aleurone cells, the expression of

GAMYB and its downstream target a-amylase is induced by GA

and suppressed by ABA through PKABA induction (Gomez-

Cadenas et al., 2001; Woodger et al., 2003; Ishibashi et al., 2012).

It has been shown that rice SAPK8 and SAPK10 of SAPK family

genes in rice are orthologous to PKABA1 in barley, which

expression of both is induced by ABA (Li et al., 2007). We

investigated the effects of exogenous GA with/without of ABA on

GAMYB, PKABA and a-amylase gene expression in aleurone cells

at 24 HAI (Figure 6). Exogenous GA alone significantly increased

expression of OsGAMYB (1.3×) relative to level in Rc10

(Figure 6A). Presence of exogenous ABA inhibited the expression

of OsGAMYB in both Rc348 and Rc10, however, the expression was

significantly increased in Rc348 (1.4×) relative to levels in Rc10.

Exogenous ABA induced the expression of OsSAPK8 and

OsSAPK10 in aleurone cells. Despite no change between Rc348

and Rc10 in OsSAPK10 expression, Rc348 showed significantly

reduced expression of OsSAPK8 (1/1.5×) compared to level in

RC10. Exogenous GA alone significantly increased expression of

a-amylase genes (OsAmy1A, 4.9×; OsAmy1C, 4.2×; OsAmy3B, 9.5×;
B

A

FIGURE 3

Expression of (A) ABA biosynthesis and (B) ABA catabolism genes at 24, 48, and 72 HAI during imbibition under osmotic stress imposed by −1.5 MPa
PEG. Significant differences: *P < 0.05, **P < 0.01 by Student’s t-test (n = 3).
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OsAmy3E, 6.1×) relative to levels in Rc10 (Figure 6A). a-amylase

gene expression was also increased by GA even in the presence of

ABA in Rc348 (3.9×, 4.1×, 7.3×, and 4.6×, respectively). Therefore,

the suppressive effect of ABA was countered by the inductive effect

of GA on signaling and starch degradation in aleurone cells of

Rc348. GA induces RboH gene expression to regulate a-amylase

activity in barley aleurone cells (Ishibashi et al., 2015). We analyzed

the transcript levels of NADPH oxidase genes in aleurone cells

treated with exogenous GA and found that OsRbohA, OsRbohD,

OsRbohE, OsRbohG, and OsRbohI expression (Figure 6B) and

endogenous ROS levels in aleurone cells (Figure 6C) were
Frontiers in Plant Science 07
significantly higher in Rc348 than in Rc10. These results suggest

that Rc348 also had higher sensitivity to exogenous GA in terms of

ROS induction in aleurone cells.
4 Discussion

We propose that Rc348, a newly developed drought-stress-

tolerant cultivar bred for DDS (Yamane et al., 2017; Ohno et al.,

2018), gains its capacity for a high germination rate under osmotic

stress via the regulation of ROS and phytohormones. Loss of
B C

A

FIGURE 4

Expression of rice NADPH oxidases, NADPH oxidase enzyme activity, and endogenous hydrogen peroxide content in embryos in −1.5 MPa PEG. (A)
Relative expression of OsRbohA to OsRbohI at 48 HAI. (B) Endogenous NADPH oxidase activity and (C) hydrogen peroxide content in embryo at 48
HAI. Significant differences: *P < 0.05, **P < 0.01, ***P < 0.001 by Student’s t-test [n = 3 for A, n = 4 for (B, C)].
TABLE 1 Endogenous GA1, GA4, and ABA contents in imbibed seeds under osmotic stress imposed by −1.5 MPa PEG.

Cultivar GA1 content(pg/seed) GA4 content (pg/seed) ABA content (pg/seed)

Rc348 0.185 ± 0.053 0.550 ± 0.129 8.840 ± 1.824

Rc10 0.099 ± 0.037 0.293 ± 0.114 4.391 ± 2.134

Student’s t-test (n=3) P=0.046* P=0.031* P=0.026*
Values are means ± SD of 3 biological replicates. Significant differences by Student’s t-test.
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function of NADPH oxidase of osrbohb mutant results in reduced

osmotic stress tolerance due to lower levels of ROS and ABA

contents in rice seedlings and resulted in impaired seed

germination (Shi et al., 2020). In plants, Rboh genes not only

function in responses to stress signaling and development (Kaur

and Pati, 2016; Suriyasak et al., 2017; Chapman et al., 2019), but also

promote germination (Muller et al., 2009; Ishibashi et al., 2010;

Ishibashi et al., 2015; Kai et al., 2016; Ishibashi et al., 2017). After

imbibition, ROS produced in seeds induce GA and inhibit ABA

production to initiate germination (Liu et al., 2010; Ishibashi et al.,

2015). We showed that Rc348 had the highest ability to germinate

under a severe osmotic stress of -1.5 MPa, when compared to other

cultivars tested. ROS induce production of GA (which promotes

germination) and inhibit production of ABA (which suppresses

germination) (Oracz et al., 2007; Ishibashi et al., 2012; El-Maarouf-

Bouteau et al., 2015; Ishibashi et al., 2015). In barley embryos

treated with diphenylene iodonium chloride (DPI), an NADPH

oxidase inhibitor, endogenous GA was significantly reduced while

ABA was enhanced resulting in inhibited germination (Ishibashi

et al., 2015). In our results, we observed increased ROS content

together with higher endogenous GA1, GA4 and ABA contents in

Rc348, which were due to up-regulated OsGA20ox1, OsGA3ox1 and

OsNCED3 , and down-regulated OsABA8 ’OH3 . For ABA

biosynthesis, previous studies have reported that OsNCED1 plays
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a role in salinity stress response (Zhang et al., 2022) and heat stress

tolerance (Zhou et al., 2022), where OsNCED3 expression is highly

induced by PEG and other osmotic stresses, contributing to ABA

accumulation for stress responses (Huang et al., 2018). Here, we

observed overall increase in OsNCED1 and OsNCED3 expression

overtime upon germination under osmotic stress in both cultivars.

This suggests the possibility of ABA accumulation due to osmotic

stress response in both cultivars. For OsNCED5, we could not

observe obvious difference between cultivars from 24 to 72 HAI,

which might be due to that its expression drops rapidly after

imbibition and stays at the same basal level from 18 HAI onward

(Suriyasak et al., 2020). Additionally, OsABA8’OH3 expression in

Rc348 was lower than that in Rc10 under osmotic stress. High

endogenous ABA level in RC348 under osmotic stress might be

attributed to the OsABA8’OH3 expression. For GA biosynthesis, we

did not observe change in OsGA3ox2 expression over time, which

might be due to its rapid peak at the very early stage of imbibition as

reported in previous study (Kaneko et al., 2002), whereas

OsGA20ox1 expression peaks at the later phase of germination

(Liu et al., 2014). A previous study has shown that expression of GA

biosynthetic genes, including OsGA20ox1 and OsGA3ox1, was

suppressed by ABA in rice (Ye et al., 2012). In our study,

enhancement of endogenous ABA did not inhibit expression of

OsGA20ox1 and OsGA3ox1 in Rc348 under osmotic stress. Our
FIGURE 5

Relative expression of a-amylase genes at 24, 48, and 72 HAI during imbibition under osmotic stress imposed by −1.5 MPa PEG. Significant
differences: *P < 0.05, **P < 0.01, ***P < 0.001 by Student’s t-test (n = 3).
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results showed that enhanced ROS rather promote GA than act to

suppress ABA in Rc348. To explain this phenomenon, we observed

that exogenous sodium ascorbate (AsA), an antioxidant,

significantly inhibited seed germination of Rc348 via suppressing

GA biosynthesis genes, OsGA20ox1 and OsGA3ox2, rather than

affecting ABA metabolism genes (Supplemental Figure 3A−C).

Consequently, endogenous GA1 level in seeds was not detected by

AsA treatment, without affecting endogenous ABA and GA4

contents (Supplemental Figure 3D−F), which confirmed our

results that enhancement of ROS mainly induces GA production

to promote germination under osmotic stress of Rc348.
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Additionally, drought-tolerant maize and Medicago sativa L.

seedlings accumulated more endogenous ABA in leaves under

osmotic stress induced by PEG than drought-intolerant seedlings

(Yao et al., 2019; Liu et al., 2022). Since ABA is known to

accumulate under osmotic stress and enhance stress responses

(Kuromori et al., 2018), in this study also, enhancement of ABA

under osmotic stress in Rc348 might be involved in osmotic stress

tolerance, with better seedling establishment under drought, as

described in our previous study (Yamane et al., 2017).

In cereal aleurone cells, GAMYB is a transcription factor that is

upregulated by GA and downregulated by ABA (Gomez-Cadenas
B C

A

FIGURE 6

Induction of GA and ABA signaling and NADPH oxidase genes in aleurone layers under osmotic stress. (A) Relative expression of OsGAMYB,
OsSAPK8,10, and a-amylase genes at 24 HAI in aleurone layers of embryoless seeds in −1.5 MPa PEG + 1 µM GA or −1.5 MPa PEG + 1 µM GA + 5 µM
ABA. (B) Relative expression of NADPH oxidase genes at 24 HAI in −1.5 MPa PEG + 1 µM GA. (C) Endogenous hydrogen peroxide content in aleurone
layers of embryoless seeds at 36 HAI in −1.5 MPa PEG + 1 µM GA. In A, values with the same letter are not significantly different at P < 0.05 by
Tukey’s test (n = 3). (B, C) Significant differences: *P < 0.05, **P < 0.01 by Student’s t-test (n = 3 for A, B, n = 4 for C).
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et al., 2001; Washio, 2003; Woodger et al., 2003; Ishibashi et al.,

2012), and binds to GARE boxes in a-amylase promoters to induce

starch degradation (Kaneko et al., 2002). Osmotic stress reduces a-
amylase activity and thus impairs germination (Muscolo et al.,

2013). Here, we showed that Rc348 gains its osmotic tolerance via

upregulation of a-amylase gene expression in aleurone cells due to

higher endogenous bioactive GA levels in embryos under osmotic

stress. In aleurone cells of Rc348, expression of both GAMYB and

a-amylase genes was highly induced by exogenous GA, suggesting

its higher responses to GA than Rc10’s. In barley aleurone cells,

PKABA induced by ABA inhibits GAMYB and a-amylase

expression (Ishibashi et al., 2012). Here we showed that ABA

induction of SAPK8 was significantly lower in Rc348 aleurone

cells. Consequently, GAMYB and a-amylase induction in

aleurone cells was still significantly higher in Rc348 than in Rc10

even in the presence of exogenous ABA, suggesting the importance

of enhanced GA signaling in Rc348 for starch degradation to fuel

germination. We previously showed that GA stimulates NADPH

oxidase gene expression for ROS production in aleurone layer of

barley seed, which inhibits PKABA to promote a-amylase

expression (Ishibashi et al., 2012; Ishibashi et al., 2015). Rc348

also had higher sensitivity than Rc10 to exogenous GA in terms of

higher Rboh expression and endogenous ROS content in aleurone

cells, which consequently led to a-amylase induction in aleurone

cells via up-regulation of GAMYB and down-regulation of PKABA.

Despite an increase in endogenous ROS contents in both embryos

and aleurone cells, expression patterns of OsRboh genes differed
Frontiers in Plant Science 10
between the two: OsRbohH was expressed mainly in embryos, while

OsRbohA, OsRbohG, and OsRbohI were highly expressed in GA-

treated aleurone. In summary, the osmotic stress tolerance in seed

germination of Rc348 is caused by enhancement of ROS

production, GA biosynthesis, and GA sensitivity (Figure 7).
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