
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Laura Cuyas Carrera,
Staphyt, France

REVIEWED BY

Lun Jing,
Centre Mondial de l’Innovation
Roullier, France
Ganesh Chandrakant Nikalje,
R. K. Talreja College of Arts, Science and
Commerce, India

*CORRESPONDENCE

Manoel Teixeira Souza Júnior

manoel.souza@embrapa.br

†These authors have contributed equally to
this work

RECEIVED 16 March 2023
ACCEPTED 03 May 2023

PUBLISHED 13 June 2023

CITATION

Rodrigues Neto JC, Salgado FF, Braga ÍdO,
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Osmoprotectants play a major
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resistance to high levels of
salinity stress—insights from a
metabolomics and proteomics
integrated approach
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Introduction: Purslane (Portulaca oleracea L.) is a non-conventional food plant

used extensively in folk medicine and classified as a multipurpose plant species,

serving as a source of features of direct importance to the agricultural and agri-

industrial sectors. This species is considered a suitable model to study the

mechanisms behind resistance to several abiotic stresses including salinity. The

recently achieved technological developments in high-throughput biology

opened a new window of opportunity to gain additional insights on purslane

resistance to salinity stress—a complex, multigenic, and still not well-understood

trait. Only a few reports on single-omics analysis (SOA) of purslane are available,

and only one multi-omics integration (MOI) analysis exists so far integrating

distinct omics platforms (transcriptomics and metabolomics) to characterize the

response of purslane plants to salinity stress.

Methods: The present study is a second step in building a robust database on the

morpho-physiological and molecular responses purslane to salinity stress and its

subsequent use in attempting to decode the genetics behind its resistance to this

abiotic stress. Here, the characterization of the morpho-physiological responses

of adult purslane plants to salinity stress and a metabolomics and proteomics

integrative approach to study the changes at the molecular level in their leaves

and roots is presented.

Results and discussion: Adult plants of the B1 purslane accession lost

approximately 50% of the fresh and dry weight (from shoots and roots)

whensubmitted to very high salinity stress (2.0 g of NaCl/100 g of the

substrate). The resistance to very high levels of salinity stress increases as the
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purslane plant matures, and most of the absorbed sodium remains in the roots,

with only a part (~12%) reaching the shoots. Crystal-like structures, constituted

mainly by Na+, Cl−, and K+, were found in the leaf veins and intercellular space

near the stoma, indicating that this species has a mechanism of salt exclusion

operating on the leaves, which has its role in salt tolerance. The MOI approach

showed that 41 metabolites were statistically significant on the leaves and 65

metabolites on the roots of adult purslane plants. The combination of the

mummichog algorithm and metabolomics database comparison revealed that

the glycine, serine, and threonine, amino sugar and nucleotide sugar, and

glycolysis/gluconeogenesis pathways were the most significantly enriched

pathways when considering the total number of occurrences in the leaves

(with 14, 13, and 13, respectively) and roots (all with eight) of adult plants; and

that purslane plants employ the adaptive mechanism of osmoprotection to

mitigate the negative effect of very high levels of salinity stress; and that this

mechanism is prevalent in the leaves. The multi-omics database built by our

group underwent a screen for salt-responsive genes, which are now under

further characterization for their potential to promote resistance to salinity stress

when heterologously overexpressed in salt-sensitive plants.
KEYWORDS

purslane, analytical method, chemometrics, metabolomics, proteomics, abiotic stress,
salt tolerance, high resolution mass spectrometry
1 Introduction

The Human Genome Project, completed in April 2003, launched

a new era of technological developments in high-throughput biology.

Since then, and vis-à-vis with an ever-dropping sequencing cost, the

world has witnessed the production of many large-scale multi-omics

datasets on many different organisms. Datasets in genomics,

transcriptomics, proteomics, metabolomics, phenomics,

epigenomics, and ionomics, as well as meta-genomics, meta-

transcriptomics, and meta-proteomics, are piling up elsewhere,

aiming to gain insights on the molecular mechanisms behind

several complex living systems. Integrating multiple quantitative

molecular measurements with well-designed mathematical models

to achieve such a goal is necessary via the combined contribution of

many complementary areas of expertise. Multi-omics integration

(MOI) uses element-, pathway-, or mathematical-based approaches

to integrate omics datasets, opening new windows of opportunities

for a further understanding of biological, molecular, and ecological

functions and mechanisms; the conceptual integration strategy is

sometimes also used (Cavill et al., 2016; Jamil et al., 2020). It is well-

accepted that MOI is a non-trivial challenge due to the complexity of

most biological systems, some technological limitations, the large

number of variables involved, and the necessity for a relatively high

number of experimental and biological samples (Santiago-Rodriguez

and Hollister, 2021; Vahabi and Michailidis, 2022).

Purslane (Portulaca oleracea L.), the most well-known species

of the Portulaca genus, is a non-conventional food plant used

extensively in folk medicine due to its high nutritional level and

wide range of pharmacological effects, involving anti-inflammatory,
02
antibacterial, antioxidant, and anti-ulcerogenic; it is one of the most

used medicinal plants, according to the World Health Organization

(Zhou et al., 2015). It is multipurpose plant species, serving as a

source of features of direct importance to the agricultural and agri-

industrial sectors. Multipurpose plants have more than one

significant contribution to production and service functions in a

land-use system (Srivastava et al., 2021). This species is a suitable

model to study the mechanisms of plant tolerance to abiotic stresses

not only because of its well-known tolerance to drought and salt

stresses but also because of its short life cycle (2–4 months) and the

fact that it is a C4 plant that can develop the Crassulacean acid

metabolism (CAM) when subjected to water stress and short

photoperiod (Koch and Kennedy, 1980; D'andrea et al., 2014;

Borsai et al., 2018).

Purslane is an invasive plant and is considered the eighth most

common weed in the world (Ozturk et al., 2020). Because of that, its

outdoor production in extensive areas faces several concerns. Kong

and Zheng (2014) evaluated the potential of producing purslane in a

hydroponic system, generating approximately 5.75 kg of fresh

matter per m2 per month, which might yield 57.5 tons/hectare/

year if cultivated in a bimestrial regime. The high productivity of

purslane, when grown in controlled-environment agriculture

(Vatistas et al., 2022), can open many opportunities for the

purslane industry, even in the context of biosaline agriculture

(Ozturk et al., 2020).

A robust multi-omics database on the response of purslane to

salt stress and its subsequent use via an MOI analysis can create the

basis to decode the genetics behind its resistance to salinity stress via

a system biology approach (Silva et al., 2022). Most recently, a few
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reports on single-omics analysis (SOA) of purslane have been

published, including Xing et al. (2020), who treated purslane

seedlings with 200 mM NaCl and then subjected stems to

transcriptome sequencing and metabolome analysis; however,

those authors performed SOA but not MOI analysis. Du et al.

(2021) produced a high-quality reference transcriptome for

purslane, providing a valuable resource for further investigation

of related molecular mechanisms, especially the unsaturated fatty

acids biosynthesis pathway. Wu et al. (2021) compared the

physiological characteristics of two different ecotypes of purslane

and analyzed their transcriptome.

The present study is a second step in building a robust database

on the morpho-physiological and molecular responses of Portulaca

oleracea L. to salinity stress and its subsequent use in attempting to

decode the genetics behind its resistance to this abiotic stress. After

reporting on the characterization of the morpho-physiological

responses of young purslane plants to such stress using a robust

salinization protocol (Silva et al., 2022), here, we report a study on

adult plants through the characterization of the proteome and

untargeted metabolome profiles on the leaves and roots of this

halophyte species submitted to very high salinity stress and the

consequent use of single- and multi-omics analysis strategies to

study it.

First, this study aimed to confirm that adult purslane plants

presented a higher level of resistance to high salinity stress when

compared to young plants. Second, it sought to characterize the

metabolome and proteome in the leaves and roots of adult purslane

plants. Due to root size in young plants, that was not possible before

(Silva et al., 2022). Last, it attempted to integrate metabolome and

proteome profiles, aiming to advance in identifying those pathways

most affected by this stress in the leaves and the roots.
2 Materials and methods

2.1 Plant material, growth conditions,
experimental design, and saline stress

The B1 accession of purslane (Portulaca oleracea L.) used in this

study belongs to the Purslane Collection at Embrapa Agroenergia.

Seeds underwent disinfection following the same procedure

described in Silva et al. (2022), which consisted of soaking in a

solution of 2% sodium hypochlorite and Tween® 20 for 5 min,

under slow agitation, and subsequent washing with sterile water and

drying on sterilized filter paper. After being seeded on a culture

medium (MS 1/2 strength, Phytagel 0.2%, and pH 5.8) (Murashige

and Skoog, 1962), it was kept for germination in a Growth chamber

Conviron mod. Adaptis 1000TC (Controlled Environments, Ltd.,

Winnipeg, Canada) at 150 mmol/m2/s of light and 30°C. After 13

days, seedlings were individually planted in 300-ml plastic cups

containing 220 g of sterilized substrate—clay soil, vermiculite, and a

commercial substrate (Bioplant®), 2:1:1 (v:v:v) ratio—and

transferred to a greenhouse and kept there until the end of the

experiments. The plants were allowed to acclimatize for three days,

and the salinity stress started 3 weeks after the end of the

acclimatization period, exactly 37 days after seeded.
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The salinization experiment consisted of two salinity levels (0.0

and 2.0 g of NaCl/100 g of the substrate), with 16 replicates (plants)

in a completely randomized design, and the stress lasted 12 days.

During the entire experiment, plants were at field capacity. To avoid

the loss of Na+ or Cl−, no leakage of the saline solution was allowed

to get out of the plastic cup, as described previously in Silva et al.

(2022). The water lost due to evapotranspiration was replaced with

deionized water daily, and the electric conductivity at field capacity

(ECfc) and water potential in the substrate solution were measured

once—on the eighth day of stress—for all replicates (Silva

et al., 2022).
2.2 Samples for biomass, mineral,
metabolomics, and proteomics analysis

Leaves and roots from both treatments—five replicates per

treatment—were collected for biomass and mineral analysis. Fifteen

samples of substrate were collected for mineral analysis, five before

salinization, and 10 at the end of the experiment—five from control

and five from stressed plants. After determining the fresh biomass

and drying it in a forced air oven at 65°C to constant weight, we

measured the dry biomass. Then, we ground it in a Wiley mill Tecnal

Mod. TE 680 (Tecnal), passed through a 1-mm (20 mesh) sieve and

subjected to extraction of minerals by the standard methods used

routinely at Soloquıḿica (www.soloquimica.com.br). The data from

the mineral analysis were submitted to normalization using the

Shapiro–Wilk test. For leaves and roots, we applied the t-test, and

its non-parametric equivalent was the Mann–Whitney test; and the

comparison occurred between two groups (control vs. stressed). For

the substrate, the comparison was multiple. At last, ANOVA and its

non-parametric Kruskal–Wallis equivalent were performed. Leaves

and roots from both treatments—five replicates per treatment—were

collected and immediately immersed in liquid nitrogen and then

stored at −80°C until extraction of metabolites or proteins.
2.3 Metabolomics analysis

Metabolites were extracted using a well-established protocol

(Giavalisco et al., 2011; Rodrigues-Neto et al., 2018) that provides

polar and lipidic fractions from the same samples. In this protocol,

we first ground the plant material (roots or leaves) in a ball mill

(Biospec Products, USA) and then added it to a microtube

containing 1 ml from a solution (1:3) of methanol and methyl-

tert-butyl-ether at −20°C. Samples were incubated for 10 min at 4.0°

C and then ultrasonicated for another 10 min in an ice bath. After

adding a solution (1:3) of methanol and water to each microtube,

they underwent centrifugation (12,000 rpm at 4.0°C for 5 min). The

polar (lower) and non-polar (upper) fractions were collected and

vacuum-dried in a speed vac system overnight (Centrivap,

Labconco, Kansas City, MO, USA). Four microliters of the extract

were resuspended in 850 ml of the methanol and water (1:3) solvent

mixture and then analyzed by Ultra High Liquid Chromatography

coupled to Mass Spectrometry (UHPLC-MS).
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For the UHPLC-MS analysis, we used a Nexera X system

(Shimadzu Corp., Japan) equipped with an Acquity UPLC BEH

C8 reversed-phase column (1.7 mm, 2.1 × 150 mm) (Waters

Technologies, USA). The flow rate was set at 400 ml min−1, and

the column temperature was set at 40°C. The chromatographic runs

were isocratic at the start (0–0.5 min) with 4% of B solvent, then at

linear gradient (0.5–10 min) with 34% B and (10 – 15 min) with

100% B, and finally isocratic (15–18 min) with 100% B. Solvent A

was 0.1% formic acid in water (v/v), and solvent B was 0.1% formic

acid in acetonitrile (v/v).

For the mass spectrometry analysis in high resolution, we used a

MaXis 4g Q-TOF MS system (Bruker Daltonics, Germany),

equipped with an electrospray source both on positive [ESI

(+)-MS] and negative [ESI(−)-MS] ion modes. The MS

instrument settings used were Endplate offset, 500 V; nebulizer

pressure, 4 bar; capillary voltage, 3,800 V; dry gas flow, 9 L min−1;

and dry temperature, 200°C. The acquisition spectra rate was

3.00 Hz, monitoring a mass range from 70 to 1,200 mass-to-

charge ratio (m/z). For external calibration, we used a sodium

formate solution (10 mM NaOH solution in 50/50 v/v isopropanol/

water containing 0.2% formic acid) directly injected through a six-

port valve at the beginning of each chromatographic run. UHPLC-

MS data were acquired by the HyStar Application version 3.2

(Bruker Daltonics, Germany).

For data pre-processing, we used the software DataAnalysis

version 4.4 (Bruker Daltonics, Germany), where raw data from the

UHPLC-MS analysis were exported as.mzXML files. Those files

were then submitted to the XCMS Online platform (Tautenhahn

et al., 2012; Gowda et al., 2014) for feature detection, retention time

correction, and alignment of metabolites detected on each

chromatographic run, using parameters optimized based on

Albóniga et al. (2020), that creates a more robust data processing

through a tuned feature detection to obtain a smaller data matrix

with a higher number of SD < 20% variables. We used the centWave

for peak detection (maximum peak width = 40 s; minimum peak

width = 12 s; D m/z = 25 ppm; and mzdiff = 0.002) and minfrac =

0.16, mzwid = 0.02, and bw = 1 used for retention time alignment.

Statistics analysis used an unpaired parametric t-test (Welch t-test).

Datasets were as follows: eight datasets for leaves samples (control

and stressed groups, each with polar and lipidic fraction in both

positive and negative modes) and eight datasets for roots samples

(following the same logic as the leaves group samples).

After obtaining the pre-processed data from XCMS in.csv files,

we used MetaboAnalyst 5.0 for statistical analysis. Data matrices

were normalized using an internal standard (ampicillin for polar

fraction samples and 1,2-diheptadecanoyl-sn-glycero-3-

phosphocholine for lipidic fraction samples). The data structure

was kept partially intact, closer to the initial measurements, by

employing the Pareto scaling (Van Den Berg et al., 2006). The most

popular and well-established statistical tests were performed on the

described datasets using MetaboAnalyst were a partial least square

(PLS) classification model with its corresponding internal validation

(leave-one-out cross-validation method), hierarchical cluster

analysis through dendrogram and heatmap using the Euclidean

distance measure and Ward clustering algorithm, and a volcano

plot to determine up- and downregulated variables using 1.0 as fold
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change threshold and 0.050 as the false discovery rate

(FDR) threshold.

The next step in the statistical protocol was to perform a

pathway analysis for leaves and roots, with the collective data of

all fractions and ionization modes. The first part of this analysis is

through the “functional analysis” module on MetaboAnalyst, done

using a mass tolerance of 5 ppm and mixed ion mode, ranked by p-

values. The mummichog algorithm in this module was applied

using the default p-value cutoff with the latest KEGG (Kyoto

Encyclopedia of Genes and Genomes) pathway library version of

A. thaliana (Kanehisa, 2000; Kanehisa, 2019; Kanehisa et al., 2021).

At the result list, we applied a filter to select the matched

compounds with the lowest mass differences in the case of

multiple isotopes. Then, the putative annotation was performed

on the basis of the exact mass and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) compound data for the metabolites of

interest. The final list of compounds obtained from the functional

analysis was submitted to the pathway analysis using a scatter plot

as the visualization method, hypergeometric test as the enrichment

method, and relative-betweenness centrality as the topology

analysis system.

Acetonitrile Liquid Chromatography - Mass Spectrometry (LC-

MS) grade, methanol UHPLC grade, formic acid LC-MS grade,

sodium hydroxide ACS grade, and methyl-tert-butyl-ether,

acquired from Sigma-Aldrich (Merck, USA), and water from a

Mil l i -Q system (Mil l ipore , USA) were used for the

metabolomics analysis.
2.4 Proteomics analysis

For total proteins extraction, we used a well-established

protocol (Bittencourt et al., 2022; Leão et al., 2022), which

consisted of using 5.0 g of ground tissue—with 0.02 g/g of

polyvinylpolypyrrolidone (PVP) added to it and mixed with

3.0 ml of buffer (50 mM Tris HCl + 14 mM b-mercaptoethanol,

pH 7.5) and 30 µl of protease inhibitor. After gently stirring the

suspension on ice for 10 min, it was centrifuged at 10,000 G at 4.0°C

for 15 min. Subsequently, 1.0 ml of the supernatant was transferred

to 2.0-ml microtubes, mixed with 1.0 ml of 10% TCA

(trichloroacetic acid) solution in acetone, kept at −20°C for 2.0 h

for protein precipitation, and then centrifuged at 10,000 G at 4.0°C

for 15 min. The protein pellet was washed twice with ice-cold 80%

acetone, followed by centrifugation under the same conditions

described above, and then stored at −80°C until protein

quantification (Bradford, 1976) and visualization in an

Polyacrylamide gel electrophoresis (PAGE) with sodium dodecyl

sulfate (SDS) gel. All samples went to the GenOne company (Rio de

Janeiro, RJ, Brazil) for protein preparation and LC-MS/MS analysis,

following the same procedure described previously in Bittencourt

et al. (2022) and Leão et al. (2022).

A label-free quantitation approach using spectral counting by

LC-MS/MS passing the samples through a nano-high performance

liquid chromatography (EASY 1000; Thermo Fisher, Waltham, MA,

USA) coupled to Orbitrap Q Exactive Plus (Thermo Scientific,

Waltham, MA, USA) mass spectrometer was employed for global
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proteomics analysis. An MS scan spectra ranging from 375 to 2,000

m/z were acquired using a resolution of 70,000 in the Orbitrap. We

used the Xcalibur software (version 2.0.7) (Thermo Scientific,

Waltham, MA, USA) to obtain the data in biological triplicates.

The MaxQuant software version 2.1.3.0, available at https://

maxquant.net/maxquant, was employed to process the raw data

(.RAW) for protein identification and abundance, together with the

Andromeda algorithm, based on probability (Tyanova et al., 2016a)

for the control and salt-stressed treatment, both for leaves and

roots. For reference, we used the A. thaliana proteome obtained

through the UniProt web platform (Proteome ID: UP000006548),

and the cysteine carbamidomethylation and methionine oxidation

were the fixed and variable modifications considered, respectively.

As a result, MaxQuant software returns a.txt file named

“proteinsgroups” that underwent statistical analysis in Perseus

software version 2.0.5.0 (Tyanova et al., 2016b), available at

https://maxquant.net//perseus. In it, the lfq intensities for each

sample get selected to start the workflow. Initially, it was

necessary to carry out a series of filters in the matrix to remove

potential contaminants, and then, we identified the samples

according to the treatment and transformed the raw values to Log2.

With the transformed values, it was necessary to filter the

intensities based on valid values, where we defined a minimum

occurrence of two replicas present for each group, followed by the

replacement of the values absent from the normal distribution.

After this step, we added the annotation based on A. thaliana and

performed the matrix normalization by subtracting the median. At

last, this matrix allowed us to visualize the results. All analyses

followed the configuration standards already established by Perseus.

To generate the volcano plot, we adjusted the FDR to 0.05, and s0 is

equal to 0.1.
2.5 Functional annotation of proteins and
integration of metabolomics and
proteomics data

Protein function prediction relies on bioinformatics methods to

assign Genetic Ontology (GO) to proteins, specifying their

molecular functions (MFs), their involvement in biological

processes (BPs), and subcellular locations [cellular components

(CCs)] (Törönen et al., 2018). It becomes fundamental to

understand how the system operates under normal conditions or

stress, whether biotic or abiotic (Merino et al., 2022).

The pannzer2 web software, powered by Sans (Koskinen and

Holm, 2012; Koskinen et al., 2015), performs high-performance

ontology research, allowing the user a robust prediction (Törönen

et al., 2018). In this way, we built different multiFASTA files for each

organ and treatment—files containing the proteins present only in

the control group, apart from the salt-stressed group and those

differentially expressed that belong to both groups—we selected the

work species and submitted it to analyses.

The results obtained using MetaboAnalyst and Perseus

underwent a metabolic pathway–based integration of proteomics

and metabolomics data using the Omics Fusion platform (Brink

et al., 2016). The input data used were the IDs of each omics, which
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include UniProt Accession for proteomics and Kyoto Encyclopedia of

Genes and Genomes ID for metabolomics. First, data underwent

enrichment through several databases (NCBI, KEGG, and UniProt),

and, then, the module “Kyoto Encyclopedia of Genes and Genomes

feature distribution” was used to map these omics data in

known pathways.
2.6 Scanning electron microscopy analysis

Twelve days after the beginning of the salinity stress, purslane

leaves were harvested and then left to dry in an oven at 45°C for

72 h. The samples were coated with a 13.4-mm-thick layer of gold

using a Quorum Technologies© model Q 150T ES metallizer

running the QT GOLD program. Finally, we identified the

qualitative composition at specific points in high-resolution

images obtained using a scanning electron microscope (SEM)

with energy-dispersive spectroscopy (EDS) detectors.
3 Results

3.1 Visual aspects of purslane plants
under salt stress

The water potential in the substrate solution and the electric

conductivity at field capacity (ECfc) on the eighth day of stress

were −1.3425 MPa and 43.475 dS m−1, respectively; values obtained

represent an average of 16 replicates (data not shown). The visual

aspects of the plant at the end of the experimental period of 12 days

were recorded as red, green, and blue (RGB) images. By the end of

the experiment, salt-stressed plants showed a general reduction in

size and a reduced amount of leaves; meanwhile, no substantial

changes were apparent regarding the succulence and color of the

stems or leaves. The fresh and dry biomass reduction due to

salinity stress was about 50% in the shoots and roots of adult

purslane plants; values obtained represent an average of five

replicates (Figure 1).
3.2 Effects of NaCl on the physicochemical
properties of the soil mix (substrate) and
on the mineral composition of purslane
roots and shoots

The salinized substrate used in the cultivation of purslane plants

presented higher values for Na+, sodium saturation index (SSI),

cation exchange capacity, base saturation, and the sum of bases,

compared to the control substrate (Table S1). In the case of Na+, the

amount seen in the control was lower than 0.5 mE 100 ml−1;

meanwhile, the value in the salinized substrate was about 107.5 mE

100 ml−1. The SSI in the later substrate was over 40 times higher

than in the control treatment.

The mineral composition of the shoots collected from salt-

stressed purslane plants at the end of the experiment presented

considerably higher amounts of K+, S, Cu, and Na+ than control
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plants and a lower Mn. The other macro- and micro-nutrients did

not differ much between control and stressed plants (Table S2). The

roots of salt-stressed purslane plants presented a much higher

amount of Na+, a slightly higher of N, P, K+, and Zn, and a much

lower of Mg+, Cl−, and Fe than the control plants (Table S2). No Cl−

differences appeared in the shoots, independent of the treatment.

However, the amount of this ion in the roots of stressed plants was

about 30% of the control. The amount of Na+ went from almost

zero to 2.3 and 17.4 ppm in the shoots and roots, respectively.
3.3 Metabolic fingerprinting analysis

Metabolic fingerprinting is an untargeted metabolomics

approach based on chromatographic profiles and MS peaks
Frontiers in Plant Science 06
information that might correlate to chemical compounds

through annotation. The UHPLC-MS system provides

separation on reverse-phase columns and high-resolution mass

analysis, providing data able to be statistically processed to give

biological information about the control/affected samples.

Figure 2 shows representative chromatographic runs where,

through a reverse phase column and a gradient elution, it is

possible to infer the segregation of polar compounds at the

beginning of the run and less polar compounds at the end of the

chromatographic run.

In total, 64 chromatograms resulted from all experimental and

analytical conditions—eight for each of the following treatments:

roots/control, roots/stressed, leaves/control, and leaves/stressed.

Although some peaks were visually different between treatments,

most presented few or no perceptible changes in retention time and/
FIGURE 1

Table with the average fresh (FW) and dry (DW) weight of shoots (stems and leaves) and roots of adult purslane plants grown for 12 days under
different concentrations of NaCl (0.0 and 2.0 g of NaCl/100 g of the substrate). Picture of plants at the end of the experiment. C, control; S,
stressed; SD, standard deviation.
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or mass intensity. Therefore, a statistical treatment was primordial

to avoid interpretation errors.
3.4 Metabolomics data analysis

All data from the present study are available via Metabolomics

Workbench with project ID PR001633 and DOI 10.21228/

M8MM8Q. Data matrices carrying information about masses and

intensities from each sample underwent multivariate tests on

MetaboAnalyst 5.0, a web-based tool suite for comprehensive

metabolomics data analysis that supports several functions for

statistical, functional, and data visualization tasks (Pang

et al., 2021).

At first, leaves and roots were separately submitted to the one

factor statistical analysis module to evaluate group separation

between control and stressed samples. Partial least squares-

discriminant analysis (PLS-DA), a supervised classification

technique that uses regression analysis to rotate components in

search of optimal group separation, was used to visualize the effect

of salinity on each comparison (Barker and Rayens, 2003). A

representative Partial least squares-discriminant analysis score

plot grid is presented in Figure S1, comparing control and

stressed leaves and roots from polar and non-polar fractions on

both positive and negative mode ionization. Clear group

segregation was observed in all sample fractions and ionization

modes through the Partial least squares-discriminant analysis

analysis, indicating that the metabolism of leaves and roots

changed with the abiotic stress. Cross-validation was employed to

ensure the model robustness and classification power through a

leave-one-out (LOOCV) model, where all conditions showed

acceptable values of Q2 (data not shown).

In the statistical module, a hierarchical clustering analysis (HCA)

was also applied to the samples as dendrograms and heatmaps,

describing the behavior of variables throughout them using the
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Euclidean distance measure. One sees the results from the polar

fraction of leaves and roots on positive mode ionization in Figure 3.

The dendrograms plotted as an HCA confirmed the group separation

trend with the distances between samples. On the heatmaps, one can

observe that among the top 25 features—chosen from a previous T-

test—there are features (upper rows) that increase their intensity on

stress and those that decrease (Figure 3).

Last, in the statistical analysis module, the volcano plot presents

the up- and downregulation of variables regarding specific

parameters, such as fold change threshold (set as ≠1, for any

change indication) and −log10(p) threshold (0.05). As presented

in Figure 4, the polar fraction in positive mode shows several up-

and downregulated peaks used in the upcoming pathway analysis.

The fold change of up- or downregulated variables—p-values, FDR,

and t-test values—was gathered from all fractions and ionization

modes and united in two data matrices: one for leaves and another

for roots variables. The mass list of leaves samples had 3,167 peaks,

with 306 showing an FDR ≤ 0.05, whereas the mass list of roots had

2,777 peaks, with 206 showing an FDR ≤ 0.05. Those statistically

significant variables were organized in a list with their

corresponding p-values and ionization modes before undergoing

analysis in the functional analysis module.

Leaf and root matrices underwent analysis in the mummichog

algorithm, a novel approach to infer metabolites’ putative annotation

and pathway activities from a list of mass peaks. The basic premise is

that putative annotation at individual compound levels can

collectively predict changes at the functional ones, as defined by

metabolite sets or pathways. That is because changes at the group

level rely on the “collective behavior” that is more tolerant of random

errors in the compound annotation. The mass tolerance used for

matching m/z features to compounds was 5.0 ppm, and the Kyoto

Encyclopedia of Genes and Genomes database used for comparison

was from Arabidopsis thaliana.

The functional analysis module generated two lists with the

differentially expressed peaks and their respective matched
A

B

C

D

FIGURE 2

Total ion chromatogram (TIC) of representative samples from adult purslane plants grown for 12 days under different concentrations of NaCl (0.0
and 2.0 g of NaCl/100 g of the substrate). Treatments: (A) leaf sample: control group, positive mode ionization; (B) root sample: control group,
positive mode ionization; (C) leaf sample: stressed group, positive mode ionization; and (D) root sample: stressed group, positive mode ionization.
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compound/adduct, in addition to the corresponding mass difference,

for both sample groups (roots and leaves). Multiple isotopes were

filtered on the basis of their mass difference and database comparison,

as explained earlier (Silva et al., 2022), resulting in the final peak lists

used in the pathway analysis. It is worth mentioning that, from the

106 annotated metabolites obtained from the mummichog algorithm

on leaves (41) and roots (65) (Table S3), there were 13 metabolites

differentially expressed in both plant parts: L-tryptophan,

glucosamine, betaine, L-arogenate, porphobilinogen, caffeate, (S)-4-

amino-5-oxopentanoate, cis-beta-D-glucosyl-2-hydroxycinnamate,

nicotinate D-ribonucleoside, 4-hydroxy cinnamyl alcohol 4-D-

glucoside, (S)-2-acetolactate, eriodictyol chalcone, and

1-methylxanthine.
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The pathway analysis module is the endpoint of the

metabolomics study, where metabolites correlate to pathways

indicating the biological response of the plant to the applied

salinity stress. Information from pathways affected can undergo

integrated or complementary multi-omics studies for a broader

biotechnological approach. Many techniques have been used in

pathway correlation for metabolomics studies, from manual to

automated methods (Duarte et al., 2007; Sigurdsson et al., 2010;

Jewison et al., 2014; Rodrigues-Neto et al., 2018; Wei et al., 2018).

Here, we use the pathway analysis module that integrates methods,

such as univariate and over-representation analysis, and novel

algorithms and concepts (GlobalTest, GlobalAncova, pathway

topology analysis). Both matched compound lists, from the leaves
FIGURE 3

Dendrogram and heatmap used as the hierarchical cluster analysis to evaluate the group and variables separation trends through distance measures.
Results from the polar fraction of leaves (top) and roots (bottom) on positive mode ionization. On the heatmaps, the top 25 features, chosen from a
previous T-test, are featured.
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and roots, obtained from the functional analysis, were submitted to

the pathway analysis to get a metabolome view graph that contains

the arranged p-values (from pathway enrichment analysis) and

pathway impact values (from pathway topology analysis).

There were six statistically significant affected pathways in the

leaves of adult purslane plants, with a p-value < 0.05, listed here in

order of significance (from higher to lower). They were the pentose

phosphate pathway; Valine, leucine, and isoleucine biosynthesis;

pantothenate and Coenzyme A (CoA) biosynthesis; phenylpropanoid

biosynthesis; porphyrin and chlorophyll metabolism; and glycine,

serine, and threonine metabolism. On roots, there were also six

statistically significant affected pathways, with a p-value < 0.05, listed

here in order of significance (from higher to lower): phenylalanine,

tyrosine, and tryptophan biosynthesis; phenylpropanoid biosynthesis;

indole alkaloid biosynthesis; isoquinoline alkaloid biosynthesis;

galactose metabolism; and tyrosine metabolism (Table 1).
3.4 Proteomics data analysis

All data from the present study are available via ProteomeXchange

with the identifier PXD041627 and PXD041628. Approaches to MS-

based proteomics analysis are diverse, and deciding which one to use

depends on the experimental design and sample preparation (Balotf

et al., 2022). The proteomics analysis procedures are label-based or

label-free (Anand et al., 2017). The reproduction for protein

quantification was determined according to the spectral abundance

factors normalized by the MaxQuant and Perseus software in the

present study. The raw files obtained through MS are available for

consultation upon request for use in other proteomics

analysis software.
A

B

FIGURE 4

Volcano plot of representative samples from adult purslane plants
grown for 12 days under different concentrations of NaCl (0.0 and
2.0 g of NaCl/100 g of the substrate), on polar fraction, positive
mode ionization. (A) Leaves: blue variables are downregulated (48)
and red variables are upregulated (38). (B) Roots: blue variables are
downregulated (84) and red variables are upregulated (30).
TABLE 1 List of metabolic pathways in the leaves and roots of adult purslane plants affected by salinity stress.

Plant
Organ Pathway Name Total Expected Hits

Raw
p

-log10
(p)

Holm
adjust FDR Impact

LEAVES

Pentose phosphate pathway 19 0.487 3 0.011 1.946 1.000 0.610 0.116

Valine, leucine and isoleucine biosynthesis 22 0.564 3 0.017 1.768 1.000 0.610 0.145

Pantothenate and CoA biosynthesis 23 0.589 3 0.019 1.714 1.000 0.610 0.093

Phenylpropanoid biosynthesis 46 1.179 4 0.028 1.558 1.000 0.610 0.084

Porphyrin and chlorophyll metabolism 48 1.230 4 0.032 1.498 1.000 0.610 0.045

Glycine, serine and threonine metabolism 33 0.846 3 0.050 1.302 1.000 0.798 0.006

ROOTS

Phenylalanine, tyrosine and tryptophan
biosynthesis 22 0.949 5 0.002 2.720 0.183 0.135 0.140

Phenylpropanoid biosynthesis 46 1.985 7 0.003 2.550 0.268 0.135 0.141

Indole alkaloid biosynthesis 4 0.173 2 0.010 1.983 0.978 0.333 0.000

Isoquinoline alkaloid biosynthesis 6 0.259 2 0.025 1.609 1.000 0.459 0.500

Galactose metabolism 27 1.165 4 0.026 1.581 1.000 0.459 0.102

Tyrosine metabolism 16 0.690 3 0.029 1.542 1.000 0.459 0.007
fron
Only results with a Raw p ≤ 0.05 are shown. Obtained after KEGG IDs of the matched compounds were submitted to the Pathway Analysis module of MetaboAnalyst 5.0, and analyzed using the
Hypergeometric Test and the latest KEGG version of the Arabidopsis thaliana pathway library.
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The analysis of the proteomics profile from purslane leaves led

to the identification of 495 proteins, out of a total of 752 entries, that

met the specifications, of which 136 proteins came from the control

samples and 359 from the stressed ones. After filtering them based

on valid values, the proteins were separated into three groups, 103

proteins common to both treatments, 33 present only in control

plants, and 256 only in the stressed one (Figure S2A). The proteins

common to both treatments underwent analysis that showed

statistical significance at the differential expression level,

according to abundance, revealing 42 differentially expressed

proteins (Table S3), 25 of which are positively regulated and 17

are negatively regulated (Figure 5A).

Nonetheless, the analysis of the proteomics profile from

purslane roots led to the identification of 860 proteins that met

the specifications, of which 435 proteins came from the control

samples and 425 from the stressed ones. After filtering them based

on valid values, the proteins did separate into three groups, 397

proteins common to both treatments, 38 present only in control

plants, and 28 only in the stressed one (Figure S2B). The proteins

common to both treatments underwent analysis that showed

statistical significance at the differential expression level according

to abundance, revealing only three differentially expressed proteins

(Table S4), one of which is positively regulated and two are

negatively regulated (Figure 5B).

A set of proteins from the leaves—containing 42 proteins

differentially expressed in both treatments, 33 present only in

control, and 256 present only in the stressed plants—was

then submitted to gene ontology (GO) analysis to classify

them accordingly to CC, BP, and MF. Likewise, a set from the

roots—containing three proteins differentially expressed in both

treatments, 38 only in control, and 28 only in stressed plants—

was submitted to GO analysis. Only those groups per GO term with a

minimum presence count of three proteins per category are shown in

Supplementary Figures 1, 2, except for samples stressed by leaf salt,

where a cutoff of 13 or more proteins was employed, simply for better
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visualization; and for the proteins differentially expressed in the roots,

due to the low number.

The BP subgroups with more representatives in the leaves

among the proteins found in both treatments (control and

stressed plants) were translation and proteolysis (Figure S3A).

Meanwhile, translation was the only one present in the control

plants, and the ones present only in the stressed plants were

proteolysis, translation, response to cold, and response to water

deprivation (Figures S3B, C). The CC and the MF subgroups with

more representatives in the leaves, among the proteins present in

both treatments, were nucleus and cytosol, and protein binding

and mRNA binding, respectively (Figure S3A). On the other

hand, the CC and the MF subgroups with more proteins

present only in the control plants were cytosol and ATP

binding, respectively; the same was true in the stressed plants

(Figures S3B, C).

No BP or MF subgroups had more than one representative

among the proteins in both treatments in the roots. In the case of

CC subgroups, both mitochondrion and cytosol showed only two

proteins among the ones in both treatments each (Figure S4A). The

CC subgroup with the more representatives in the roots, among the

proteins only in the control plants or in the stressed ones, was

cytosol. The same was true for ATP binding regarding MF

subgroups (Figures S4B, C).

At last, those sets of proteins were submitted to the Omics

Fusion platform (Brink et al., 2016) for metabolic pathway–based

analysis, revealing the metabolic pathways most affected by salinity

stress in the leaves and roots of adult purslane plants. In the leaves,

the ones with more differentially expressed proteins were

Glyoxylate and dicarboxylate metabolism, carbon fixation in

photosynthetic organisms, cysteine and methionine metabolism,

and glycolysis/gluconeogenesis, all with 12 occurrences. In the

roots, cysteine and methionine metabolism and pyruvate

metabolism were the pathways with more proteins occurrence,

i.e., six (Table 2).
A B

FIGURE 5

Volcano plot of proteins from adult purslane plants grown for 12 days under different concentrations of NaCl (0.0 and 2.0 g of NaCl/100 g of the
substrate), common to both treatments, after analysis that showed statistical significance at the differential expression level, according to abundance.
(A) Leaves: revealing 42 differentially expressed proteins, 25 of which are positively regulated (blue dots) and 17 are negatively regulated (red dots).
(B) Roots: revealing only three differentially expressed proteins, one of which is positively regulated and two are negatively regulated.
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TABLE 2 List of metabolic pathways in the leaves and roots of adult purslane plants affected by salinity stress.

Plant Organ Pathway Name Pathway ID Occurrences of Proteins

LEAVES

Glyoxylate and dicarboxylate metabolism 630 12

Carbon fixation in photosynthetic organisms 710 12

Cysteine and methionine metabolism 270 12

Glycolysis/Gluconeogenesis 10 12

Amino sugar and nucleotide sugar metabolism 520 11

Starch and sucrose metabolism 500 11

Pyruvate metabolism 620 11

Glycine, serine and threonine metabolism 260 11

Carbon fixation pathways in prokaryotes 720 9

Pentose phosphate pathway 30 9

Alanine, aspartate and glutamate metabolism 250 9

Methane metabolism 680 8

Purine metabolism 230 7

Arginine biosynthesis 220 7

Citrate cycle (TCA cycle) 20 7

Pentose and glucuronate interconversions 40 6

Arginine and proline metabolism 330 6

Fructose and mannose metabolism 51 6

Pyrimidine metabolism 240 5

Glutathione metabolism 480 5

Tryptophan metabolism 380 5

Aminoacyl-tRNA biosynthesis 970 5

Galactose metabolism 52 5

Propanoate metabolism 640 4

Valine, leucine and isoleucine degradation 280 4

Lysine degradation 310 4

Vitamin B6 metabolism 750 4

Fatty acid degradation 71 4

Porphyrin and chlorophyll metabolism 860 4

Butanoate metabolism 650 4

Nitrogen metabolism 910 3

Oxidative phosphorylation 190 3

alpha-Linolenic acid metabolism 592 3

Lysine biosynthesis 300 3

ROOTS

Cysteine and methionine metabolism 270 6

Pyruvate metabolism 620 6

Amino sugar and nucleotide sugar metabolism 520 4

Glycine, serine and threonine metabolism 260 4

Arginine and proline metabolism 330 4

(Continued)
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3.5 Multi-omics integration analysis

The MOI procedure used to integrate the datasets from the

metabolomics and proteomics platforms was a pathway-based

mapping using the Omics Fusion platform. Those pathways with

≥ 2 unique molecules differentially expressed are in Table 3. The
Frontiers in Plant Science 12
glycine, serine, and threonine metabolism pathway was the most

affected when considering the number of proteins and metabolites

differentially expressed in the leaves due to salinity stress, with 14

occurrences. Amino sugar and nucleotide sugar metabolism and

glycolysis/gluconeogenesis came in second, with 13, and the pentose

phosphate pathway in fourth, with 12 (Table 3). The following were
TABLE 2 Continued

Plant Organ Pathway Name Pathway ID Occurrences of Proteins

Pantothenate and CoA biosynthesis 770 4

Glycolysis/Gluconeogenesis 10 4

Alanine, aspartate and glutamate metabolism 250 4

Valine, leucine and isoleucine degradation 280 3

Carbon fixation in photosynthetic organisms 710 3

Purine metabolism 230 3

Arginine biosynthesis 220 3

Starch and sucrose metabolism 500 3

Citrate cycle (TCA cycle) 20 3
Only results with three or more proteins occurrence are shown. Obtained using the Omics Fusion platform.
TABLE 3 List of metabolic pathways in the leaves and roots of adult purslane plants affected by salinity stress.

Plant Organ Pathway Name Pathway ID
Occurrences of

Proteins
Occurrences of
Metabolites

Total of
Occurrences

LEAVES

Glycine, serine and threonine metabolism 260 11 3 14

Amino sugar and nucleotide sugar metabolism 520 11 2 13

Glycolysis/Gluconeogenesis 10 12 1 13

Pentose phosphate pathway 30 9 3 12

Carbon fixation pathways in prokaryotes 720 9 1 10

Methane metabolism 680 8 1 9

Porphyrin and chlorophyll metabolism 860 4 4 8

Fructose and mannose metabolism 51 6 2 8

Aminoacyl-tRNA biosynthesis 970 5 2 7

Pyrimidine metabolism 240 5 1 6

Phenylpropanoid biosynthesis 940 2 4 6

Tryptophan metabolism 380 5 1 6

Propanoate metabolism 640 4 1 5

Butanoate metabolism 650 4 1 5

Phenylalanine, tyrosine and tryptophan biosynthesis 400 2 2 4

Pantothenate and CoA biosynthesis 770 1 3 4

Valine, leucine and isoleucine biosynthesis 290 1 3 4

One carbon pool by folate 670 2 1 3

Glycosaminoglycan degradation 531 1 2 3

Ascorbate and aldarate metabolism 53 2 1 3

(Continued)
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TABLE 3 Continued

Plant Organ Pathway Name Pathway ID
Occurrences of

Proteins
Occurrences of
Metabolites

Total of
Occurrences

Glycosphingolipid biosynthesis - ganglio series 604 1 1 2

Sphingolipid metabolism 600 1 1 2

Riboflavin metabolism 740 1 1 2

C5-Branched dibasic acid metabolism 660 1 1 2

beta-Alanine metabolism 410 1 1 2

ROOTS

Cysteine and methionine metabolism 270 6 2 8

Purine metabolism 230 3 5 8

Phenylpropanoid biosynthesis 940 1 7 8

Pyruvate metabolism 620 6 2 8

Glycine, serine and threonine metabolism 260 4 3 7

Pantothenate and CoA biosynthesis 770 4 3 7

Glycolysis/Gluconeogenesis 10 4 3 7

Glucosinolate biosynthesis 966 2 4 6

Amino sugar and nucleotide sugar metabolism 520 4 2 6

Citrate cycle (TCA cycle) 20 3 3 6

Methane metabolism 680 1 4 5

Porphyrin and chlorophyll metabolism 860 1 4 5

Arginine and proline metabolism 330 4 1 5

Alanine, aspartate and glutamate metabolism 250 4 1 5

Carbon fixation pathways in prokaryotes 720 1 3 4

Valine, leucine and isoleucine degradation 280 3 1 4

Lysine degradation 310 2 2 4

Glyoxylate and dicarboxylate metabolism 630 2 2 4

Carbon fixation in photosynthetic organisms 710 3 1 4

Lysine biosynthesis 300 2 2 4

Arginine biosynthesis 220 3 1 4

Starch and sucrose metabolism 500 3 1 4

Tryptophan metabolism 380 2 2 4

Valine, leucine and isoleucine biosynthesis 290 2 2 4

Pyrimidine metabolism 240 2 1 3

Pentose phosphate pathway 30 1 2 3

Aminoacyl-tRNA biosynthesis 970 1 2 3

Butanoate metabolism 650 1 2 3

Nicotinate and nicotinamide metabolism 760 1 1 2

Vitamin B6 metabolism 750 1 1 2

D-Glutamine and D-glutamate metabolism 471 1 1 2

Histidine metabolism 340 1 1 2

Ascorbate and aldarate metabolism 53 1 1 2
F
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Only results with at least one proteins and one metabolite occurrence are shown. Obtained using the Omics Fusion platform.
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the most affected pathways in the roots, with eight occurrences each:

cysteine and methionine metabolism, purine metabolism,

phenylpropanoid biosynthesis, and pyruvate metabolism (Table 3).

In the leaves of salt-stressed adult purslane plants, the glycine,

serine, and threonine metabolism pathway had 11 differentially

expressed enzymes and three metabolites. The enzymes are

glycerate dehydrogenase (EC:1.1.1.29), phosphoglycerate

dehydrogenase (EC:1.1.1.95), phosphoserine aminotransferase

(EC:2.6.1.52), glycine transaminase (EC:2.6.1.4), alanine-

glyoxylate transaminase (EC:2.6.1.44), glycine dehydrogenase

(EC :1 .4 .4 .2 ) , aminomethy l t r ans f e ra se (EC :2 .1 .2 .10) ,

dihydrolipoamide dehydrogenase (EC:1.8.1.4), threonine synthase

(EC:4.2.3.1), homoserine dehydrogenase (EC:1.1.1.3), and aspartate
Frontiers in Plant Science 14
kinase (EC:2.7.2.4). The metabolites are L-tryptophan (C00078),

tetrahydrofolate (C00101), and betaine (C00719) (Figure 6).

In other ways, in the roots of salt-stressed adult purslane plants,

the glycine, serine, and threonine metabolism pathway had four

differentially expressed enzymes and three metabolites. The

enzymes are alanine-glyoxylate transaminase (EC:2.6.1.44),

dihydrolipoamide dehydrogenase (EC:1.8.1.4), homoserine

dehydrogenase (EC:1.1.1.3), and aspartate kinase (EC:2.7.2.4). The

metabolites are L-tryptophan (C00078), O-phospho-L-homoserine

(C01102), and betaine (C00719) (Figure 6).

The enzymes (EC number) and metabolites (Kyoto

Encyclopedia of Genes and Genomes compound number)

differentially expressed in the amino sugar and nucleotide sugar
FIGURE 6

Enzymes (EC number) and metabolites (KEGG Compound number) from the glycine, serine, and threonine (00260) pathway differentially expressed
in the leaf and/or roots of adult purslane plants grown for 12 days under different concentrations of NaCl (0.0 and 2.0 g of NaCl/100 g of the
substrate). Metabolites differentially expressed are shown as red circles (in both organs), yellow circles (leaves only), brown circles (roots only), and
metabolites non-differentially expressed are shown as white circles. Proteins (enzymes) non-differentially expressed are shown as white rectangles,
and those differentially expressed are shown as blue (leaves only) and red (in both organs).
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metabolism and glycolysis/gluconeogenesis pathways, the second

most affected in the leaves due to salinity stress, with 13 occurrences

of proteins and metabolites each, are presented in Figure S5.
3.6 Scanning electron microscopy analysis

In the work of Silva et al. (2022), white crystals surrounding and

on the stomata in the leaves of young purslane plants under salinity

stress were reported. The compositional map of those crystals

showed that Na+, Cl−, and K+ were their constituents, indicating

that purslane has a mechanism of salt exclusion operating on the

leaves. In the present study, the scanning electron microscopy
Frontiers in Plant Science 15
(SEM) images showed the presence of such crystals in what seems

to be the xylem (Figure 7A) and intercellular spaces near and

around the stomata (Figure 7B). Again, the SEM images with

detectors of EDS showed that the three above-pointed ions were

the main constituents of those crystals (Figure 7).
4 Discussion

In the present study, adult purslane plants experienced biomass

reduction under salinity stress (Figure 1). Biomass reduction due to

this abiotic stress has been reported before for this species (Borsai

et al., 2020; Giménez et al., 2021; Silva et al., 2022). In a previous
A

B

FIGURE 7

Compositional map of the elements and image obtained by scanning electron microscope (SEM) with detectors of energy-dispersive spectroscopy
(EDS) of areas in the leaf of a salt-stressed adult purslane plant. Formation of salt crystals in the leaf vein (A) and in the intercellular space (B), near a
closed map of the elements showing that the crystals are made of Na+, Cl−, and K+.
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study done by our group, the salt effects on biomass reduction in

young purslane plants were mainly due to the osmotic effect, which

results in stomatal closure and restricts the entry of CO2 into the

leaf mesophyll (Silva et al., 2022). When comparing the response of

young and adult purslane plants to a very high level of salinity

stress, 40–50 dS m−1 (2.0 g of NaCl/100 g of the substrate), it is clear,

based on the morphological characterization of the shoots, that the

adult plants are less affected by this stress. Consequently, B1

purslane plants become more resistant to salinity stress as it

matures. According to Kumar et al. (2021), a decrease in growth

and biomass on water dropwort [Oenanthe javanica (Blume) DC]

could be due to the adverse effects of salinity on cell division and

elongation. In the case of adult purslane plants, reduction in the

level of cell division and elongation could also be the reason for the

shoots and roots biomass reduction observed in the present study;

however, additional studies would be necessary to confirm that.

Adding NaCl to the substrate increased the exchangeable Na+

contents by more than a hundred times compared to the control,

with a consequent increase in the sum of bases, cation exchange

capacity (CEC), and base saturation (BS) (Table S1). With more

Na+ available in the saline treatments, the roots of the purslane

plants were able to absorb it in greater quantity (Table S2),

confirming the premise that salt stress induces the concentration

of Na+ ions in the plant cells (Borsai et al., 2020; Giménez et al.,

2021; Kumar et al., 2021). Much of the absorbed sodium remained

in the roots, and a small part was translocated to the aerial part of

the plants (Table S2), indicating that plants can reduce the damage

of salt stress to aboveground tissues by regulating ion transport

(Ran et al., 2021; Ran et al., 2022). As for Cl−, the roots absorbed

only a small part, which translocated to the aerial part of the plants.

This result reinforces the assertion that, under salt stress, Na+ is the

most harmful ion that limits plant growth and causes salt damage

(Li et al., 2019).

One of the main consequences of high Na+ and Cl−

concentrations is the negative effect on the absorption and use of

several essential nutrients, causing a nutritional imbalance in the

plants (Cruz et al., 2018). Nutrient absorption suffers little or no

impact from salt stress in salt-tolerant plants, constituting one of the

tolerance mechanisms (Gupta and Huang, 2014; Ran et al., 2021).

Maintaining high K+ concentration is one of the mechanisms

underlying salt tolerance (Britto et al., 2010), and it is what

happens in adult B1 purslane plants, which did not change the

concentration of other mineral nutrients but experienced an

increase in the K+ levels in the roots and the shoots of plants

stressed by salt. Increasing and maintaining the potassium

concentration under saline stress is important, as K+ is essential

for reducing the cell osmotic potential and keeping the water

balance (Kumar et al., 2021; Ran et al., 2021). For Yassin et al.

(2019) and Ran et al. (2022), low uptake of Na+ and high uptake of

K+ mean salinity tolerance in higher plants.

The single-metabolomic analysis in the present study identified

six pathways in the leaves of adult purslane plants that were affected

by the salinity stress (Table 1). When comparing the results from

adults and young purslane (Silva et al., 2022), considering only those

pathways showing a raw p (the original p-value calculated from the

enrichment analysis) similar or smaller than 0.05, just two of them
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appear as affected by the salinity stress in both studies; they are

phenylpropanoid biosynthesis and glycine, serine, and threonine

metabolism. In young purslane plants, 10 of the 46 metabolites

expressed differentially in the phenylpropanoid biosynthesis

pathway. That number was only four in the leaves of adult

purslane, and only one metabolite expressed differentially in both

cases, the cis-beta-D-glucosyl-2-hydroxycinnamate (C05839). On the

other hand, in the glycine, serine, and threonine metabolism pathway,

six of the 33 metabolites are differentially expressed in the leaves of

young plants and three in adult plants. Again, only one metabolite

was expressed differentially in both cases: L-tryptophan (C00078).

In the case of single-proteomics analysis, when considering the

proteome profile of the leaves from adult purslane plants, the

phenylpropanoid biosynthesis pathway is not among those most

affected by the salinity stress; differently of what happened in the

metabolome profiles of the leaves from young and adult plants.

However, the glycine, serine, and threonine metabolism pathway

was among the most affected ones in the leaves, having 11

occurrences of differentially expressed proteins (Table 2).

Last, the MOI analysis that integrated data from the

metabolome and proteome profiles of the leaves from adult

purslane plants showed that several pathways were impacted by

the salinity stress (Table 3). For the sake of this discussion, only the

three top ones—accordingly to the number of occurrences—will

undergo further consideration, and they are glycine, serine, and

threonine metabolism; amino sugar and nucleotide sugar

metabolism; and glycolysis/gluconeogenesis.

Considering the results from Silva et al. (2022) and the present

study, derived from SOA and MOI studies, it is clear that the

glycine, serine, and threonine metabolism is directly involved in the

response of purslane plants to salinity stress. That indicates that this

pathway plays a role in the resistance to very high salinity stress

observed in this halophyte plant species and should be the subject of

additional future studies.

Several studies report finding that salinity has a significant impact

on glycine, serine, and threonine metabolism. Zhang et al. (2017)

showed that this pathway was one of the seven amino acid metabolic

ones significantly enriched in the adaption of tomato plants to salt

stress. Jia et al. (2020) applied proteomics and metabolomics

integration approach to characterize the mechanisms underlying

the tolerance of Malus halliana Koehne, an apple rootstock, to

saline–alkali stress, finding out that this pathway is among the ones

most affected by this stress in this species. Derakhshani et al. (2020),

using a single-metabolomic analysis approach, reported that salinity

significantly impacted this pathway when studying the response of

two barley cultivars with contrasting salt tolerance. By comparing the

metabolite profiles of three soybean cultivars, Jin et al. (2021)

indicated that this pathway and the tricarboxylic acid (TCA) cycle

play a role in this plant species’ response to salt stress. Panda et al.

(2021) applied a non-targeted metabolomics approach to elucidate

the salt tolerance mechanism in Haloxylon salicornicum, showing

that the glycine, serine, and threonine metabolism was among those

pathways playing significant roles in conferring salt tolerance in this

xero-halophyte species that grows in saline and arid regions of the

world. At last, Wen et al. (2021) reported that the ectopic expression

of an MYB30 gene from Citrus sinensis in Arabidopsis improves the
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tolerance to salt stress and drought stress and that this pathway was

among those associated with differentially expressed genes between

wild-type and the CsMYB30 transgenic plants, showing upregulation

of the genes.

Geng et al. (2019) used a single-transcriptomics analysis

approach to study sugar beet salt tolerance, reporting that glycine,

serine, and threonine metabolism and amino sugar and nucleotide

sugar metabolism pathways are among those most significantly

enriched in the salt-tolerant cultivar. Using physiological,

proteomic, and metabolomic methods to study salt tolerance in

pecans, Jiao et al. (2022) showed that amino sugar and nucleotide

sugar metabolism was one of the pathways most significantly

enriched in pecan plants under salinity stress. By integrating

transcriptome and metabolome profiles of mature and plump

quinoa seeds imbibed under salinity stress in the dark for 8.0 h,

Yan et al. (2022) showed that the amino sugar and nucleotide sugar

metabolism significantly enriched. In the present study, this

pathway was enriched mainly in the leaves, where all enzymes

differentially expressed were regulated positively—present in the

leaves of stressed plants but not in the leaves of control plants. On

the other hand, in the roots of stressed plants, only one of the four

enzymes from the amino sugar and nucleotide sugar metabolism

pathway differentially expressed positively regulated under stress.

Considering the results from Silva et al. (2022), our studies

employing SOA and MOI strategies using transcriptomics,

metabolomics, and proteomics data, it is clear that the amino

sugar and nucleotide sugar metabolism pathway is also among

the most affected by salinity stress but only in adult plants and

mainly in their leaves and not their roots. Leaves and roots are plant

organs with distinct roles in the response to abiotic stresses, and the

role of this pathway in the resistance to very high salinity stress

observed in the leaves (but not the roots) of this halophyte plant

species should be the subject of additional future studies.

The carbohydrate metabolic process comprises 13 essential

pathways, including amino sugar and nucleotide sugar

metabolism and glycolysis/gluconeogenesis (Berg et al., 2010). In

addition, according to Nong et al. (2019), carbohydrate metabolism

is a fundamental metabolic process in living organisms, being one of

the most sensitive to salt stress in red dragon fruit, where, within the

glycolysis/gluconeogenesis pathway, eight enzymes upregulated

after short and continuous saline stress. In studies carried out by

Zhang et al. (2019) regarding the mapping of metabolic pathways in

sesame subjected to saline stress, the metabolites altered in response

to saline stress were mainly involved in amino acid metabolism,

oligosaccharide metabolism, citrate cycle (TCA cycle), glycolysis/

gluconeogenesis, and urea cycle, suggesting that these metabolic

pathways may play roles in the rapid adaptive response to

saline stress.

Glucose accumulation suggests downregulation of glycolysis and/

or upregulation of gluconeogenesis, which provide metabolic flux for

downstream metabolite production to acquire salt tolerance (Llanes

et al., 2016). In addition to glucose, the accumulation of other

carbohydrates and sugar alcohols, such as fructose, turanose,

arabinose, xylitol, D-mannitol, and glycerol, showed significant in

Haloxylan salicornicum, a xerohalophyte, under salinity, which

suggests a role vital role of these metabolites in the regulation of
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stress-induced oxidative imbalance (Panda et al., 2021). In the present

study, beta-D-glucose (C00221) positively regulated in the roots and

negatively in the leaves of salt-stressed purslane plants, while alpha-

D-glucose 6-phosphate (C00668) negatively regulated in both tissues.

At last, the other two metabolites differentially expressed in adult

purslane plants under salt stress, beta-D-fructose 1,6-bisphosphate

(C05378) and phosphoenolpyruvate (C00074), negatively regulated

in the leaves and positively in the roots, respectively.

Osmoprotectants act against the damage caused to the plant’s

cellular machinery in response to a stressful environment, protecting

the plant (Sharma et al., 2014). They are organic, highly soluble, low

molecular weight, electrically neutral, and nontoxic compounds,

usually classified into three main groups: a) betaine and associated

molecules, b) sugars and polyols, and c) amino acids (Saibi et al.,

2020; Zulfiqar et al., 2020; Omari Alzahrani, 2021). Membrane

integrity strengthening, enzymatic/antioxidant activity balancing,

and water adjustments are physiological responses linked to

osmoprotectants’ action in plants submitted to abiotic stresses,

including water deficit and salinity (Sharma et al., 2014; Saibi et al.,

2020). Different strategies exist to increase salt tolerance in distinct

plant species; the exogenous application of osmoprotectants and

enzyme engineering are two examples (Omari Alzahrani, 2021). In

the present study, betaine was regulated positively in the leaves of

adult purslane plants under salinity stress and negatively in the roots.

On the other hand, L-tryptophan did upregulate in the leaves and

roots of adult plants and leaves of young ones (Silva et al., 2022).

The single-metabolomic analysis in the present study identified

six pathways in the roots of adult purslane plants that were affected

by the salinity stress (Table 1). Silva et al. (2022) did not

characterize the metabolomics profile of the roots of young

purslane plants because they were too small to be processed,

making it impossible to compare the metabolome profiles of the

young and adult plants, as done in leaves. However, four pathways

affected by the salinity stress in the roots of adult purslane plants

also did so in the leaves of young plants. They are phenylpropanoid

biosynthesis; phenylalanine, tyrosine, and tryptophan biosynthesis;

tyrosine metabolism; and isoquinoline alkaloid biosynthesis. Four

of the seven metabolites from phenylpropanoid biosynthesis,

differentially expressed in the roots under salinity stress, were

also differentially expressed in the leaves of adult purslane plants;

they are cis-beta-D-glucosyl-2-hydroxycinnamate (C05839),

4-hydroxycinnamyl aldehyde (C05608), caffeic aldehyde

(C10945), and sinapoyl malate (C02887); and those numbers are

shorter than the 10 metabolites from this pathway differentially

expressed in the leaves of young plants (Silva et al., 2022).

Phenylpropanoids are derived from phenylalanine and tyrosine

and are involved in plant defense, structural support, and

survival. They are phenolics compounds, which are the largest

group of secondary metabolites in plants, have antioxidative

properties, and can scavenge free radicals, resulting in a reduction

of cell membrane peroxidation, hence protecting plant cells from ill

effects of oxidative stress (Deng and Lu, 2017; Santos-Sánchez et al.,

2019; Sharma et al., 2019). At last, when considering the proteome

profile from roots, there was no single pathway common when

comparing the list of most affected ones in the metabolome and

the proteome.
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5 Conclusion

After characterizing the morpho-physiological responses of young

and adult purslane plants to salinity stress and applying a

metabolomics and transcriptomics integrative approach to study the

molecular response of young plants and a metabolomics and

proteomics integrative approach to do so in adult plants, these are

the main conclusions achieved:
Fron
a) B1 purslane plants become more resistant to very high levels

of salinity stress as it matures.

b) In the case of adult purslane plants, the reduction in cell

division and elongation could be the reason for biomass

reduction. However, additional studies would be necessary

to confirm the following.

c) The roots of the purslane plants were able to absorb Na+ in

great quantity, and much of the absorbed sodium remained

in the roots, with a small part translocated to the shoots.

d) The salt crystal-like structures, previously reported on and

around closed stomata on the leaves of young purslane

plants (Silva et al., 2022), were also seen in salt-stressed

adult purslane plants. As before, we showed that those

structures are constituted mainly by Na+, Cl−, and K+ found

in what seems to be the phloem and in the intercellular

space near the stomata. Once again, it indicates that this

species has a mechanism of salt exclusion operating on the

leaves, which has its role in salt tolerance.

e) The MOI approach applied reviewed one pathway from the

amino acid metabolism [glycine, serine, and threonine

(00260)] and two from the carbohydrate metabolism

[amino sugar and nucleotide sugar (00520) and glycolysis/

gluconeogenesis (00010)] were the most significantly

enriched pathways when considering the total number of

occurrences in the leaves and roots of adult plants.

f) When considering the enzymes and metabolites expressed

differentially under salinity stress within those three

pathways, it shows that purslane plants employ the

adaptive mechanism of osmoprotection, using various

groups of low molecular weight compounds, collectively

known as osmoprotectants, to mitigate the negative effect of

very high levels of salinity stress and that this mechanism is

prevalent in the leaves.
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SUPPLEMENTARY FIGURE 1

Scores plots of representative samples from adult purslane plants grown for
12 days under different concentrations of NaCl (0.0 and 2.0 g of NaCl/100 g of

the substrate). Leaves (A–D) and roots (E–H). Polar fraction, positive mode (A,
E); Polar fraction, negative mode (B, F); Lipidic fraction, positive mode (C, G);
and Lipidic fraction, negative mode (D, H).

SUPPLEMENTARY FIGURE 2

Summary of the proteomics analysis performed on representative samples

from adult purslane plants grown for 12 days under different concentrations

of NaCl (0.0 and 2.0 g of NaCl/100 g of the substrate). In the leaves, control
and stressed conditions shared 103 protein identifications; 33 and 256

proteins were uniquely detected in the control and stressed samples,
respectively (A). In the roots, control and stressed conditions shared 397

protein identifications; 38 and 28 proteins were uniquely detected in the
control and stressed samples, respectively (B).

SUPPLEMENTARY FIGURE 3

GeneOntology (GO) annotation classification statistics graph from proteins in
the leaves of adult purslane plants under high salinity stress. Classified

accordingly to biological process (BP), cellular component (CC), and

molecular function (MF). Numbers represent the amount of positive hits.
Proteins present in both treatments (control and stressed) (A), only in the

control plants (B), and only in the stressed plants (C).

SUPPLEMENTARY FIGURE 4

GeneOntology (GO) annotation classification statistics graph from proteins in

the roots of adult purslane plants under high salinity stress. Classified
accordingly to biological process (BP), cellular component (CC), and

molecular function (MF). Numbers represent the amount of positive hits.
Proteins present in both treatments (control and stressed) (A), only in the

control plants (B), and only in the stressed plants (C).
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SUPPLEMENTARY FIGURE 5

Enzymes (EC number) and metabolites (Kyoto Encyclopedia of Genes and
Genomes Compound number) from the Amino sugar and nucleotide sugar

metabolism (00520) and Glycolysis/Gluconeogenesis (00010) pathways

differentially expressed in the leaf and/or roots of adult purslane plants
grown for 12 days under different concentrations of NaCl (0.0 and 2.0 g of

NaCl/100 g of the substrate). Metabolites differentially expressed are shown
as red circles (in both organs), yellow circles (leaves only), brown circles (roots

only), and metabolites non-differentially expressed are shown as white
circles. Proteins (enzymes) non-differentially expressed are shown as white

rectangles, and those differentially expressed are shown as blue (leaves only),

brown (roots only), and red (in both organs).

SUPPLEMENTARY TABLE 3

List of differentially expressed peaks (mass to charge ratio—m/z) resulted

from the pathway analysis module of MetaboAnalyst 5.0, by organ—leaf or
roots. Data set showing the m.z, the matched compound (Kyoto

Encyclopedia of Genes and Genomes id), matched form, mass difference,
metabolite name, and Log2 (FC).

SUPPLEMENTARY TABLE 4

Proteins from the leaves of adult purslane plants, grown for 12 days under
different concentrations of NaCl (0.0 and 2.0 g of NaCl/100 g of the

substrate), differentially expressed. Proteins divided in three groups: Present
in both treatments, present only in control, and present only in stressed.

SUPPLEMENTARY TABLE 5

Proteins from the roots of adult purslane plants, grown for 12 days under

different concentrations of NaCl (0.0 and 2.0 g of NaCl/100 g of the

substrate), differentially expressed. Proteins divided in three groups: Present
in both treatments, present only in control, and present only in stressed.
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