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Plant nucleotide-binding and leucine-rich repeat (NLR) proteins are immune

sensors that detect pathogen effectors and initiate a strong immune response. In

many cases, single NLR proteins are sufficient for both effector recognition and

signaling activation. These proteins possess a conserved architecture, including a

C-terminal leucine-rich repeat (LRR) domain, a central nucleotide-binding (NB)

domain, and a variable N-terminal domain. Nevertheless, many paired NLRs

linked in a head-to-head configuration have now been identified. The ones

carrying integrated domains (IDs) can recognize pathogen effector proteins by

various modes; these are known as sensor NLR (sNLR) proteins. Structural and

biochemical studies have provided insights into the molecular basis of heavy

metal-associated IDs (HMA IDs) from paired NLRs in rice and revealed the co-

evolution between pathogens and hosts by combining naturally occurring

favorable interactions across diverse interfaces. Focusing on structural and

molecular models, here we highlight advances in structure-guided engineering

to expand and enhance the response profile of paired NLR-HMA IDs in rice to

variants of the rice blast pathogen MAX-effectors (Magnaporthe oryzae AVRs and

ToxB-like). These results demonstrate that the HMA IDs-based design of rice

materials with broad and enhanced resistance profiles possesses great

application potential but also face considerable challenges.
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1 Introduction

Rice (Oryza sativa) is one of the three main cash crops

worldwide and a staple food of more than half the world’s

population. However, rice production is constantly threatened by

diseases. Magnaporthe oryzae that causes rice blast, also known as

“the cancer of rice,” was ranked first in the top 10 list of fungal plant

pathogens, annually destroying enough rice to feed more than 200

million people for a year (Dean et al., 2012; Fisher et al., 2012;

Savary et al., 2019). Therefore, identifying effective approaches to

reduce rice yield loss is a clear ongoing need to secure rice supplies

and meet the high global demand for food.

Plants differ from animals because they lack circulating immune

cells for the interception of microbial signals. Therefore, during

their interactions with microbes, plants depend on the cell-

autonomous innate immune system of each individual cell to

sense and respond to the signaling molecules of microbes. The

activation of plant defense responses is triggered by the recognition

of invading organisms by immune receptors. However, when

pathogens evolve strateges to interfere with host defenses, the

immune system is rendered nullified. The ensuing failure of the

plant immune system allows further ingress of invading pathogens,

resulting in disease susceptibility in plants (Lapin and Van den

Ackerveken, 2013).

Molecular mechanisms of plant–pathogen interactions have

demonstrated that most nucleotide-binding and leucine-rich

repeat (NLR) domains are crucial downstream components of

host resistance (Ausubel, 2005; Jones and Dangl, 2006; Jacob

et al., 2013; Böhm et al., 2014; Zhang et al., 2022). Plants possess

several R genes, most of which encode NLR receptors, and serve

important functions, such as molecular exchange and signal

transduction in the regulation of immune responses, biological

stress, and apoptosis (Collier and Moffett, 2009; Jacob et al., 2013;

Bernoux et al., 2016). However, the continuous evolution of virulent

strains of pathogens hinders the management of gene-for-gene

diseases such as rice blast caused by M. oryzae. Several strategies

have been developed to consider resistance erosion, including

genetic engineering of R genes. In recent years, many researchers

have confirmed that several NLR proteins contain non-canonical

integrated domains (IDs), which recognize avirulence (AVR)

effectors and trigger immune responses. In particular, the heavy

metal-associated (HMA) IDs in rice have been targeted as

candidate-engineering elements for anti-rice blast. Therefore, a

deep understanding of the molecular mechanisms of plant–

pathogen interactions and further exploration and use of plant

immunity for disease control are crucial to promote the sustainable

development of green agriculture. In this review, we discuss the

immune systems of plants and distinctive structures of NLR pairs.

We also highlight the progress made in exploiting the structural

basis of interactions between paired NLR-HMA IDs of rice and

MAX-effectors (M. oryzae AVRs and ToxB-like) for R gene

engineering. Finally, we discuss the prospects that need to be

addressed to pave the way for the development of broad-race,

spectrum-resistant cultivars.
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2 Plant immune system

With the co-evolution of hosts and host-adapted microbes,

plants have developed diverse immune strategies to combat

microbial pathogens (Eitas and Dangl, 2010; Yang et al., 2013). In

the prepenetration phase, the cell wall is the first natural physical

and defensive barrier of plants and is known to exert basal immune

responses. Once pathogens are recognized, cell wall-associated

defense appears to operate via the inhibition of fungal cell wall-

degrading enzymes, secretion of fungitoxic peptides and

phytoalexins, and cell wall strengthening (Hückelhoven, 2007).

When pathogens enter host cells, a crosstalk between classical

pathogen-associated molecular pattern (PAMP)-triggered

immunity (PTI) and effector-triggered immunity (ETI) is

coordinated to initiate immune responses (Böhm et al., 2014;

Zipfel, 2014). Signaling initiated by pattern recognition receptors

(PRRs) and NLR proteins leads to overlapping downstream cellular

responses, including defense gene expression, production of

reactive oxygen species (ROS), and callose deposition, which may

cause local cellular suicide and prevent further growth of biotrophic

pathogens (Jones and Dangl, 2006; Tsuda and Katagiri, 2010).

On the cell surface, receptor-like kinases (RLKs) and receptor-

like proteins (RLPs) function as PRRs that act in the first tier of the

plant immune system to respond to PAMPs (Boller and Felix,

2009). The extracellular domains (ECDs) of PRRs are highly

diverse, and PRRs can be subdivided according to the nature of

their ligand-binding ectodomains (Boller and Felix, 2009; Couto

and Zipfel, 2016; Sun et al., 2022). One large class of PRRs includes

leucine-rich repeats (LRR) (Boller and Felix, 2009; Couto and

Zipfel, 2016; Sun et al., 2022). LRRs are ECDs of RLKs and RLPs

that bind chitin and peptidoglycan (Kaku et al., 2006; Williams

et al., 2011; Willmann et al., 2011; Williams et al., 2014). The main

difference between LRR-RLKs and LRR-RLPs is that the former

comprises ECDs, transmembrane domain, and intracellular kinase

domain (IKD), whereas the latter lacks an IKD (Ade et al., 2007;

Monaghan and Zipfel, 2012). Other existing ECDs include lectin

motifs and epidermal growth factor-like domains (Böhm et al.,

2014). Generally, LRR-containing RLKs and RLPs act as sensors of

peptide PAMPs (Monaghan and Zipfel, 2012). The initiated PPR

signaling results in PTI responses, like stomatal closure, ion flow,

ROS burst, gene expression changes, and aggregation of

antimicrobial active substances (Göhre and Robatzek, 2008;

Wirthmueller et al., 2013) that ward off microorganisms.

To establish successful infections, pathogens have evolved a

diverse repertoire of effectors that are delivered to plant cells to

interfere with PTI (Jones and Dangl, 2006). These effectors are

characterized by low molecular weight (≤300 amino acids),

presence of a signal peptide at the N-terminus, high cysteine

content, and low sequence similarity (Donofrio and Raman,

2012). To counter effector infection, plants use specific NLR

receptor proteins to detect pathogen-secreted effector proteins

either through direct or indirect binding and activate high-level

defense responses of the host (Hogenhout et al., 2009; Tsuda and

Katagiri, 2010; Cesari et al., 2014a; Cesari et al., 2014b; Selin et al.,
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2016). Recognition of pathogen effectors results in effector-triggered

immunity (ETI).

Although the two classes of immune receptors involve different

activation mechanisms and appear to require different early signaling

components, a crosstalk between PTI and ETI appears to be mediated

by an integrated signaling network (Tsuda and Katagiri, 2010; Yuan

et al., 2021a; Yuan et al., 2021b). ETI enhances, but does not initiate,

PTI-induced defense responses by upregulating PTI signaling

components. In turn, PTI potentiates ETI-induced cell death. Thus,

immune pathways activated by the cell surface and intracellular

receptors in plants mutually potentiate the activation of strong

defenses against pathogens (Ngou et al., 2021; Yuan et al., 2021b).
3 Structural characteristics and
functions of NLR protein pairs

In most cases, the recognition and interactions between plants

and pathogens are believed to be consistent with the canonical gene-

for-gene hypothesis (Flor, 1971). However, several recent studies

have demonstrated that single R genes are inadequate for defense

against pathogen invasion and necessitate complementary paired R

genes encoding for defense responses (Bomblies et al., 2007;

Ashikawa et al., 2008; Cesari et al., 2013; Cesari et al., 2014a;

Cesari et al., 2014b). NLR protein pairs comprise two structurally

and functionally different proteins encoded by paired R genes

closely linked in a head-to-head configuration that can form

homologous or heterologous complexes within the host (Eitas and

Dangl, 2010; Kanzaki et al., 2012; Adachi et al., 2019). NLR proteins

are multidomain proteins that possess a conserved architecture,

including a C-terminal LRR domain, a central nucleotide-binding

and oligomerization domain (NOD), and a variable N-terminal

domain (Takken and Goverse, 2012). The N-terminal domains

mainly include the Toll-interleukin 1 receptor (TIR)-like or coiled-

coil (CC) types; thus, NLR proteins can be largely classified into

TIR-NLR (TNL) and CC-NLR (CNL) based on differences in N-

terminal structure (Pan et al., 2000; DeYoung and Innes, 2006).

Many studies have established the CC and TIR domains as signaling

modules (Lapin et al., 2019; Lapin et al., 2022; Zhang et al., 2022).

In the absence of pathogens, NLR paired proteins are maintained

in an inactive state. Structure-function analyses have shown that the

particular motifs of NLR play critical roles in their auto-inhibition

mechanisms. For a number of NLR proteins, the “inactive” state has

been shown to be associated with ADP binding (Wang et al., 2019a).

The NOD of NLRs contains ADP/ATP-binding motif (P-loop) and is

believed to function as a nucleotide switch (Lukasik and Takken, 2009;

Wang and Chai, 2020). An ADP molecule binds to pocket formed by

tight packing of the three subdomains, nucleotide binding domain

(NBD), helical domain 1 (HD1), and winged helical domain (WHD)

from the NOD module. The intramolecular interaction indicates that

CNL ZAR1 in Arabidopsis adopts an inactive conformation (Wang

et al., 2019a). In addition, ZAR1LRR further inhibits ZAR1 by

sequestering the NLR in a monomeric state, although the LRR-

mediated inhibition is not essential for autoinhibition of some NLRs

(Steele et al., 2019; Wang and Chai, 2020). A pair of Arabidopsis TNL

proteins, RPS4 and RRS1, was shown to be required for recognition of
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AvrRps4 from the bacterial pathogen Pseudomonas syringae and

PopP2 from Ralstonia solanacearum. RPS4 TIR domain forms

homo-dimer and signals an effector-independent cell death. Co-

expression of the RRS1 TIR domain, a RRS1/RPS4 TIR hetero-

dimer competes with the formation of the RPS4 TIR homo-dimer

to maintain the paired NLRs in an inactive state (Narusaka et al., 2009;

Cesari et al., 2014a). Striking similarities are apparent between the

RPS4/RRS1 and the RGA4 and RGA5 from rice functional models

(Cesari et al., 2013; Cesari et al., 2014a; Cesari et al., 2014b).

After AVR recognition, the co-regulation of both NLR proteins

exerts synergistic induction of immune responses for disease

resistance (Eitas and Dangl, 2010; Okuyama et al., 2011; Zhai et al.,

2014; Nishimura et al., 2015). The effector-triggered assembly of the

CNL ZAR1 into pentameric resistosomes results in the formation of a

calcium-permeable ion channel that integrates into the plasma

membrane and initiates immune responses (Wang et al., 2019a;

Wang et al., 2019b; Bi et al., 2021). Activated TNR and TNL use

nicotinamide adenine dinucleotide (NAD+) or NAD+ with ATP as

substrates to produce ADP-ribosylated adenosine triphosphate

(ADPr-ATP) and ADPr-ADPR (di-ADPR) through ADP-

ribosylation reactions, which are likely to be further hydrolyzed to

pRib-ADP and pRib-AMP (2′-(5′′-phosphoribosyl)-5′-adenosine
diphosphate and monophosphate). However, TNLs converge on

the enhanced disease susceptibility 1 (EDS1) family of lipase-like

proteins, which plays a key link between TNL activation and

resistance pathway induction (Lapin et al., 2019). EDS1 forms

heterodimers with phytoalexin deficient 4 (AtPAD4) and uses the

same surface to interact with PAD4-related senescence associated

gene 101 (SAG101). Together with the N requirement gene 1

(NRG1), a coevolved EDS1-SAG101-NRG1 module mediates cell

death signaling by TIR-domain immune receptors (Lapin et al.,

2019). The cryo-electron microscopy (cryo-EM) structure of TNL-

activated EDS1-SAG101 revealed that TIR-catalyzed bioactive

compounds, ADPr-ATP/ADPR and pRib-ADP/AMP, bind

specifically between EDS1-PAD4 and EDS1-SAG101 dimers. The

triggered conformational changes in PAD4 and SAG101 EP domains

allosterically induce interactions with helper NLR NRG1A for plant

resistance and cell death, respectively (Jia et al., 2022).

Paired NLR proteins exist widely in crops, such as Oryza sativa,

Zea mays, Triticum aestivum, Hordeum vulgare, Aegilops tauschii,

Triticum urartu, Brachypodium distachyon, and Setaria italica. In

addition to having an intact CC/TIR-NB-ARC-LRR domain, they

possess certain non-canonical IDs (Nishimura et al., 2015; Bailey et al.,

2018; Stein et al., 2018). Most IDs are fused to the N- or C-terminus of

NLR proteins (Cesari et al., 2013; Nishimura et al., 2015; Sarris et al.,

2015). However, IDs are also present at both termini in certain NLR

proteins (Ellis, 2016), or are located between the CC and NB domains

in rare cases, such as the Pik-1 R protein of rice (Maqbool et al., 2015).

NLR proteins carrying IDs can recognize pathogen effector proteins,

known as sensor NLR (sNLR) proteins, and the protein partner that

participates in the activation of downstream immune signaling is

known as the helper NLR (hNLR) protein (Cesari et al., 2013;

Maqbool et al., 2015; Sarris et al., 2015). Paired NLR proteins

recognize pathogen effectors through direct physical contact with

IDs or indirect interactions with the hNLR protein. Direct and

indirect interactions between NLR proteins and pathogen effectors
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have been explained by various models, such as the receptor-ligand

model (Keen, 1990), guard model (van der Biezen and Jones, 1998;

Dangl and Jones, 2001; van der Hoorn and Kamoun, 2008), decoy

model (Collier and Moffett, 2009; Dodds and Rathjen, 2010), and bait

model (Collier and Moffett, 2009).
4 Structural basis of interactions
between paired NLR-HMA IDs of rice
and MAX-effectors of M. oryzae

Rice and M. oryzae constitute one of the model systems for

studying plant–pathogen interactions. Currently, more than 100 R

genes conferring resistance to blast disease have been mapped to the

rice genome, of which more than 20 have been cloned. Except for the

R genes Pi-d2 and pi21, all the other genes encode NLR proteins (Liu

andWang, 2016). Interactions between the rice R genes and avirulence

genes of M. oryzae, such as Pib/AvrPib, Pi-ta/AvrPi-ta, Pi9/AvrPi9,

and Piz-t/AvrPiz-t, are consistent with the canonical gene-for-gene

hypothesis (Flor, 1971). Researchers have also found that R gene pairs

in rice, such as Pik-1/Pik-2, RGA4/RGA5, Pi5-1/Pi5-2, and Pii-1/Pii-2,

jointly participate in defense responses (Lee et al., 2009; Yuan et al.,

2011; Zhai et al., 2011; Cesari et al., 2013; Cesari et al., 2014a; Cesari

et al., 2014b; Zhai et al., 2014; Maqbool et al., 2015; Takagi et al., 2017).

Particularly, RGA5 and Pik-1, the respective sNLR proteins of RGA4/

RGA5 and Pik-1/Pik-2, depend on the conserved HMA IDs for the

specific direct binding of effector proteins secreted by M. oryzae,

thereby regulating hNLR-protein-triggered immune defense responses

(Cesari et al., 2013; Zhai et al., 2014). HMA IDs are homologous to

heavy metal-associated plant proteins and isoprenylated plant proteins

(HIPPs). The conserved a/b sandwich structure of these proteins is

comprised of two a-helices and four antiparallel b-sheets (topology:
b1-aA-b2-b3-aB-b4), and heavy metal binding occurs at the

conserved Cys-XX-Cys motif (Robinson and Winge, 2010; de

Abreu-Neto et al., 2013). HMA IDs exist not only in the RGA4/

RGA5, Pik-1/Pik-2, and pi21 R proteins of rice and participate in

immune responses, but also in the NLR receptor proteins of flowering

crops belonging to the Brassicaceae, Fabaceae, and Rosaceae families
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(Kroj et al., 2016; Sarris et al., 2016). They have also been identified in

other plant proteins that are unrelated to NLR proteins (de Abreu-

Neto et al., 2013).

Accumulating evidence demonstrated that the relative location

and sequence diversity of HMA IDs in the RGA4/RGA5 and Pik-1/

Pik-2 proteins of rice exert important effects on their biological

functions (Table 1) (Cesari et al., 2013; Zhai et al., 2014; Maqbool

et al., 2015). HMA IDs are located separately downstream of the

RGA5 LRR domain (RGA5-HMA), but between the CC and NB-

ARC domains at the N-terminus of Pik proteins (Pik-HMA), they

showed sequence similarities of up to 54% (Cesari et al., 2013;

Maqbool et al., 2015; Guo et al., 2018). The hNLR RGA4 acts as an

auto-active inducer of immune signaling (Cesari et al., 2014b).

RGA4 and RGA5 form homo- and hetero-complexes and interact

through their CC domains. While the RGA5 CC domain is

necessary but not sufficient for repression of RGA4-mediated cell

death, its HMA IDs is dispensable (Cesari et al., 2013; Cesari et al.,

2014a; Cesari et al., 2014b). RGA5-HMA IDs can simultaneously

recognize the effectors AVR1-CO39 and AVR-Pia through directly

binding, which is repressed by RGA5 in the absence of effectors

(Cesari et al., 2014b). Upon M. oryzae invasion, the binding of

AVR1-CO39 and AVR-Pia to the self-interacting aa/b2 interfaces

of RGA5-HMA IDs competes with RGA5-HMA self-interaction,

which forms a heterocomplex with 1:1 stoichiometry and relieves

RGA4 repression (Guo et al., 2018). The b2 of RGA5-HMA IDs is

aligned in an antiparallel manner with the b2 of AVR1-CO39,

forming a continuous antiparallel b-sheet comprising the four-

stranded b-sheet of RGA5-HMA IDs and b1, 2, and 6 of AVR1-

CO39 (Guo et al., 2018). However, in AVR-Pia, the HMA-binding

interface is more extended. In addition to the b2 of RGA5-HMA

IDs, both b3 and the loop formed between b2 and b3 also

participate in interactions during binding to AVR-Pia (Guo

et al., 2018).

Co-evolutionary dynamics have driven the emergence of five

different Pik alleles, Pikh, Pikp, Pikm, Piks, and Pik*, to display the

extended recognition of AVR-Pik (A to F) variants (Yoshida et al.,

2009; Kanzaki et al., 2012; Zhai et al., 2014; De la Concepcion et al.,

2021; Xiao et al., 2022). AVR1-CO39, AVR-Pia, and AVR-Pik

variants have no apparent sequence identity but are highly similar
TABLE 1 HMA IDs of rice NLR protein pairs and the corresponding MAX-effectors of M. oryzae.

NLR pairs sNLR HMA
IDs location

MAX-effec-
tors

Binding
mode References

RGA4/
RGA5

RGA5 C-terminus of RGA5
AVR1-CO39
AVR-Pia

1:1 Cesari et al., 2013; Guo et al., 2018

Pikp-1/Pikp-
2

Pikp-1

between CC and NB-
ARC

AVR-PikD 2:1

Kanzaki et al., 2012; Maqbool et al., 2015; De la Concepcion et al., 2018, 2021;
Xiao et al., 2022

Pikm-1/
Pikm-2

Pikm-1
AVR-PikD/E/
A

1:1

Piks-1/Piks-
2

Piks-1 AVR-PikD unknown

Pikh-1/
Pikh-2

Pikh-1
AVR-PikD/E/
A

2:1
HMA IDs; heavy metal-associated (HMA) integrated domains (IDs). CC; coiled-coil. NB-ARC; nucleotide-binding adaptor shared by the human apoptotic regulator APAF-1, plant resistance (R)
proteins and Caenorhabditis elegans CED-4.
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to the MAX (Magnaporthe AVRs and ToxB-like) effector family,

which adopts a six b-sandwich fold stabilized by buried hydrophobic

residues and commonly, but not always, disulfide bonds (de Guillen

et al., 2015; Zhang et al., 2018). Although RGA5 and Pik-1 both

display canonical HMA IDs formed in dimer states, structure-

function analyses involving nuclear magnetic resonance and x-ray

crystallography reveal that the intramolecular interaction

mechanisms and binding interfaces are completely different in the

two HMA IDs/MAX-effector systems (Maqbool et al., 2015; Cesari,

2018; De la Concepcion et al., 2018; Guo et al., 2018).

In contrast to RGA4, expression of Pik-2 dose not constitutively

activate cell death.HMA IDs in sNLRPik-1 requires the hNLRPik-2 to

initiate signaling, suggesting that the assembly of an active signaling

complex requires all three proteins (Kanzaki et al., 2012;Maqbool et al.,

2015). Structure-informed similarity searches showed that the co-

evolution between pathogens and hosts has driven the emergence of

two different binding modes among the Pik-HMA/AVR-Pik systems

through multiple interfaces (Figure 1) (Maqbool et al., 2015; De la

Concepcion et al., 2018; De la Concepcion et al., 2019; Xi et al., 2022).

(1) Like the RGA5-HMA/effector binding systems, AVR-PikD/E/A

competes with Pikm-HMA self-interaction in a 1:1 binding mode (De

la Concepcion et al., 2019). (2) Pikp-HMA/AVR-PikD/E and AVR-

Pikh/AVR-PikC form a 2:1 complex, but do not compete with Pikp/h-

HMA self-interaction (Figure 1). The figure is optimized basing the

functional models of RGA4/RGA5 NLR pair (Cesari et al., 2014a).

Further analysis showed that the overall orientations of each

component in the Pikm-HMA/effector complexes are similar to each

other, and to determine Pikp-HMA/AVR-PikD/E and Pikh-HMA/

AVR-PikC. However, the core residues contributing to the interaction

are significantly different.Within the Pikp-HMA/AVR-PikD complex,

Pikp-HMASer218,Gly230 binds to AVR-PikDHis46 via hydrogen bonds,

forming the core region for the regulation of their interactions. In the

Pikm-HMA/AVR-PikD complex, G230 is replaced by Val231 at a

structurally equivalent position in the Pikp-HMA structure. Therefore,
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Pikm-HMAVal231 cannot directly form salt bridges with AVR-

PikDHis46. In the Pikm-HMA/AVR-PikE complex, the amino acid at

position 46 of the effector protein is asparagine (Asn). Consequently,

Asn is rotated out of the binding pocket and is located well away from

PikmVal231, and hydrogen bonds are formed between AVR-PikE(Asn46:

N<sp>d</sp>2) and both Pikm-HMA(Ser219:OH) and the new water

molecule. Such a configuration affects the position of AVR-PikmPhe44-

Gly48 and pushes them away from Pikm-HMA IDs, further altering the

interactions across the core interface. Such structural changes are

related to the decreased binding affinity of AVR-PikE to Pikm-HMA

compared with that of AVR-PikD (De la Concepcion et al., 2018). In

the Pikm-HMA/AVR-PikA coordination complex, Asn46 is rotated

further out of the HMA pocket. Although a hydrogen bond is still

formed with Pikm-HMA(Ser219:OH), a considerable difference occurs in

orientation. These changes cause the residues of AVR-PikAAsn46 - Pro50

to be located a distance from Pikm-HMA, and such structural

observations are again related to decreased effector binding affinity

(De la Concepcion et al., 2018). The research results described above

indicate that sequence diversity is a key factor affecting the interactions

betweenMAX-effectors ofM.oryzae andpairedNLR-HMAIDs in rice

and the recognition of MAX-effectors, thereby affecting biological

functions of paired NLR-HMA IDs.
5 Applications of paired NLR-HMA
IDs in rice designed based on
their structure

Engineering made-to-order plant immune receptors has been

confirmed as a potential method to confer plant disease resistance

(Kourelis et al., 2023). Targeted point mutations or random

mutational screens have succeeded in extending NLR recognition

specificity or increasing their activation properties to create sensitized
FIGURE 1

Binding modes for the diverse recognition of paired NLR-HMA IDs/MAX-effectors. In the absence of pathogens, NLR paired proteins are kept in an
inactive state by forming a hetero-complex, and the HMA IDs forms a homodimers. After pathogen infected, the secreted effector proteins directely
bind to sNLR like molecular traps and activate the immune. For RGA4/RGA5 (blue and brown), the effectors of AVR1-CO39 and AVR-Pia (yellow)
binding to RGA5-HMA IDs (red) competes with RGA5-HMA self-interaction, which forms a heterocomplex with a 1:1 stoichiometry and relieves
RGA4 repression. Like the RGA5-HMA/effector binding systems, AVR-PikD/E/A compete with Pikm-HMA self-interaction in a 1:1 binding mode; but
directly bind to Pikp/h-HMA forming a 2:1 complex. E; effectors secreted by Magnaporthe oryzae. HMA IDs; heavy metal-associated (HMA)
integrated domains (IDs). NLR; nucleotide-binding and leucine-rich repeat. MAX-effectors; Magnaporthe oryzae AVRs and ToxB-like.
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NLR (Harris et al., 2013; Segretin et al., 2014). Therefore, the use of

molecular engineering to design R genes for the creation of new

specificities or expansion of NLR protein recognition profiles has

great potential in crop genetics and breeding (Kim et al., 2016; Cesari,

2018; Grund et al., 2019; Kourelis et al., 2021; Cesari et al., 2022). A

classic example is the alternative strategy for modifying the protein

kinase PBS1 in Arabidopsis thaliana (Kim et al., 2016). It is believed

that PBS1 acts as a bait in the system, similar to the mousetrap model.

The NLR protein RPS5 (resistance to Pseudomonas syringae) forms a

pre-activation complex with PBS1. The cleavage of PBS1 by AvrPphB

(Gly-Asp-Lys-Ser-His-Val-Ser) secreted by the pathogenic oomycete

Phytophthora infestans leads to conformational changes in PBS1,

which serve as a key factor in triggering RPS5-induced HR (DeYoung

et al., 2012). Thus, replacement of the cleavage site of PBS1 with that

of protease effector proteins of other bacteria and viruses (PBSRCS2

and PBSTuMV) can also trigger RPS5 activity, thereby expanding the

recognition specificity of the host towards pathogens (Kim et al.,

2016; Pottinger et al., 2020).

The use of structural biology to elucidate the molecular basis of

the interactions between plant NLR proteins and pathogen effector

proteins at the atomic level provides new approaches to achieve

precise NLR protein design through targeted mutations. The

highlights of the potential of HMA-IDs engineering in rice are as

follows: (1) in the RGA4/RGA5 and Pik-1/Pik2 systems, HMA IDs

can act as sNLR, binding MAX-effectors like molecular traps and

activating the immune response of the system; (2) RGA5-HMA IDs

and Pik-HMA IDs show 54% sequence similarity; (3) structure-

function analysis demonstrated high plasticity in HMA ID and

MAX-effectors interactions. Because their sequence is unrelated but

structurally similar, MAX-effectors bind to different surfaces of

structurally conserved HMA IDs. Therefore, the design of HMA

IDs with expanded recognition profiles based on HMA IDs/MAX-

effector complex structures has immense potential and has achieved

promising progress (Table 2).

De la Concepcion et al. (2019) analyzed and compared the key

residues that participate in AVR-Pik interactions in the crystal
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structures of the complexes. By constructing key mutations in the

interface 2 and 3 regions of Pik-HMA, or swapping residues found

in Pikm into Pikp, the researchers obtained the mutant

PikpAsn261Lys,Lys262Glu, with an expanded AVR-Pik recognition

profile for the first time. Besides having enhanced AVR-PikD

recognition ability, the mutation could also recognize AVR-PikE

and AVR-PikA. Maidment et al. (2021) demonstrated that the

OsHIPP19-HMA protein in rice, which is related to cold/drought

tolerance and possesses conserved domains, can bind to multiple

effector proteins (AVR-PikD, C, F) in a similar HMA IDs/MAX-

effector mode. This study provides an important molecular basis for

designing Pik-1 receptor mutants similar to OsHIPP19-HMA IDs,

with an expanded Pik resistance profile. RGA5-HMA-ID

modifications have also received considerable research attention,

with researchers successfully creating the RGA5-HMASel1027Val,

Gly1009Asp (RGA5-HMA2) mutant with new AVR-Pib recognition

sites (Liu et al., 2021) and obtaining RGA5-HMA(E1029A,I1030L,

T1031V,E1033D,D1034L,K1035R,R1037K,L1038I,V1039E) (RGA5-HMAm1)

and RGA5-HMA(E1029A,I1030L,T1031V,E1033D,D1034L,K1035R,R1037K,

L1038I,V1039E,M1065Q,E1067S,L1068Q) (RGA5-HMAm1m2) with

expanded MAX-effector recognition profiles (Cesari et al., 2022).

Moreover, the HMA-IDs of Pikm-1 have been successfully swapped

with nanobody (single-domain antibody fragment) fusions that

bind either green fluorescent protein (GFP) or mCherry (Kourelis

et al., 2023). Pikobody is shortened for Pikm-1-nanobody fusions

with GFP or mCherry. The bioengineered Pikobody confers new-

to-nature resistance activities against Potato virus X (PVX)

expressing GFP or mCherry (Kourelis et al., 2023). These results

demonstrate that the HMA-IDs-based design of rice materials with

broad resistance profiles possesses great application potential but

also faces considerable challenges.

For the structure-guided engineering of immune receptors, R

gene stacking deserves concern. Functional stacking of resistance

genes has been used in plant breeding strategy to increase durability

and confer broad-spectrum resistance (Ghislain et al., 2019; Luo

et al., 2021; Kourelis et al., 2023). Stacking of three late blight R
TABLE 2 Structure-informed engineering of paired NLR-HMA IDs in rice.

Wild-type Engineering of HMA IDs

References
HMA-ID Corresponding

MAX-effectors HMA-IDs mutation Corresponding
MAX-effectors

Pikp-HMA AVR-PikD
Pikp-HMAAsn261Lys,

Lys262Glu AVR-PikD/E/A
De la
Concepcion
et al., 2019

Pikm-1
AVR-PikD
AVR-PikE
AVR-PikA

Pikobody Potato virus X (PVX)
Kourelis et al.,
2023

RGA5-HMA

AVR1-CO39,
AVR-Pia

RGA5-HMASel1027Val,

Gly1009Asp, (RGA5-HMA2)
AVR-Pib Liu et al., 2021

RGA5-HMA (E1029A, I1030L, T1031V, E1033D, D1034L, K1035R, R1037K,

L1038I, V1039E) (RGA5-HMAm1) AVR1-CO39
AVR-Pia
AVR-PikD

Cesari et al., 2022

RGA5-HMA (M1065Q, E1067S, L1068Q)(RGA5-HMAm2)
RGA5-HMA (E1029A, I1030L, T1031V, E1033D, D1034L, K1035R, R1037K,

L1038I, V1039E, M1065Q, E1067S, L1068Q)(RGA5-HMAm1m2)
NLR; nucleotide-binding and leucine-rich repeat. HMA IDs; heavy metal-associated (HMA) integrated domains (IDs). MAX-effectors; Magnaporthe oryzae AVRs and ToxB-like. m: mutation.
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genes in potato varieties confers extreme resistance to late blight

(Ghislain et al., 2019). A five-transgene cassette has been

successfully introduced into bread wheat and shows very high

level of resistance to a fungal rust pathogen in wheat (Luo et al.,

2021). However, overaccumulation of NLRs often leads to

autoimmune responses, suggesting that the levels of these

immune receptors must be tightly controlled (Cheng et al., 2011).

In addition, gain-of-function mutants of NLRs, constitutive

expression of defense marker Pathogenesis Related (PR) genes,

enhanced pathogen resistance, and altered plant development,

such as dwarfism, are general features of plant autoimmunity

(Cheng et al., 2011). Therefore, NLRs should be maintained at

proper levels to prevent autoimmunity (Cheng et al., 2011). Besides,

in some hybrid plants, independently evolved immune system

components are mismatched and trigger inappropriate immune

reactions in the absence of pathogens (Tran et al., 2017). NLR

misactivation has been linked to autoimmunity and induces a

typical hybrid necrosis (Chakraborty et al., 2018).
6 Conclusions and prospects

Coordinated development of structural biology and genetics has

provided an important molecular basis for elucidating the

interactions between plant NLR proteins and pathogens. In this

review article, we summarize the importance of the plant immune

system and the progress in genetic engineering strategies for the

targeted design of HMA IDs with expanded, enhanced, or new

MAX-effector recognition abilities based on the structural

information of paired NLR-HMA IDs in rice and MAX-effectors

of M. oryzae. Therefore, adequate use of the immune systems of

crops and in-depth exploration of the interaction modes of NLR

proteins and effectors provide an important molecular basis for the

mining and designing of R genes and resistant crop varieties.

However, the following issues require further consideration

and investigation:
Fron
• Transgenic rice varieties conferring increased or extended

anti-rice blast specificity by modified HMA IDs are yet to be

developed.

• Exploration of the feasibility of designing HMA IDs

through modification or exchange to confer recognition

profiles for MAX-effectors of other pathogens besides M.

oryzae. It is unclear whether continuous resistance can be

provided by transplanting engineered HMA IDs into crops

belonging to related or unrelated genera of rice.

• Elucidation of the molecular mechanisms of synergistic

interactions in the paired NLR proteins of rice to

determine how paired NLR-HMA IDs activate sNLR
tiers in Plant Science 07
proteins to induce molecular transduction of hNLR

immune signals.

• Exploration of the molecular mechanisms and modification

strategies for HMA IDs/MAX-effectors as models for

further application to other crops for in-depth

investigation of the diversity of NLR proteins in

recognizing effectors and activating immune mechanisms.
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