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Academy of Sciences of the Czech
Republic, Czechia

*CORRESPONDENCE

Claire Bréhélin
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and Bréhélin C (2023) Lipid droplets are
versatile organelles involved in plant
development and plant response to
environmental changes.
Front. Plant Sci. 14:1193905.
doi: 10.3389/fpls.2023.1193905

COPYRIGHT

© 2023 Bouchnak, Coulon, Salis, D’Andréa
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Since decades plant lipid droplets (LDs) are described as storage organelles

accumulated in seeds to provide energy for seedling growth after germination.

Indeed, LDs are the site of accumulation for neutral lipids, predominantly

triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol

esters. Such organelles are present in the whole plant kingdom, frommicroalgae

to perennial trees, and can probably be found in all plant tissues. Several studies

over the past decade have revealed that LDs are not merely simple energy

storage compartments, but also dynamic structures involved in diverse cellular

processes like membrane remodeling, regulation of energy homeostasis and

stress responses. In this review, we aim to highlight the functions of LDs in plant

development and response to environmental changes. In particular, we tackle

the fate and roles of LDs during the plant post-stress recovery phase.

KEYWORDS
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Introduction

Lipids, and in particular triacylglycerols (TAGs), are the most energetic molecules in

cells. Yet their hydrophobic nature requires their storage in a specific intracellular structure,

the lipid droplets (LDs). Discovered in the 1880s, LDs have only been widely studied since

the 2000s, particularly in mammalian cells because of their involvement in several human

diseases such as obesity and atherosclerosis (Coleman, 2020). LDs are composed of a

central core of neutral lipids, mainly TAGs and sterol esters, surrounded by a monolayer of

polar lipids embedding various proteins. Long considered to be inert fat globules, they are

now seen as mobile organelles, found in most of organisms from archaea to eukaryotes

(Lundquist et al., 2020).
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In plants, two compartments are dedicated to the storage of

neutral lipids: lipid droplets in the cytosol, also known as

oleosomes, spherosomes, or oil bodies, and plastoglobules within

plastids (Bréhélin et al., 2007). Cytosolic LDs have been intensively

studied in seeds because of their economic importance. However, it

is now known that they are also present in pollen and diverse

vegetative organs (Figure 1). Plastoglobules are thylakoid

membrane-bound compartments with a structure similar to LDs.

In addition to neutral lipids, they also contain secondary

metabolites as carotenoids, plastoquinones, and vitamins

(tocopherol and phylloquinone). They are involved in various

physiological processes such as lipid metabolism and stress

responses (reviewed by van Wijk and Kessler, 2017). The

proteome of plastoglobules revealed the presence of FIBRILLINS,

a family of structural proteins absent from LDs (Lundquist et al.,

2012). The functions of FIBRILLINS and plastoglobules have been

recently extensively described (Michel et al., 2021; Arzac et al., 2022;

Kim and Kim, 2022) and will not be addressed in this review.

In recent decades, the mechanistic details of plant LD biogenesis

have become clearer (for review see Chapman et al., 2019; Choi et al.,

2022; Guzha et al., 2023). Briefly, LD biosynthesis occurs in a three-
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step process: (i) TAG synthesis at the ER, (ii) TAG accumulation

between the two leaflets of the endoplasmic reticulum (ER)

membrane leading to the formation of a lens-like structure, and

(iii) Budding of the lipid droplet from the ER leaflet into the cytosol.

Two pathways permit the synthesis of TAGs: the first one is an acyl-

Coenzyme A (acyl-CoA) dependent pathway, called the Kennedy

pathway, in which glycerol-3-phosphate is converted to phosphatidic

acid (PA) by the sequential esterification of two acyl-CoA to the

glycerol 3-phosphate catalysed by two acyltransferases: the

GLYCEROL-3-PHOSPHASTE ACYLTRANSFERASE (GPAT) and

the LYSO-PHOSPHATIDIC ACID ACYLTRANSFERASE (LPAT),

and thereafter PA is dephosphorylated by the PHOSPHATIDIC

ACID PHOSPHATASE (PAP) to give diacylglycerol (DAG). A

finale acylation of DAG to TAG then occurs, catalysed by the

DIACYLGLYCEROL ACYLTRANSFERASE (DGAT). The second

pathway involves the PHOSPHOLIPID : DIACYLGLYCEROL

ACYLTRANSFERASE (PDAT), which does not use acyl-CoA as

acyl donor but transfers an acyl group from the phospholipid

phosphatidylcholine, to DAG (Figure 2; for more details, see Xu

and Shanklin, 2016). Neutral lipid accumulation occurs at specific

location in the ER, where LDAP-INTERACTING PROTEIN (LDIP)
FIGURE 1

Repartition and function of lipid droplets in different plant tissues. Depending on developmental stage and physiological state of the plant, lipid
droplets (LDs) can be present either in seeds or vegetative tissues such as roots, leaves, dormant buds and pollen grains. Top left: cell of Arabidopsis
seed stained with BODIPY, a LD-specific dye, and observed by confocal microcopy; center: Arabidopsis pollen grain filled with LDs (in black),
observed by electron microscopy; top right: picture of dormant sweet cherry (Prunus avium) floral bud by electron microscopy; bottom left: cell of
Arabidopsis leaf after five days of nitrogen starvation showing two LDs in contact with chloroplast, observed by electron microscopy; bottom right:
LDs in Arabidopsis root tip labelled in green by overexpression of LDAP1-YFP, after two days of nitrogen starvation, observed by confocal
microscopy. This figure was created at BioRender.com.
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interacts with SEIPIN 2/3 proteins (Coulon et al., 2020; Pyc et al.,

2021). During LD budding, LDIP dissociates from SEIPIN complex

and interacts with a LD surface protein, LIPID DROPLET

ASSOCIATED PROTEIN (LDAP). At the same time, VESICLE-

ASSOCIATED MEMBRANE PROTEIN (VAMP) -ASSOCIATED

PROTEIN 27-1 (VAP27-1), an ER protein, interacts with SEIPIN2

and/or SEIPIN3 to stabilize the LD-forming complex (Greer et al.,

2020). These contact sites between LD and ER membrane have been

evidenced by tomography in Arabidopsis leaves (Brocard et al., 2017).

It is not clearly determined whether plant LDs may, in a final step,

detach from the ER or remain attached to it. The mechanisms that
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would trigger and control the cleavage of LDs from the ER are

totally unknown.

Several proteomics studies conducted on plant LDs from

diverse tissues and organ origins, such as hybrid aspen buds

(Veerabagu et al., 2021), mesocarp and seed tissues of Chinese

tallow (Zhi et al., 2017), nutsedge tubers (Niemeyer et al., 2022),

tobacco pollen tubes (Kretzschmar et al., 2018), Arabidopsis

seedlings (Kretzschmar et al., 2020), drought-stressed (Doner

et al., 2021) or senescent Arabidopis leaves (Brocard et al., 2017)

have led to the identification of hundreds of LD-associated proteins.

Regularly, scientific reviews describe the newly discovered
FIGURE 2

Schematic representation of LD life cycle and potential remobilization pathways. Biosynthesis of fatty acids (FAs) takes place in the chloroplast.
Biosynthesis of plastidial galactolipids (MGDG, monogalactosyldiacylglycerol and DGDG, digalactosyldiacylglycerol) occuring within the chloroplast is
termed the chloroplastic or ‘‘prokaryotic “ pathway, and the one in the endoplasmic reticulum (ER), that involves phospholipid synthesis (PA, phosphatidic
acid; PC, phosphatidylcholine) and subsequent transfer to the chloroplast constitutes the endoplasmic or “ eukaryotic “ pathway. When exported to the
cytosol, free FAs are first transported by FA EXPORT 1 protein (FAX1) accross the inner membrane and then converted to activated acyl-CoA by the
LONG ACYL-COA SYNTHETASE 9 (LACS9). Acyl-coA are transported to the ER for TAG (triacylglycerol) and SE (sterol ester) assemblies. The major
pathway for TAG synthesis is the Kennedy pathway. Diacylglycerol (DAG) is the direct precursor for TAG synthesis. DAG can be converted to TAG by
DGAT (DIACYLGLYCEROL ACYLTRANSFERASE) or PDAT (PHOSPHOLIPID DIACYGLYCEROL ACYLTRANSFERASE), using acyl-CoA or PC as acyl donor,
respectively. SEs are synthetized from free sterols by the enzymes PSAT (PHOSPHOLIPID STEROL ACYLTRANSFERASE) or ASAT (ACYL-COA STEROL
ACYLTRANSFERASE). TAGs and SEs accumulate between the two leaflets of the ER, leading to the formation of a lens-like structure and the budding of
a new lipid droplet (LD). Lipolysis and lipophagy are the two main pathways for LD remobilization. Lipolysis involves lipases like SDP1 (SUGAR
DEPENDENT PROTEIN 1). PXA1 is a peroxisomal transporter required for uptake of FAs from LD to peroxisome for b-oxidation. Two distinct pathways of
lipophagy may be at play: microlipophagy and macrolipophagy. Microphagy involves the invagination of tonoplast to trap LDs within the vacuole.
Macrophagy involves the formation of double membrane vesicles called autophagosomes that will sequester LDs and bring them to vacuole for
degradation. Both microlipophagy and macrolipophagy involve autophagy related preteins (ATG). TAGs within LDs could also be a source of FAs for lipid
membrane remodeling thanks to enzymes that remain to be identified and through organelle contacts maintained by tethering proteins such as SLDP
(SEED LD PROTEIN) and LIPA (LD-PLASMA MEMBRANE ADAPTATOR) at LD-plasma membrane connections. This figure was created at BioRender.com.
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mechanisms that participate to the regulation of plant LD

biogenesis, and list the function of each LD-associated protein.

LDs in algae, particularly in the oil-rich diatom Phaeodactylum

tricornutum or in the model green algae Chlamydomonas

reinhardtii, are also in the scientist’s spotlight since the two past

decades due to their potential use as a platform for biofuel

production (reviewed in Kong et al., 2018). Notably, LD

proteomes of different algae species have been determined,

showing the presence of an abundant structural protein such as

MAJOR LIPID DROPLET PROTEIN (MLDP) in C. reinhardtii and

Dunaliella salina (Moellering and Benning, 2010; Nguyen et al.,

2011; Davidi et al., 2012) or LIPID DROPLET SURFACE

PROTEIN (LDSP) in Nannochloropsis oceanica (Vieler et al.,

2012), but also of different proteins, more numerous and varied

than in land plant LDs, among which are in particular enzymes of

the lipid metabolism (reviewed in Goold et al., 2015). While the role

of seed LDs as energy reservoirs for the post-germination phase is

well known, the function of LDs in non-seed tissues is still far from

being elucidated. The aim of the present review is thus to highlight

the physiological functions that LDs may play in land plants, from

roots to pollen grains (see Figure 1), and in particular the role they

may have in the plant response to environment changes. Therefore,

will we focus our description to LDs of land plants, without any

reference to algae LDs.
LDs are found in many plant organs,
where they play various roles

Seed LDs function in germination and
post-germinative growth

Seed LD heterogeneity, a sign of
functional diversity?

Neutral lipids, mainly TAGs, accumulate to high levels in the

seeds of oilseed crops, but are likely present in all seeds. These

storage lipids are packaged in micrometer-sized cytosolic LDs

distributed in several different types of seed tissue. The

abundance and distribution of LDs between seed tissues vary

considerably among plant species (Murphy, 2001). In

exalbuminous dicotyledons such as rapeseed, sunflower, soybean,

and the model plant Arabidopsis thaliana, LDs are predominantly

stored in the embryo axis and cotyledons. However, the endosperm

of these oilseeds, although smaller than embryonic tissues, also

contains LDs (Penfield et al., 2004; Miray et al., 2021). In contrast,

seeds from albuminous dicotyledons like castor bean and coriander,

and from monocots like palm oil or coconut accumulate LDs

mainly in their large endosperm tissue, whereas embryonic tissues

are relatively poor in lipids. The heterogeneity of seed LDs relates

not only to their tissue distribution and abundance but also to their

composition. Embryonic tissues and endosperm display contrasting

oil composition, as shown by fatty acid (FA) analysis of tissues

separated by dissection from various oilseeds such as oil palm and

Arabidopsis (Li et al., 2006; Dussert et al., 2013; Miray et al., 2021).

A heterogeneous oil composition was also observed within the

embryonic tissues by in situ mapping of lipid molecular species
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onto seed sections using matrix-assisted laser/desorption

ionization-mass spectrometry imaging (MALDI-MSI). The

uneven spatial distribution of TAG species between hypocotyl

and cotyledons was indeed demonstrated in various oilseeds

(Horn et al., 2012; Sturtevant et al., 2017; Woodfield et al., 2017;

Sturtevant et al., 2020). LD heterogeneity is not only related to

lipids, but also to proteins associated with the LD surface. While the

most abundant proteins of LDs from oilseed species belong to the

oleosin (OLE) family (Jolivet et al., 2009; Huang, 2018), two other

families of LD-associated proteins, i.e. steroleosins and caleosins,

are also characteristic of seed LDs. Oleosins are structural proteins

controlling LD size and stability in mature seeds, probably by

shielding LD surface and thus preventing LD-LD fusions during

seed dessication and rehydration (Siloto et al., 2006; Miquel et al.,

2014). On the contrary, caleosins and steroleosins are considered to

have enzymatic functions. Steroleosins display hydrosteroid

deshydrogenase activity and may play a role in sterol signaling,

but their natural substrates remain to be determined (Lin et al.,

2002; d’Andréa et al., 2007;Zhang et al., 2016). Caleosins are

calcium-binding peroxygenases that associate with seed LDs from

many species (Chapman et al., 2012). While the caleosin CLO3 is

involved in the production of a phytoalexin in leaves (Shimada

et al., 2014, see below), seed-expressed caleosins such as CLO1

modulate LD accumulation and mobilization (Poxleitner et al.,

2006; Liu et al., 2022). To date, seed LD proteomes have been

deciphered in several species after isolation of LDs from whole seeds

(Jolivet et al., 2013; Wang et al., 2016; Kretzschmar et al., 2020).

However, when the different seed lipid-rich tissues were separated

prior to LD isolation, proteomic analyses revealed tissue specificity

in LD protein composition. In jojoba, LDs isolated from the

embryonic axis contain a lower amount of oleosins and a higher

amount of caleosins and steroleosins than LDs from cotyledons

(Sturtevant et al., 2020). In rice, caleosins specifically associate with

embryo LDs, in contrast to aleurone layer, which contains only

oleosins (Chen et al., 2012). Thus, although the primary function of

oilseed LDs is related to energy storage, the coexistence of distinct

LD pools in different seed tissues raises the question of whether

some LDs with specific distribution and composition may have

other functions than providing carbon and energy for seedling

establishment. These functions could be related to germinative or

post-germinative processes important in both oilseed and non-

oilseed species, including provision of lipid building blocks

for membrane expansion of organelles such as glyoxysomes

(Chapman and Trelease, 1991), oxylipin signaling in response to

environmental stress (Hanano et al., 2023), and control of

dormancy. This last function, specific to seeds, is supported by a

few reports showing that changes in LD structure and composition

alter seed dormancy in Arabidopsis. Seed dormancy, an innate state

in which viable seeds do not germinate even under favorable

environmental conditions, is broken by dry storage or by a cold

imbibition. Transgenic lines overexpressing HSD1 steroleosin

exhibit lower cold and light requirements to break seed dormancy

than wild type (Li et al., 2007; Baud et al., 2009). More recently,

Taurino et al. (2018), showed that seipin2 mutant seeds display

increased dormancy while the final germination rate is not affected.

Seipin2 seeds have enlarged LDs compared to wild-type seeds, due
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to alteration in LD biogenesis during embryo development, which

suggests that LD size may influence the degree of seed dormancy.

LD protein remodeling and LD-peroxisome
association are central to LD mobilization
in seeds

The molecular mechanisms of seed LD mobilization are best

described in Arabidopsis and occur during post-germinative

growth. Indeed, while the germination is largely driven by the

metabolism of non-lipid storage reserves and endosperm storage

lipids (Penfield et al., 2004), seedling growth and development relies

on the massive and rapid degradation of TAGs that begins once

germination is complete, i.e. when the radicle has emerged

(Eastmond et al., 2000; Graham, 2008). The conversion of seed

TAGs to sucrose occurs through sequential metabolic steps

catalyzed by well-known enzymes (see Ischebeck et al., 2020;

Zienkiewicz and Zienkiewicz, 2020; Choi et al., 2022 for reviews).

Briefly, SUGAR-DEPENDENT 1 (SDP1) and SDP1-LIKE (SDP1-

L) lipases cleave TAGs to produce DAGs and free FAs (Eastmond,

2006; Kelly et al., 2011). FAs are then degraded by b-oxidation
in specialized peroxisomes called glyoxysomes, to generate

sucrose through the glyoxylate cycle and the gluconeogenesis

pathway. Additional steps are required before peroxisomal

b-oxidation, including transport into peroxisomes through the

PEROXISOMAL ATP-BINDING CASSETTE TRANSPORTER

PXA1 (Zolman et al., 2001) and activation of FA to acyl-CoA by

the LONG-CHAIN ACYL-COA SYNTHETASES LACS6 and

LACS7 (Fulda et al., 2004). Arabidopsis mutants deficient in

SDP1/SDP1-L, LACS6/LACS7 or PXA1 are all defective in seed

LD mobilization and require exogenous sucrose for seedling

establishment, demonstrating that the primary role of seed LDs is

to provide sugars and energy for seedling establishment. SDP1 and

SDP1-L account for at least 90% of the TAG lipase activity in

Arabidopsis seedlings, but are not involved in the subsequent

breakdown of DAGs and monoacylglycerols (MAGs) (Kelly et al.,

2011). To date, several candidates have been characterized for lipase

activity towards TAG, DAG and MAG, but their contribution to

seed oil mobilization has been ruled out or not established (Kim R,

et al., 2016; Müller and Ischebeck, 2018; Choi et al., 2022).

The metabolic switch from quiescent to dynamic LDs that

occurs during seed germination involves intense remodeling of

the LD proteome and the establishment of close associations

between LDs and glyoxysomes. The major seed LD proteins, i.e.

oleosins, caleosins and steroleosins, are progressively degraded and

replaced by, among others, LD structural proteins of the LDAP

family (Kretzschmar et al., 2020). Remodeling of the LD proteome

is most likely a prerequisite for lipolysis, as oleosins are considered

to form a protective coat on the surface of LDs, preventing lipases

from accessing their TAG substrates prior to seed germination

(D’Andrea, 2016). Oleosin degradation during germination

depends on their ubiquitination, a post-translational modification

also reported for caleosins and steroleosins (Deruyffelaere et al.,

2015; Kretzschmar et al., 2020). The addition of a diubiquitin linked

on lysine 48 marks oleosins for proteasomal degradation

(Deruyffelaere et al., 2015). To be accessible to the cytosolic
Frontiers in Plant Science 05
proteasome for degradation, ubiquitinated oleosins are first

dislocated from the LD surface by the CELL DIVISION CYCLE

48A (CDC48A) AAA-type ATPase. Central to this mechanism

named LD-Associated Degradation (LDAD) is the adaptor

PLANT UBX DOMAIN-CONTAINING PROTEIN 10 (PUX10),

which connects CDC48A with ubiquitinated oleosins to promote

their extraction from LDs and facilitate their proteasomal

degradation (Deruyffelaere et al., 2018; Kretzschmar et al., 2018).

In postgerminative seedlings, LDs are physically and

functionally associated with peroxisomes (glyoxysomes).

Peroxisomes congregate near LDs to facilitate FA import for

glyoxysomal degradation and expansion of glyoxysome

membrane (Chapman and Trelease, 1991; Hayashi et al., 2001).

Blockage of lipid mobilization in the b-oxidation-deficient
peroxisome defective 1 (ped1) mutant or in the lipolysis-deficient

sdp1 mutant results in enlarged peroxisomes, which exhibit

membrane invagination at the site of interaction with an LD

(Hayashi et al., 2001; Cui et al., 2016). In contrast, exogenous

sucrose supplementation reduces the physical interaction between

LDs and peroxisomes. These observations suggest that cellular

sucrose level regulates the LD-peroxisome association, which in

turn controls sugar production from storage lipids (Cui et al., 2016).

SDP1 lipase is first localized to the peroxisomal membrane and then

delivered to LDs by direct contact or via tubular extensions of the

peroxisome membrane, called peroxules (Thazar-Poulot et al.,

2015). The retromer trafficking machinery is involved in the

formation of peroxules through a mechanism that remains to be

identified (Thazar-Poulot et al., 2015). Recently, Huang et al. (2022)

reported that FYVE DOMAIN PROTEIN REQUIRED FOR

ENDOSOMAL SORTING 1 (FREE1), a component of the

endosomal sorting complex for transport (ESCRT), regulates

peroxisomal tubulation and SDP1 targeting to LDs. Consistently,

free1 loss-of-function mutant is impaired in LD degradation in

postgerminative seedlings. The mechanism is not yet understood,

but involves the peroxin PEX11e, a peroxisomal protein that plays

key roles in peroxisomal proliferation and tubulation, and SDP1,

both of which interact with FREE1.

Autophagy is probably also involved
in LD mobilization

Apart from lipolysis, LDs can be degraded by lipophagy, which

refers to the autophagic degradation of LDs in the vacuole. In

plants, lipophagy is poorly described and reported in pollen, and in

dark-stressed plantlets (Kurusu et al., 2014; Fan et al., 2019a).

Several lines of evidence suggest that lipophagy could also be

active during early seedling growth. In Arabidopsis, Avin-

Wittenberg et al. (2015) demonstrated that autophagy-deficient

atg5 (autophagy related gene 5) and atg7 seedlings have shorter

hypocotyls than wild type when grown in darkness. This phenotype

was reversed by providing exogenous sucrose, indicating that

autophagy contributes to carbon supply, likely by degrading LDs,

in young seedlings. The presence of LDs in the vacuole has been

observed by transmission electron microscopy in Arabidopsis and

castor bean seedlings (Poxleitner et al., 2006; Han et al., 2020),

suggesting that LDs could be degraded in the vacuole. Moreover,
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ATG8 proteins, which are major players of the autophagy pathway,

were shown to interact with seed LD proteins. Marshall et al. (2019)

demonstrated that AtOLE1 binds to AtATG8e through an ATG8

interacting motif (AIM). Very recently, in a not yet peer-reviewed

manuscript, AtCLO1 was also shown to contain two AIM domains,

one of which seems required for its interaction with ATG8b

(Miklaszewska et al., 2023). Interestingly, CLO1 deficiency was

consistently shown to delay LD mobilization and to prevent the

transfer of LDs to the vacuole in post-germinative seedlings. The

translocation of LDs into the vacuoles was shown to occur by

invagination of the tonoplast, in a process that resembles

microautophagy (Poxleitner et al., 2006). Overall, these

observations support the hypothesis of an autophagy-dependent

vacuolar degradation of seed LDs, but the physiological role and

regulatory mechanisms of this alternative pathway to lipolysis

remain unknown.
LDs accumulation in pollen grains is
crucial for pollen fertility

Numerous ultrastructural studies have documented the

presence of large amounts of LDs within pollen grains (reviewed

in Piffanelli et al., 1998). These LDs accumulate during pollen grain

maturation (Rotsch et al., 2017) and have been demonstrated to

store mostly TAGs (Piffanelli et al., 1997; Hernández et al., 2020).

For example, TAGs represent up to 39% of the intracellular lipids of

the mature pollen grain of Brassica napus (Piffanelli et al., 1997).

TAG biosynthesis and LD accumulation seems to be critical for

pollen development. Indeed, pollen from mutant impaired in TAG

biosynthesis, such as the dgat1 pdat1 double mutant is sterile

(Zhang et al., 2009). The mutation of both transcription factors

wrky2 wrky34 in which genes involved in TAG synthesis are

repressed and LD abundancy is reduced in pollen grains (Zheng

et al., 2018), also results in pollen sterility (Guan et al., 2014).

During pollen grain germination, LDs exit from the grain and

accumulate in the growing tube (Rodrıǵuez-Garcıá et al., 2003;

Zienkiewicz et al., 2013). TAG synthesis during pollen tube growth

has been demonstrated by feeding germinating pollens with

radioactive ethanol and sucrose, but lipase activity has also been

detected in pollen grain and tube (Zienkiewicz et al., 2013). The

importance of the TAG lipase activity in pollen germination has

been evidenced using the LD-located lipase obl1 (oil body lipase 1)

mutant in which the pollen germination is hampered (Müller and

Ischebeck, 2018). In addition, AtSDP1-L shows exceptionally high

expression in mature pollen grains (Kelly et al., 2011), suggesting

that AtSDP1-L may be involved in LD breakdown during pollen

germination. Indeed, FA composition of TAGs constantly varies

during pollen germination, suggesting that TAG mobilization and

synthesis both happen in the growing pollen tube (Hernández et al.,

2020). In contrast to seeds where TAGs are used as a source of

energy for the plantlet post-germinative growth, pollen TAGs rather

represent a reservoir of lipids to provide FAs necessary for de novo

membrane biogenesis during pollen tube growth (Mellema et al.,

2002; Ischebeck, 2016; Hernández et al., 2020). The essential role of

LDs in pollen fertilization efficiency is exemplified by mutants in LD
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morphology such as the seipin2 seipin3 double mutant (Taurino

et al., 2018) and the pald (protein associated with lipid droplets) one

(Li et al., 2022), which are impaired in tube germination and pollen

longevity, respectively. It can be speculated that FAs are

biosynthesized in the pollen grain where nutrients are available,

and stored as TAGs within LDs, which are then transported to tip

region of the pollen tube where most membrane components are

needed. LD transport may happen on the actin filaments present in

the pollen tube (Fu, 2015), similarly to what has already been

described in root hairs (Veerabagu et al., 2020). As mobile reservoir

of FAs, LDs would provide lipids necessary for membrane synthesis

during pollen tube growth but also facilitate acyl editing of the lipid

membrane and modulate the membrane fluidity in response for

example to temperature changes during tube growth (Ischebeck,

2016; Krawczyk et al., 2022a).
LD abundancy in buds of perennial trees
varies during the course of dormancy

Similar to seeds, buds of perennial species establish dormancy,

partially desiccate to tolerate frost, and accumulate LDs. Indeed, the

presence of LDs in buds has been reported in several perennial species

such as birch (Rinne et al., 1999; Rinne et al., 2001), Norway spruce

(Guzicka and Wozny, 2003; Guzicka et al., 2018), aspen and poplar

(Sagisaka, 1992; Rinne et al., 2011; Veerabagu et al., 2020; Veerabagu

et al., 2021), willow (Berggren, 1984), pine (Jordy, 2004) and

Cunninghamia lanceolate (Xu et al., 2016). LD abundancy is

described to vary during winter dormancy progression (Rinne

et al., 2001; Sutinen et al., 2009; Sutinen et al., 2012). LDs already

present in growing shoot apex, accumulate in quiescent buds during

dormancy and are remobilized during bud development once

dormancy is released either naturally, or artificially for example by

gibberellin (GA4) treatment (Rinne et al., 2001; Jordy, 2004; Rinne

et al., 2011; Sutinen et al., 2012; Veerabagu et al., 2020; Veerabagu

et al., 2021). Recently, Veerabagu et al. (2021) determined the

proteome of an LD enriched fraction obtained from poplar

dormant buds. Four LDAP isoforms were detected in the bud LD

enriched fraction, and the expression of the six LDAP genes was

highly upregulated in dormant buds compared to developing ones. In

addition, LDIP and CLO1 were also present in LD enriched fraction

from dormant buds. On the contrary, the expression of three OLE

genes was high in developing buds but no oleosin was detected in

dormant buds. This suggests that LDAPs replace oleosins in LDs

during bud maturation, in contrast to what happens during seed

development (Kretzschmar et al., 2020). Whether the LD status may

regulate bud dormancy, similarly to what has been described in

Arabidopsis seeds (Taurino et al., 2018) remains to be investigated.

In addition to their role as energy storage, LDs in buds have

been demonstrated to target plasmodesmata during dormancy

release. These LDs deliver callose-hydrolyzing 1,3-b-glucanases to
remove callose that was deposited during dormancy set to

physically close plasmodesmata (Rinne et al., 2001; Rinne et al.,

2011). The directional trafficking of LDs to plasmodesmata has been

shown in Arabidopsis root hairs to be dependent of the actomyosin

system (Veerabagu et al., 2020).
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LDs are also present in roots

LDs can be transiently present in non-dormant vegetative

tissues such as leaves or roots, depending on developmental stage

and physiological state of the plant (Zienkiewicz and Zienkiewicz,

2020). Yellow nutsedge (Cyperus esculentus) is one of the rare plant

to accumulate oil in underground tissue (Linssen et al., 1989), and

LDs have been shown to accumulate during C. esculentus tuber

development (Turesson et al., 2010). Comparative proteomic

analysis of yellow and purple nutsedge (Cyperus rotundus) the

closest known relative, whose tubers do not accumulate oil, has

revealed that indeed a seed-like proteome is present in yellow but

not purple nutsedge (Niemeyer et al., 2022). In fact, the proteome of

LD enriched fraction from yellow nutsedge tubers share similarities

with the proteome of Arabidopsis seed LDs, notably with the

presence of oleosins, steroleosins and SEED LIPID DROPLET

PROTEIN (SLDP), that are specifically detected in seed but not

leaf LDs (Niemeyer et al., 2022). Because yellow but not purple

nutsedge tubers are desiccation-tolerant, it was proposed that oil

accumulation probably allows tubers to withstand extended periods

of severe water loss. Hensel (1986) has observed the presence of

numerous LDs in statocytes of untreated cress roots. In Arabidopsis

thaliana, it was shown that disruption of AtSDP1, the lipase

involved in seed TAG hydrolysis, leads to the presence of

abundant LDs in roots (Kelly et al., 2013). TAG content in roots

of the mutant sdp1 increases with the age of the plant and can reach

more than 1% of dry weight at maturity, a 50-fold increase over the

wild type. Such TAG accumulation in sdp1 roots requires both

DGAT1 and PDAT1 and can also be strongly stimulated by the

provision of exogenous sugar. However, the physiological role of

TAG in sdp1 roots and of LDs in cress statocytes is unknown.
LDs in leaves play different functions

LD abundancy in leaves depends on the diurnal
cycle and the physiological stage of the leaf

As for roots, leaves contain limited amount of TAGs under

standard conditions, and LDs were rarely described in leaves until

the last decade. Yet, in 2006, Lersten and collaborators (Lersten

et al., 2006) provided an overview of relevant literature mentioning

the observation of LDs in mesophyll cells as early as 1863. The

authors completed this review by searching for the presence of LDs

in freehand sections of fresh leaves from more than 300 different

species. They observed one or several LDs in leaves of 23% of the

surveyed species, evenly distributed within the plant kingdom.

Gidda et al. (2016) have shown that the abundancy of LDs in

leaves varies during diurnal cycling, with a peak of accumulation at

the end of the night. It is thus likely that in most of the species from

Lersten’s study, LDs could have been observed at another time of

the day, and it is reasonable to suggest that LDs are potentially

present in leaves of every plant species, depending on the diurnal

cycle and the physiological state of the plant. Leaf LD proteome has

a particular composition (Brocard et al., 2017; Fernández-Santos

et al., 2020; Doner et al., 2021) compared to the seed LD one. In
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particular, the main seed LD proteins, oleosins, are absent from leaf

LDs, while CLO3 and LDAPs are the two most abundant proteins.

The presence of LDAP genes in the whole land plant kingdom (de

Vries and Ischebeck, 2020) is consistent with the hypothesis that

LDs may accumulate in leaves of every land plants. LDs accumulate

in senescing leaves (Lersten et al., 2006; Brocard et al., 2017; Zhang

et al., 2020; Cohen et al., 2022) where they are supposed to sequester

galactolipid-derived FAs before conversion into phloem-mobile

sucrose (Kaup et al., 2002). TAG synthesis has been demonstrated

to occur in leaves, yet only a very limited TAG content was detected

in Arabidopsis senescent leaves (Slocombe et al., 2009; Yang and

Ohlrogge, 2009), suggesting this TAG accumulation is transient. It

is possible that the abundant LDs observed in senescent leaves have

in fact a neutral lipid composition enriched in sterol esters and

depleted of TAGs, but this remains to be thoroughly studied.

LDs are involved in stomatal aperture and
stomatal development

Stomata, pores at the leaf surface that regulate gas exchanges,

have been described to contain LDs in their guard cells but also in

the subsidiary ones (McLachlan et al., 2016; Pautov et al., 2016;

Pautov et al., 2018; Pautov et al., 2022). The disruption of CLO3

perturbs the opening of Arabidopsis stomata (Aubert et al., 2010),

which suggests a role of LDs in the regulation of stomata opening.

In fact, LD abundancy correlates with stomatal movements

(McLachlan et al., 2016; Pautov et al., 2022) and large LDs in

subsidiary cells have been proposed to participate to the turgor

pressure and prevent hydropassive stomatal movements (Pautov

et al., 2018). McLachlan et al. (2016) have shown that LDs are less

abundant in open stomata than in closed ones, and that the

regulation of this abundancy is blue light dependent. In the same

study, they observed that stomata of mutants impaired in TAG

breakdown (sdp1, pxa1 and cgi- (comparative gene identifier-) 58)

show decreased light-induced opening and conclude that LDs

provide the energy necessary for the stomatal opening via the

TAG breakdown and the b-oxidation pathway. Stomatal opening

is also triggered by heat stress. It has recently been shown that this

regulation requires an increase in TAG synthesis and turnover

(Korte et al., 2023), suggesting that LD dynamics are important for

efficient stomatal opening not only at dawn, but also in response to

heat stress. Measurement of LD abundancy in guard cells in

response to heat will be needed to confirm this hypothesis.

In addition to playing a role in the regulation of the stomatal

aperture, LDs are also involved in the stomatal development. Ge

et al. (2022) observed that LDs are abundant in the meristemoid cell

that is at the origin of the stomata, and that their abundancy

decreases with stomatal maturation. They have shown that LD

dynamics is critical for the stomata development. RABC1, a RAB

GTPase involved in stomata morphogenesis that locates at the ER,

is targeted to LDs when both LD biogenesis is induced and RABC1

activated by a GUANINE NUCLEOTIDE EXCHANGE FACTOR

protein (GEF). The inactivation of RABC1, by the mutation of

either RABC1 or RABC1GEF1 genes leads to a defect in stomatal

morphology and function, linked with the presence of aberrant

large LDs in guard cells. RABC1 regulates the localization of
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SEIPIN2/3 to LDs, and the seipin2 seipin3 double mutant also

display large LDs in deformed guard cells. It is proposed that LDs

provide neutral lipids, which mobilization is necessary for guard cell

formation (Ge et al., 2022).
LDs represent specialized storing
compartments for non-TAG neutral lipids

In latex producing plants, such as rubber trees (Hevea brasiliensis)

and rubber dandelion (Taraxacum brevicorniculatum), latex

accumulates in rubber particles, organelles with a structure similar to

LDs. The hydrophobic core of rubber particles is mainly composed of

poly(cis-1,4-isoprene) delimited by a monolayer of phospholipids

(Cornish, 2001) associated with at least two major proteins, the small

rubber particle proteins and the rubber elongation factor (Dennis and

Light, 1989; Oh et al., 1999). These two proteins being homologs to the

LDAPs (Gidda et al., 2013; Berthelot et al., 2014), it seems reasonable to

postulate that rubber particles are LDs specialized in the storage of

latex. Yet, it is still unclear whether the formation of rubber particles

occurs at the ER, similarly to the biogenesis of TAG-containing LDs

(Dai et al., 2013; Guzha et al., 2023).

Jojoba (Simmondsia chinensis) is a peculiar plant that stores up to

60% of seed weight of wax esters instead of TAGs (Miwa, 1971). These

wax esters, composed of a long-chain fatty acid esterified to a long-

chain fatty alcohol, accumulate in cotyledons in what was first called

wax bodies (Rost and Paterson, 1978). There are hydrolyzed after seed

germination to provide energy through the sequential action of a wax

ester hydrolase, a fatty alcohol oxidase and a fatty aldehyde

dehydrogenase to convert fatty alcohols to fatty acids before b-
oxidation (Rajangam et al., 2013). In addition to oleosin and caleosin

proteins, which are classically found in seed LDs, LDAP1 has also been

identified in LDs from Jojoba seeds (Sturtevant et al., 2020). This

suggests a peculiar role of LDAP1 in ensuring correct packaging of

particular hydrophobic compounds such as wax esters in Jojoba seeds

or isoprenoids in rubber plants because LDAP proteins are usually

absent from TAG accumulating seeds.

The neutral lipid core of LDs provides favorable storage site for fat-

soluble vitamins. Vitamin E and vitamin A accumulate in LDs from

animal cells (Welte and Gould, 2017). In plants, vitamin E and

carotenoids (the precursors of vitamin A) are described to

accumulate in plastoglobules inside plastids rather than in cytosolic

LDs (Deruere et al., 1994; Vidi et al., 2006; Zita et al., 2022). Some

studies reported the presence of tocopherols in seed LDs (Zaaboul et al.,

2018; Lopez et al., 2023). It remains to be determined with precision

whether plant cytosolic LDs contain other vitamins and which ones.

Additional non-polar compounds probably accumulate within

different peculiar plant species LDs, such as, for example,

triterpenoid esters in LDs from tea leaves (Zhou et al., 2019).
LDs participate to the plant response to
abiotic and biotic environmental stresses

The implication of LDs in stomata aperture is an illustration of

the role played by LDs in plant response to stress. In fact, LDs have
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been proposed to represent a general mechanism developed not

only by land plants, but shared across the green lineage, for stress

resilience (de Vries and Ischebeck, 2020). In the following

paragraphs, we aim at illustrating such involvement of LDs in

plant response to stress.
LDs accumulate in response to some
abiotic stresses: the example of
thermal stresses

The fluidity of the lipid bilayer of cell membranes is altered by

temperature. In response to diurnal and seasonal temperature

fluctuations, plants compensate for membrane fluidity imbalance

by decreasing or increasing membrane lipid unsaturation degree in

response to high or low temperature stress, respectively. Additional

membrane alterations occur under changing temperature

conditions. Heat stress induces the production of reactive oxygen

species, which promote membrane lipid peroxidation (Farmer and

Mueller, 2013; Pospisil, 2016). Freezing stress generates intracellular

ice, which results in severe dehydration and membrane

deformations causing leakiness and loss of bilayer structure

(Uemura et al., 1995). Temperature stresses induce transcriptional

and metabolic changes important for long-term plant acclimation

(Fowler and Thomashow, 2002; Falcone et al., 2004), but also rapid

remodeling of membrane lipids important for basal tolerance

(Burgos et al., 2011; Li et al., 2015). However, lipid remodeling

does not apply only to membrane lipids but also to reserve

lipids, which are consistently accumulated during heat and

freezing stresses.

In Arabidopsis, Moellering et al. (2010) showed that freezing

induces a 7.5-fold increase of leaf TAGs. They demonstrated that

this TAG accumulation depends on the galactolipid remodeling of

chloroplast membranes by the galactolipid:galactolipid

galactosyltransferase SFR2. SFR2 stands for SENSITIVE TO

FREEZING 2, and as this name clearly indicates, Arabidopsis

plants carrying mutations in SFR2 are not able to resist freezing

and show severe intracellular damage with rupture of chloroplast

membranes (Fourrier et al., 2008). SFR2 is localized to the outer

chloroplast envelope and catalyzes the conversion of MGDG to di-,

tri-, and tetragalactosyldiacylglycerol (DGDG, TGDG, and TeDG,

respectively) by transglycosylation, resulting in the concomitant

production of DAG. SFR2 deficiency impairs freezing-induced

accumulation of TAGs, notably those containing the fatty acid

C16:3, which is predominately esterified to MGDG in Arabidopsis

(Moellering et al., 2010). This result indicates that DAG produced

by SFR2 from MGDG is further acylated to TAG. The enzyme

catalyzing the conversion of DAG to TAG upon cold exposure has

been identified as DGAT1 in both Arabidopsis and Boechera stricta

(Arisz et al., 2018; Tan et al., 2018). Overexpression of AtDGAT1 in

Arabidopsis enhances freezing tolerance of seedlings (Arisz et al.,

2018). Conversely, Arabidopsis dgat1-deficient mutants exhibit

reduced tolerance to chilling (3 weeks at 4°C) or freezing (40 min

at -8°C) stresses than the wild type (Tan et al., 2018), demonstrating

that the conversion of DAG to TAG by DGAT1 is critical for plant

freezing tolerance. Together, SFR2 and DGAT1 are believed to
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contribute to membrane stabilization during freezing stress by

decreasing MGDG, DAG, and PA content. Indeed, these lipids

tend to form a nonlamellar HII-type phase promoting the shrinkage

of membrane structure and membrane ionic leakage (Du and

Benning, 2016). TAGs that are consequently produced from

MGDG-derived DAGs are most likely stored in cytoplasmic LDs.

Indeed, Gidda et al. (2016) showed that the abundance of LDs

increases nearly 10-fold in Arabidopsis leaves after 24h of exposure

to 4°C. Transcriptional analyses of Arabidopsis LDAP1, LDAP2,

and LDAP3 in response to cold stress suggest that cold-induced LDs

are decorated by LDAP1 and LDAP3 but not by LDAP2. However,

LD accumulation induced by cold stress is reduced in ldap3 but not

ldap1 mutant, suggesting a specific role of LDAP3 in cold-induced

LD proliferation (Gidda et al., 2016). Another LD-associated

protein, EARLY RESPONSE TO DEHYDRATION ERD7, has

been identified for its role in cold stress response (Doner et al.,

2021). Arabidopsis lines deficient in ERD7 and its homologs are

more susceptible to freezing than the wild type, perhaps due to

decreased membrane flexibility (Barajas-Lopez et al., 2021). ERD7

does not regulate LD abundance and morphology under normal

growth conditions (Doner et al., 2021). Further investigation will be

required to determine the exact role of ERD7, especially during

stress conditions.

Heat stress also leads to TAG accumulation in plant tissues, as has

been consistently reported in different species (Higashi and Saito,

2019). In Arabidopsis leaves exposed to heat stress at 37°C, TAGs

accumulate rapidly in the first 3 h and reach a steady state level after 6 h

(Mueller et al., 2015; Yurchenko et al., 2018). Compared to other

abiotic stresses such as cold, salt, drought, and high light, heat is the

strongest inducer of TAG accumulation after short-term stress

exposure (Mueller et al., 2015). While the level of total fatty acids

remains unchanged during heat stress in Arabidopsis, indicating that

heat-induced TAG accumulation is not driven by massive de novo fatty

acid synthesis (Mueller et al., 2015), lipidomic studies revealed

significant lipid remodeling. In Arabidopsis leaves and seedlings, a

temperature shift from 22°C to 37°C or 45°C for 2 h to 1 day leads to

the accumulation of TAG species enriched in polyunsaturated fatty

acids (PUFAs), such as TAG 54:7, TAG 54:8, and TAG 54:9 (Higashi

et al., 2015; Mueller et al., 2017; Shiva et al., 2020). Similar observations

were also reported in wheat and Begonia leaves, and castor bean

seedlings (Narayanan et al., 2016; Sun et al., 2022; Zhang et al., 2022). A

2-fold accumulation of TAGs in response to 2-h exposure to 37°C was

also reported in Nicotiana tabacum germinating pollen, but heat-

induced TAGs in pollen, unlike those in leaves, were enriched in

saturated FAs (Krawczyk et al., 2022a). In leaves, the increase of PUFAs

in TAGs is paralleled by their decrease in chloroplastic membrane

lipids such as MGDG, sulfoquinovosyldiacylglycerol, and

phosphatidylglycerol (Higashi et al., 2015). This observation suggests

that heat-induced TAGs are mainly derived from chloroplastic 16:3

and 18:3 PUFAs. A nice demonstration of this premise was provided

by Mueller et al. (2017) by comparing PUFA levels in TAGs in

Arabidopsis fad (fatty acid desaturase) 3 and fad7/8 lines, which are

deficient in ER- and plastid-located w-3 desaturases, respectively.

Indeed, heat-induced accumulation of 16:3 and 18:3 PUFA in

neutral lipids depends on FAD7/8 desaturases, which produce these

trienoic PUFAs in chloroplasts, but not on FAD3 desaturase, which
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synthetizes them in the ER. Consistently, Higashi et al. (2018) showed

that a lipase named HIL1 (HEAT INDUCIBLE LIPASE 1), which

catabolizes MGDG to produce 18:3 free FA, is involved in the heat-

induced remodeling of MGDG and DGDG, and the concomitant

accumulation of PUFA-containing TAGs. The reduction of the heat-

induced galactolipid turnover in the hil1 mutant is associated with a

higher sensitivity to heat stress, compared to the wild type. They also

established that HIL1 expression is induced by heat, and that HIL1

localizes to the chloroplast (Higashi et al., 2018). Thus, the first

committed step of chloroplastic lipid remodeling induced by heat

stress is mainly catalyzed by HIL1, without excluding a minor

contribution of other enzymes such as SFR2, as suggested by Mueller

et al. (2017). Ultimately, FAs released from chloroplastic membranes

are incorporated into cytosolic TAGs and accumulated in LDs. The

PHOSPHOLIPID : DIACYLGLYCEROL ACYLTRANSFERASE

PDAT1 is required for TAG accumulation in response to heat stress,

but DGAT1, the PHOSPHATIDYLCHOLINE : DIACYLGLYCEROL

CHOL INE - PHOSPHOTRANSFERASE PDCT , a n d

PHOSPHATIDIC ACID PHOSPHOHYDROLASES PAH1/PAH2

are not (Mueller et al., 2017). PDAT1 is also involved in heat-

induced TAG accumulation in guard cells (Korte et al., 2023). Thus,

it appears that PUFAs released from chloroplast membranes are

mainly channeled into phosphatidylcholine before being sequestered

into TAGs. Interestingly, pdat1 seedlings are more sensitive to heat

stress, indicating that PDAT1-mediated TAG accumulation is

important for plant tolerance to high temperature (Mueller et al.,

2017). Heat-induced TAGs accumulate predominantly in cytosolic LDs

in Arabidopsis and castor bean (Mueller et al., 2015; Zhang et al., 2022).

Consistently, Gidda et al. (2016) reported massive proliferation of LDs

after 1-h exposure at 37°C. They also showed that LDAP1 expression is

induced in response to heat, and LD proliferation in ldap1 mutant is

reduced, suggesting a role of LDAP1 in the LD dynamics induced by

heat (Gidda et al., 2016).

Plants accumulate TAGs and LDs in response to other various

abiotic stresses such as salinity, drought, high-light, starvation, etc.,

but the role of neutral lipids in general, and of LDs in particular, is

far less documented in these stresses. Plants share common

responses against drought and salt stresses since they both induce

a severe dehydration (for review Krasensky and Jonak, 2012). A 2.5-

fold increase of TAG has been reported when 2 week old

Arabidopsis seedlings were submitted either to a 2h drought or

125 mM NaCl treatment for 2h (Mueller et al., 2015). This increase

in TAG content is paralleled by a significant increase of the LD

number in leaves (Doner et al., 2021). Similarly, an increase of LD

abundancy was observed in mesophyll cells of the rocket Eruca

sativa after a saline stress (Corti et al., 2023). Several proteins

associated with lipid synthesis have been identified in the LD

proteome of microalgae Parachlorella kessleri submitted to a salt

stress (You et al., 2019). Specifically, an acetyl-CoA carboxylase,

LPAT, 3-ketoacyl-CoA synthase, LACS and diacylglycerol kinase

were identified. These findings suggest that LDs play a role in the

synthesis of phospholipids and membrane remodelling in response

to salt stress, at least in algae. A proteomic study (Doner et al., 2021)

performed on LDs purified from drought-stressed Arabidopsis

leaves, showed an enrichment of LD proteins that have been

previously associated to the plant response to stress, such as
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CLO3, LDAP1, LDAP3, DOX1 and ERD7. CLO3, also named

RESPONSIVE TO DESICCATION 20 (RD20), has previously

been shown to play key function in the plant response to diverse

stresses (Blée et al., 2014). Notably the knock out mutant rd20 is less

resistant to drought stress probably because of its alteration of

stomatal aperture (Aubert et al., 2010). Similar to CLO3, LDAP gene

expression is induced by drought stress (Aubert et al., 2010; Kim E,

et al., 2016). Arabidopsis ldap1 and ldap3 mutants are less tolerant

to drought stress while the overexpression of some of the

Arabidopsis or Taraxacum brevicorniculatum LDAP/SRPP genes

confers higher resistance to Arabidopsis plants (Kim E, et al., 2016;

Laibach et al., 2018). It is not clear whether the impact of LDAP

expression on the plant drought tolerance is due to a direct role of

the LDAP proteins in induction of drought tolerance or is a

consequence of their involvement in the LD biogenesis and LD

size regulation.
LDs in the context of plant-pathogen
interactions: friend or foe?

Examples of an involvement of LDs in plant response to

pathogens are really scarce, but the expression of several LD-

related genes such as LDAP1, CLO3 or a-DOX1 is upregulated in

Arabidopsis leaves infected by the fungi Botritys cinerea (Sham

et al., 2014), which suggests that LD biosynthesis is induced either

by the fungi for hijacking of the host lipid metabolism, or by the

plant as a defense against the infection. Indirect evidences of LD

accumulation in response to pathogens have also been obtained by

following the content of neutral lipids, which are stored mainly

within LDs. Recently, an important increase of TAG content (more

than 6 fold higher compared to the control plant) was observed in

Arabidopsis roots inoculated with the fungi Verticillium

longisporum (Schieferle et al., 2021), and also in distal leaves of

the same infected plants despite the absence of the fungi in these

leaves. This suggests the existence of a systemic signal inducing

TAG synthesis in leaves. The bacteria Pseudomonas syringae also

induces an increase of TAG content in infected leaves (Zoeller et al.,

2012; Schieferle et al., 2021). Interestingly, while the FA

composition of TAGs synthesized in response to P. syringae

infection clearly suggests that the TAGs derive from the

membrane degradation locally provoked by the pathogen,

similarly to the process generally described upon abiotic stress,

the composition of TAGs accumulating in leaves in response to V.

longisporum is peculiar, with fewer insaturations. This could result

from the involvement of an alternative TAG synthesis pathway, but

this remains to be elucidated. Indeed, the study of dgat1 and pdat1

mutants suggests that TAGs induced by V. longisporum are

produced independently of these two acyl-transferases. In animal

cells, LDs have been demonstrated to be hijacked by some bacteria,

for exampleMycobacterium or Chlamydia, to serve as major source

of energy and carbon (reviewed in Roingeard and Melo, 2017). But

LDs are also described as forming the “first-line of intracellular

defense” against some bacteria in mammalian cells by establishing

contacts with bacteria and providing antimicrobial peptides (Bosch

et al., 2020). Whether the TAG accumulation in Arabidopsis roots
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and leaves in response to V. longisporum is induced by the fungi to

divert the cell metabolism, or by the plant cell as a defense response

still needs to be investigated.

Hara-Nishimura and colleagues have demonstrated the

involvement of LDs in the production of antifungal molecules

such as oxylipins (Shimada et al., 2014). The authors first

determined that LDs accumulating in leaves upon infection by

the pathogenic fungus Colletotrichum higginsianum contain CLO3

and the a-DIOXYGENASE a-DOX1. Then, CLO3 and a-DOX1
were shown to interact and to convert C18:3 fatty acid into oxylipin

2-hydroxy-octadecatrienoic acid, which has antifungal properties.

Later, PAD3, an enzyme involved in the synthesis of the

antimicrobial phytoalexin camalexin was also demonstrated to

relocate to LDs upon infection by P. syringae (Fernández-Santos

et al., 2020). Taken together, these results suggest that LDs can play

a role in plant defense as “subcellular factories” producing

antimicrobial compounds, at least in Arabidopsis leaves.

The work of Coca and San Segundo (2010) on the CALCIUM

DEPENDENT PROTEIN KINASE 1 (CPK1) also suggested an

involvement of LDs in the plant response to biotic stress.

Arabidopsis cpk1 knock out mutants are indeed more sensible to

fungi while CPK1 overexpressors are more resistant. The

localization of CPK1 in LDs in addition to peroxisomes, thus

suggests a role of LDs in resistance to pathogen, albeit the

function of the association of CPK1 with LDs is still obscure.

In contrast, Yang et al. (2021) have shown that the oomycete

Phytophtora infestans induces the degradation of LDs in guard cells

in order to induce and maintain stomatal opening of potato leaves,

thus facilitating the emergence of sporangiophores from

opened stomata.

As obligatory parasites, viruses have developed tactics to reroute

host cellular functions for their own benefits. In particular, animal

(+) RNA viruses harness lipids and manipulate cell membranes to

create membranous compartments called viral replication

compartments (VRCs) (Zhang et al., 2019). In particular,

Laufman et al. (2019) have nicely described the LD hijacking by

poliovirus: poliovirus recruits LDs to the forming viral organelles to

enable transfer of FAs originating from the lipolysis of LD-stored

triacylglycerol to VRCs, where they are incorporated as polar lipids.

LD recruitment was shown to be driven by viral proteins that tether

the VRCs to the LDs while other viral proteins interact with the host

lipolysis machinery to channel FAs into the phospholipids that

constitute the VRC membranes. The inhibition of the contact sites

formation between LDs and VRCs impedes poliovirus replication

(Laufman et al., 2019). Similarly to animal ones, plant RNA viruses

have the capacity to induce the proliferation of host

endomembranes derived from ER, chloroplasts, mitochondria,

peroxisomes, or vacuole, for VRC formation (Jin et al., 2018;

Medina-Puche, 2019). Interestingly Tomato bushy stunt virus

(TBSV), which is one of the rare plant (+) RNA viruses that can

multiply in the model host yeast (Nagy et al., 2016), was shown to

replicate faster in the yeast pah1 mutant strain in which the

PHOSPHATIDATE PHOSPHATASE PAH1 gene is deleted

(Chuang et al., 2014). In addition, TBSV accumulation was

hindered in N. benthamiana plants overexpressing the

Arabidopsis PAH2 gene. PAH enzymes play key roles in cellular
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decisions about membrane biogenesis versus lipid storage, thus

these results emphasize the importance of the host lipid metabolism

regulation by some plant viruses for their replication. Yet to our

knowledge, no data are available demonstrating any links between

LDs and plant virus infection, and the possible involvement of LDs

in plant virus infection, either at the benefit of the virus or as a plant

defense mechanism against the virus, remains to be explored.
Diverse pathways participate to
LD biogenesis in response to
environmental stress

As mentioned above, during environmental stresses like nutrient

starvation, or heat, LDs accumulate in cells to later disappear upon

favorable environmental conditions. Besides the peculiar role of LDs as

reservoir for the oxylipins defense compounds (Shimada et al., 2014),

the origin and the exact function of this LD transient formation upon

stress is still unclear. The process leading to TAG accumulation seems

to differ depending on the stress type, since heat, drought and salt stress

induce a rapid TAG accumulation, while TAG synthesis is induced

only after several days of exposure to cold, high light or osmotic stress

(Mueller et al., 2015). Under oxidative stress conditions, reactive

oxygen species are produced, inducing loss of the membrane bilayer

integrity, deterioration of the organelles, and leading to generation of

cytotoxic free FAs. These FAs released from the membranes are then

packed as TAGs and sterol esters in LDs to prevent free FA-induced

toxicity (Fan et al., 2013; Xu and Shanklin, 2016). In Arabidopsis plants

grown under standard conditions, the disruption of PDAT1 in the tgd1

(trigalactosyldiacylglycerol 1) mutant causes severe decreases in TAG

levels with concomitant increases of the content of free FAs, DAG and

membrane phospholipids, and premature cell death in growing leaves

and floral organs (Fan et al., 2013). This demonstrates the crucial role

of TAG biosynthesis and storage for lipid homeostasis and free FA

detoxification. Mueller et al. (2017) have shown that PDAT1 but

neither DGAT1, nor PDCT, and nor PAH1/PAH2, is required for

TAG accumulation in response to heat stress. This confirms that TAGs

accumulated under heat stress do not originate from the Kennedy

pathway but rather derived from lipid membrane remodeling and FA

recycling. Indeed, under stress conditions, the concentration of toxic

free FAs is highly regulated by feedback inhibition of FA biosynthesis

by oleic acid-ACYL CARRIER PROTEIN (18:1-ACP), which inhibits

plastidic ACETYL-COA CARBOXYLASE (Flügge et al., 2011). In

contrast to heat stress, upon freezing, DGAT1 is an essential player of

TAG formation (Arisz et al., 2018). During cold acclimation phase,

TAG accumulates in B. stricta seedlings from conversion either of

phosphatidylcholine or of MGDG, depending on the ecotypes, while

some TAGs are formed with newly synthesized FAs (Arisz et al., 2018).
LD degradation probably participate to
plant stress recovery upon return to
normal environmental conditions

Plant tolerance to stress depends not only on the efficient

elimination of damaged organelles/membranes, but also on the
Frontiers in Plant Science 11
capacity to remodel functional compartments upon return to

normal conditions. Recent studies have revealed immediate rapid

disappearance of LDs post-stress (Mueller et al., 2015; Graef, 2018;

Zienkiewicz and Zienkiewicz, 2020). Thus, it has been postulated

that LD degradation is involved in stress recovery upon return to

normal environmental conditions. The essential role of LDs for the

resumption of cell growth is documented in yeast and microalgae

(Graef, 2018; Lee et al., 2020; Zienkiewicz and Zienkiewicz, 2020),

and the mobilization of seed LDs during post-germinative growth is

well described (Kelly et al., 2011; Deruyffelaere et al., 2015; Thazar-

Poulot et al., 2015; D’Andrea, 2016; Deruyffelaere et al., 2018).

However, the mechanisms involved in the plant recovery phase

after a period of stress, and leading to a rapid built of new organelle

membranes from damaged ones, are still an enigma. In particular, it

is unclear whether FAs transiently stored as TAGs in LDs are

hydrolyzed during stress recovery for energy supply or recycled as

source of FAs for lipid synthesis to restore the integrity of

membranes. Probably both processes happen.

Under deprivation of nutrients, which induces growth arrest,

LD accumulation allows the storage of the excess carbon produced

by photosynthesis, and will provide energy and carbon to quickly

restart when the conditions get better. Fan et al. (2019b) have

suggested that under starvation conditions, the degradation of

membrane lipids and the subsequent formation of TAGs in leaves

may participate to the maintenance of energy homeostasis.

Very little is known about the degradation of plant LDs after

stress and the lipid metabolism associated to post-stress recovery.

Mueller et al. (2015) reported that TAG mobilization occurs in less

than one day upon recovery from heat stress suggesting a rapid and

acute degradation of stress-induced TAGs during the recovery

phase. Lipids stored in LDs are degraded by two distinct

pathways: lipolysis which relies on the action of lipases, and

lipophagy, a specialized form of autophagy (Figure 2).

Lipolysis, coupled to b-oxidation, is the main pathway that

supply energy and carbon for seedling growth after germination

(Kelly et al., 2011; Thazar-Poulot et al., 2015). So far, the best

characterized TAG lipases directly involved in LD mobilization in

plants are SDP1 and SDP1-L proteins (Eastmond, 2006; Quettier and

Eastmond, 2009; Kelly et al., 2011). Previous studies have shown that

the expression level of AtSDP1 increases during natural leaf

senescence (Troncoso-Ponce et al., 2013) and that disruption of

AtSDP1 leads to TAG accumulation also in vegetative tissues, such

as leaves, stems, and roots (Kelly et al., 2013; Fan et al., 2014). Later,

SDP1-dependent lipolysis was proposed to participate in leaf TAG

mobilization from dark-induced LDs (Fan, 2017). AtCGI-58

transcript levels are up-regulated during leaf senescence (Troncoso-

Ponce et al., 2013), and atcgi-58 mutant shows a significant increase

in TAG content of leaf mesophyll cells (James et al., 2010). Similarly

to mammalian CGI-58 that has been shown to regulate TAG

breakdown by activating ATGL (Lass et al., 2006), Arabidopsis

CGI-58 has been suggested to promote TAG turn-over by

activating PXA1 hydrolysis activity (Park et al., 2013). Many genes

putatively coding for lipases are expressed during leaf senescence

(Troncoso-Ponce et al., 2013), suggesting that more lipases could be

involved in LD turnover during leaf senescence or in response to

environmental stress, yet their activity remains to be described.
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Post-germinative LD degradation is delayed in LDAP1-deficient

Arabidopsis plants (Gidda et al., 2016), suggesting that LDAP1 (and

possibly other LDAPs) might orchestrate the LD docking and

activation of actors of LD/TAG degradation, similar to the

function of PERILIPINs (PLINs) in mammalian cells (D’Andrea,

2016). Moreover, LDAPs are differentially up-regulated by diverse

stresses and are associated with a better tolerance to drought (Gidda

et al., 2013; Kim et al., 2016a). On the basis of these observations, we

anticipate that LDAPs might be involved in LD remobilization and

plant fitness upon stress recovery not only via their structural

function on LDs, but also by promoting the formation and/or

recruitment of protein modules dedicated to this mobilization.

In addition to lipolysis, lipophagy is the alternative LD degradation

pathway during which LDs are specifically targeted by the autophagy

machinery, as reported in mammals, yeast and algae (Singh et al., 2009;

Zhao et al., 2014; Graef, 2018). Two distinct types of autophagy have

been described in plants: macroautophagy and microautophagy

(Figure 2). Macroautophagy involves the formation in the cytosol of

double membrane structures called autophagosomes (Yoshimoto and

Ohsumi, 2018). During their formation, autophagosomes entrap

different cargo and carry them to the lytic vacuole lumen where they

will be released after fusion of the autophagosome outer membrane

with the tonoplast. Microautophagy is characterized by the invagination

of the tonoplast to trap cytoplasmic material and create autophagic

bodies within the vacuole lumen (Masclaux-Daubresse et al., 2020).

Diverse ATG proteins participate in the induction of macro- and

micro-autophagy. Plant autophagy is highly induced by various

abiotic stresses, including nutrient deprivation (Janse van Rensburg

et al., 2019), dark-induced starvation (Fan et al., 2019b), drought (Bao

et al., 2020), and biotic stresses as pathogen infection (Dagdas et al.,

2016). Several studies have provided evidence of an important role of

autophagy in LDs remobilization in non-seed tissues (Kurusu et al.,

2014; Fan et al., 2019a). Potential role of lipophagy in pollen grain

maturation was described in rice (Kurusu et al., 2014), where Osatg7

mutant defective in autophagy showed lower contents of TAGs and

LDs in mature pollen, but a higher accumulation of LDs in tapetal cells

compared to wild type plants. These results, suggest that ATG7 may be

responsible for LD degradation and TAG remobilization in the

tapetum. More recently, Zhao et al. (2020) showed that silencing of

ATG2 and ATG5 leads to a lower number of autophagosomes at the

germinative pollen aperture and is accompanied by inhibition of pollen

germination and significant accumulation of TAGs andDAGs in pollen

grains. Autophagy is also implicated in LD breakdown in senescent

leaves of watermelon (Cirullus lanatus) (Zhang et al., 2020) and in LD

turnover in Arabidopsis leaves during dark-induced starvation (Fan

et al., 2019a). Indeed, ultrastructural analysis performed on dark-treated

atsdp1-4 leaves, defective in cytosolic lipolysis, showed accumulation of

LDs in the central vacuole, probably resulting from the trapping of LDs

by invagination of the tonoplast during microlipophagy (Fan et al.,

2019a). In addition, macro-autophagy has been shown to be involved in

the degradation of lipids originating from the endomembranes of

various organelles, except for those of the chloroplasts (Fan et al.,

2019a; Havé et al., 2019). Whether lipophagy occurs in response to

other stresses and contribute to plant recovery remains an open

question, which requires further investigations.
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Conclusion

While described in non-seed tissues since more than a century,

the physiological roles of LDs in vegetative cells have been under

investigation since only few years. Their presence in almost every

organs and tissue of the plant suggest a wider function than their

primary role as reservoir of energy for post-germinative growth. In

fact, plant LDs must be considered as dynamic versatile organelles

with numerous roles. Of course, they principally play functions

related to lipid metabolism such as protection against cytotoxicity of

free FAs derived from membrane degradation, and remobilization

of neutral lipids for membranes synthesis during bud dormancy

release or pollen tube growth for example. Yet they also allow the

storage of particular lipophilic compounds such as the antifungal

oxylipins, isoprenoids in rubber particles and probably some

vitamins that still need to be identified in plants. In addition, they

probably have cryoprotectant properties in seeds and dormant

buds, as well as in roots. Within cells, LDs are highly mobile

organelles (reviewed in non-plant cells by Kilwein and Welte,

2019) and share multiple transient contact sites with other

organelles such as the ER and peroxisomes of course, but also

mitochondria, vacuole, plasma membrane (reviewed in Scholz et al.,

2022) and chloroplast (Brocard et al., 2017). The nature of such LD-

organelle contacts is not well defined in plant. A continuity between

the LD monolayer and the cytosolic leaflet of the ER membrane is

described for example in the case of LD-ER connections during LD

nucleation and growth. Membrane contact sites (MCS), which are

defined as the close (less than 30 nm) apposition of two membranes

without any fusion event, mediated by tethering proteins, have

recently been proposed to occur between LDs and plasma

membrane, through the tethering of SEED LD PROTEIN (SLDP)

and LD-PLASMA MEMBRANE ADAPTOR (LIPA) proteins

(Krawczyk et al., 2022b). However, the confocal microscopic data

provided in this study do not allow to firmly exclude any membrane

fusion event and thus to firmly identify sensu strictoMCS at the site

of LD-plasma membrane junctions. Similarly, the exact identity of

the connections described between LDs and peroxisomes (Reviewed

in Esnay et al., 2020) still remains to be determined. Whatever their

exact nature and structure, these contacts would favor the necessary

exchange of lipids (reviewed in Michaud and Jouhet, 2019; Scholz

et al., 2022) occurring under stress condition, for example for

membrane remodeling (cf. Figure 2). In addition, such contacts

would also allow the transfer of enzymes and other hydrophobic

proteins that would more easily transit within the cell by riding

piggyback on LDs than through the aqueous cytosol. Given the high

number of proteins identified in LD proteomes, different additional

functions of plant LDs most probably remain to be discovered.

Notably, involvement in resistance to ER stress or to mitochondrial

damage during autophagy, that have been described in animal cells,

are also presumably supported by LDs in plant cells.

Nowadays, LDs are the target of choice for researchers and

industrialists to modify the lipid metabolism of plants for

biotechnological purposes (e.g. increase of oil content, production of

high-value proteins requiring hydrophobic environment). However,

the involvement of LDs in so many physiological functions of the plant
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should be taken into account during such studies in order to minimize

the impact on the development (and thus the yield) of the plant.
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lipid balls: quantitative analysis of plastoglobule attributes and their stress-related
responses. Planta 255, 62. doi: 10.1007/s00425-022-03848-9

Aubert, Y., Vile, D., Pervent, M., Aldon, D., Ranty, B., Simonneau, T., et al. (2010). RD20, a
stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance
in arabidopsis thaliana. Plant Cell Physiol. 51, 1975–1987. doi: 10.1093/pcp/pcq155

Avin-Wittenberg, T., Bajdzienko, K., Wittenberg, G., Alseekh, S., Tohge, T., Bock, R.,
et al. (2015). Global analysis of the role of autophagy in cellular metabolism and energy
homeostasis in arabidopsis seedlings under carbon starvation. Plant Cell 27, 306–322.
doi: 10.1105/tpc.114.134205

Bao, Y., Song, W.-M., Wang, P., Yu, X., Li, B., Jiang, C., et al. (2020). COST1
regulates autophagy to control plant drought tolerance. Proc. Natl. Acad. Sci. U S A 117,
7482–7493. doi: 10.1073/pnas.1918539117

Barajas-Lopez, J., de, D., Tiwari, A., Zarza, X., Shaw, M. W., Pascual, J. S., et al. (2021).
EARLY RESPONSE TO DEHYDRATION 7 remodels cell membrane lipid composition
during cold stress in arabidopsis. Plant Cell Physiol. 62, 80–91. doi: 10.1093/pcp/pcaa139

Baud, S., Dichow, N. R., Kelemen, Z., d’Andréa, S., To, A., Berger, N., et al. (2009).
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