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Introduction: Despite the critical role of programmed cell death (PCD) in plant

development and defense responses, its regulation is not fully understood. It has

been proposed that mitochondria may be important in the control of the early

stages of plant PCD, but the details of this regulation are currently unknown.

Methods: We used Arabidopsis thaliana cell suspension culture, a model system

that enables induction and precise monitoring of PCD rates, as well as chemical

manipulation of this process to generate a quantitative profile of the alterations in

mitochondrial and cytosolic proteomes associated with early stages of plant PCD

induced by heat stress. The cells were subjected to PCD-inducing heat levels (10

min, 54°C), with/without the calcium channel inhibitor and PCD blocker LaCl3.

The stress treatment was followed by separation of cytosolic and mitochondrial

fractions and mass spectrometry-based proteome analysis.

Results: Heat stress induced rapid and extensive changes in protein abundance

in both fractions, with release of mitochondrial proteins into the cytosol upon

PCD induction. In our system, LaCl3 appeared to act downstream of cell death

initiation signal, as it did not affect the release of mitochondrial proteins, but

instead partially inhibited changes occurring in the cytosolic fraction, including

upregulation of proteins with hydrolytic activity.

Discussion: We characterized changes in protein abundance and localization

associated with the early stages of heat stress-induced PCD. Collectively, the

generated data provide new insights into the regulation of cell death and survival

decisions in plant cells.
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1 Introduction

Programmed cell death (PCD) is a genetically regulated

pathway for selective elimination of redundant, damaged, or

infected cells (Danon et al., 2000). In plants, PCD plays a critical

role in development (Daneva et al., 2016) and responses to abiotic

and biotic stimuli (Yanık et al., 2020). Carefully regulated PCD

events are, therefore, essential during the normal plant life cycle and

can promote survival under stressful environmental conditions. The

past two decades have witnessed significant advances in the field of

plant PCD research, for example, in terms of elucidating the

transcriptional regulation of this important process (Cubrıá-Radıó

and Nowack, 2019; Burke et al., 2020) or the identification of plant-

specific proteases that execute the cellular demise (Balakireva and

Zamyatnin, 2019). However, our understanding of the sequence of

events leading to activation of plant PCD is still fragmented,

especially in comparison to well-characterized animal cell

death pathways.

The mitochondrion is a central signaling nexus between

different cell death modalities in animals (Bock and Tait, 2020).

Apoptosis, the most studied form of regulated animal cell death, can

occur through two interconnected pathways depending on the cell

death initiation signal: mitochondrial (intrinsic) pathway and death

receptor–mediated (extrinsic) pathway (Hengartner, 2000). During

apoptosis, interactions between pro- and anti-apoptotic members of

the B cell lymphoma 2 (BCL-2) family result in BAX-mediated and

BAK-mediated (pro-apoptotic BCL-2 proteins) permeabilization of

outer mitochondrial membrane (OMM) and, consequently, the

release of soluble proteins from the intermembrane mitochondrial

space (IMS) into the cytosol that initiates a signaling cascade

leading to cell death (Green and Llambi, 2015). Upon its release

to the cytosol, cytochrome c (cyt c) triggers a cascade of catalytic

activation of caspases that drive proteolytic degradation of the cell

(Cain et al., 2002). Other released IMS proteins, such as SMAC

(second mitochondria-derived activator of caspase) and Htra2/Omi

(high temperature requirement 2), further facilitate apoptosis by

blocking the inhibitor of apoptosis proteins such as the caspase

inhibitor X-linked inhibitor of apoptosis protein (XIAP) (Du et al.,

2000; van Loo et al., 2002; Muñoz-Pinedo et al., 2006). In addition,

apoptosis-inducing factor (AIF), yet another protein released from

the IMS upon apoptotic insult, can activate caspase-independent

cell death after translocation to the nucleus where it triggers

chromatin condensation and large-scale DNA degradation

(Sevrioukova, 2011). More recently, involvement of the

mitochondrion in other forms of regulated cell death, including

necroptosis, ferroptosis, and pyroptosis, has been also reported

(Bock and Tait, 2020), further underscoring the central role of

this organelle in orchestrating the cell death programs operating in

the animal kingdom.

Although the homologs of the core animal apoptotic machinery

including the BCL-2 family and caspases have not yet been found in

plant genomes, numerous studies strongly suggest that the

mitochondrion also plays a key PCD role in plants. Early in the

PCD process, bursts of mitochondrial reactive oxygen species

(ROS) are commonly observed in plant cells (Gao et al., 2008; Bi

et al., 2009), and, similarly to animal cells, their mitochondria
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undergo a permeability transition, swelling, and loss of

transmembrane potential. Moreover, the chemicals that inhibit

these mitochondrial changes can prevent the cell death process in

plants, e.g., in sycamore (Contran et al., 2007), zinnia (Yu et al.,

2002), Arabidopsis (Gao et al., 2008; Scott and Logan, 2008), lace

plant (Lord et al., 2013) and Micrasterias alga (Darehshouri et al.,

2008). The rapid release of cyt c into the cytosol, a key event in

animal apoptosis, has been shown to occur in a variety of plant

species, including cucumber (Balk et al., 1999), sunflower (Balk and

Leaver, 2001), wheat (Virolainen et al., 2002), Arabidopsis (Yao

et al., 2004), and cannabis (Morimoto et al., 2007). However, the

role of cyt c in the plant PCD process in plants is debatable, as, in

contrast to animal studies (Slee et al., 1999), cyt c alone was not

sufficient to trigger DNA laddering, a hallmark feature of PCD, in

an Arabidopsis cell-free system (Balk et al., 2003). Nevertheless, in

the same study, the broken mitochondria induced DNA laddering

that was attributed to an unidentified nuclease activity located in the

IMS (Balk et al., 2003). It is, therefore, plausible that currently

unknown mitochondrial proteins, other than cyt c, are involved in

the regulation of plant PCD, and, hence, the mitochondrial role in

plant cell death processes requires further investigation. In addition,

chloroplasts have also been suggested to mediate PCD pathway(s)

unique to plants, acting either downstream of mitochondria or in

parallel with the mitochondrial signaling (van Aken and van

Breusegem, 2015), with their involvement well supported by

experimental evidence (e.g., Gan and Amasino, 1997; Samuilov

et al., 2003; Doyle et al., 2010; Ambastha et al., 2015;

Woodson, 2022).

PCD is often limited to small groups of dying cells buried in

living tissue and, therefore, difficult to access, monitor, and sample,

so there are often logistical challenges to studying the regulation of

this process in whole plants (Reape and McCabe, 2008). In contrast,

cell suspension cultures provided a useful model for studying PCD

in species such as A. thaliana (Reape et al., 2015), carrot (McCabe

et al., 1997), tobacco (Zhang et al., 2012), or wheat (Rezaei et al.,

2013), as they enable precise monitoring of PCD rates induced by a

range of stress treatments, as well as chemical manipulation of this

process, and hence offer an unprecedented opportunity to

specifically sample plant cells undergoing PCD. Indeed, plant

suspension cells have been previously used to study plant PCD

regulation at both transcriptome (Swidzinski et al., 2002) and

proteome (Swidzinski et al., 2004) levels and to characterize plant

PCD markers such as protoplast shrinkage (Kacprzyk et al., 2017).

There are also well-established protocols for subcellular

fractionation of plant suspension cells, allowing the isolation of

relatively large volumes of intact mitochondria suitable for protein

work (Reape et al., 2015). Previously, these characteristics of the cell

suspension model facilitated research investigating the release of cyt

c into cytosol during PCD induced by different types of stimuli

(Malerba and Cerana, 2021) and studies of the mitochondrion-

nucleus cross-talk during response to heat stress (HS) (Rikhvanov

et al., 2007). Here, we used the state-of-the-art mass spectrometry

(MS) to characterize the early, PCD-associated proteome changes in

cytosolic and mitochondrial fractions from A. thaliana suspension

cells. Cells were subjected to HS (10 min, 54°C) for induction of

PCD. To facilitate identification of proteome changes specific to the
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PCD pathway, we used lanthanum chloride (LaCl3), a calcium

channel blocker (Evans, 1990), previously reported to inhibit

hallmark features of PCD such as early DNA fragmentation and

protoplast shrinkage when applied before or even during early stress

treatment (McCabe et al., 1997; Kacprzyk et al., 2017). Analysis of

generated datasets deepened our understanding of events associated

with plant PCD through identification of proteins translocated from

mitochondria into cytosol upon stress insult, as well as changes in

abundance of proteins occurring in the cytosolic fraction.

Furthermore, Western blot (WB) experiments underscored the

release of mitochondrial heat shock protein 60 (HSP60) into

cytosol occurring in response to PCD inducing, but not sublethal

level of HS, that may indicate its cytosolic role in plant

PCD regulation.
2 Material and methods

2.1 Cell suspension cultures and
growth conditions

Arabidopsis thaliana [ecotypes Landsberg erecta (Ler) and

Columbia-0 (Col-0)] cell suspension cultures were grown as

described previously (May and Leaver, 1993; Hogg et al., 2011).

Cell suspension cultures were maintained under a 16-h light (~45

mmol m−2 s−1)/8-h dark in 250-ml Erlenmeyer flasks on an orbital

shaker at 110 revolutions per minute (rpm) in a controlled

environment room (22°C) and subcultured weekly by

transferring 10 ml of cells into 100 ml of fresh growth medium.

Seven-day-old, dark-grown cells were used for the cellular

fractionation experiments.
2.2 PCD assay

Cell viability was assessed using fluorescein diacetate (FDA;

Sigma-Aldrich) staining as previously described (Reape and

McCabe, 2008; Hogg et al., 2011). Cells positive for FDA staining

were scored as alive, and dead cells showing no fluorescence were

categorized as PCD, if they displayed a retracted cytoplasm, or as

necrotic, if they had no protoplast retraction. Three biological

replicates per treatment with each three technical replicates of at

least 200 cells were scored per data point.
2.3 Heat stress treatment

Prior to experiments, flasks of 100 ml of 7-day-old dark-grown

suspension cells were examined for viability. The flasks showing

>95% viability were pooled together to ensure use of homogenous

biological material for experiments. Heat treatments were

performed in Grant OSL200 water bath set to 85 rpm using 100

ml of aliquots of suspension cells in 250-ml Erlenmeyer flasks (PCD

induction, 54°C for 10 min; sublethal stress, 33°C for 10 min). To

inhibit PCD, cells were pre-incubated with 750 µM LaCl3 (Acros

Organics) for 30 min in the dark prior to HS treatment.
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2.4 Isolation of mitochondrial and
cytosolic fractions

Mitochondrial and cytosolic fractions were isolated as previously

described (Reape et al., 2015) using 100 ml of cell suspension culture

per treatment. The heat-treated samples were cooled on ice and

processed within 10 min of heat treatment. Cells that were not

subjected to heat treatment required homogenization using glass

beads (diameter of 425–600 mm; Sigma-Aldrich) in a mortar and

pestle three times for 4 min to achieve >80% cell disruption, whereas,

for heat-treated samples, two times for 4 min were sufficient. The

homogenization buffer was changed after every filtration. The

homogenized cells were centrifuged at 2,000g for 10 min (4°C) to

remove cell debris and the glass beads, and the supernatant was

subjected to centrifugation at 13,000g for 15 min (4°C). The

resulting supernatant, 250 µl (cytosolic fraction) was mixed with 750

µl of protein lysis buffer (6 M urea, Lennox Laboratory Supplies; 2 M

thiourea, Fisher Chemical; supplemented with protease inhibitor

cocktail, Roche, cOmplete™ mini), whereas the pellet (crude

mitochondrial fraction) was further processed following the protocol

from Reape et al. (2015). The purified mitochondrial pellets were then

resuspended in 200 µl of protein lysis buffer. Fractions were stored at

−80°C until subsequent proteomic/WB analyses.
2.5 Protein extraction and purification

Proteins were prepared for MS analysis as previously described

(Eitle et al., 2019) with the following modifications. The samples

were not sonicated, and only mitochondrial fractions were

homogenized with a motorized pestle for 10 s. Protein

concentration for each sample was determined using a Qubit

fluorometer (Invitrogen) and the Quant-iT protein assay kit

(ThermoFisher) according to the manufacturer’s instructions.

Proteins (100 µg per sample) were purified using the 2-D Clean-

up Kit (GE Healthcare) as per the manual (procedure A). After in-

solut ion digest ion, the peptides were purified using

ThermoScientific C18 spin columns, and the final peptide eluant

of 90 µl was dried using a SpeedyVac and stored at 4°C.
2.6 Mass spectrometry and functional
annotation

Four biological replicates for each group (total, n = 32) were

subjected to high resolution MS. Samples were removed from 4°C

storage and equilibrated to room temperature for 10 min before

adding the Q Exactive Loading Buffer (2% acetonitrile (ACN) and

0.05% trifluoroacetic acid (TFA) in ddH2O) to final peptides

concentration of 0.5 µg/µl. The tubes were briefly vortexed and

sonicated for 3 min to resuspend the proteins. Afterward, the

samples were centrifuged for 5 min at 19,000g, and the

supernatant was transferred into the mass spec vials (Thermo

Scientific Waltham, USA). The same specification and setup were

used as previously described (Eitle et al., 2019). MaxQuant v1.6.17.0
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(Tyanova et al., 2016, www.maxquant.org/) was used to perform

protein identification and label-free quantification (LFQ)

normalization. The generated MS/MS data were searched against

both the predicted proteome derived from the Arabidopsis thaliana

TAIR11 reference genome (Berardini et al., 2015; https://

www.arabidopsis.org/, accessed September 2021, containing

48,231 peptide sequences) and a contaminant sequence set

supplied by MaxQuant, using the Andromeda algorithm (Hubner

et al., 2010). The MS proteomics data and MaxQuant search output

files have been deposited to the ProteomeXchange Consortium

(Côté et al., 2012) via the PRIDE partner repository with the dataset

identifier PXD040584. After filtering for environmental protein

contaminants, the LFQ intensities were log2-transformed, and the

samples were grouped on the basis of their fraction and treatment

(e.g., cytosolic control). To visualize the differences between the

treatments, the dataset was prepared for analysis with a principal

component analysis (PCA). Only proteins that were found in all

replicates of at least one of the groups were retained, and a data

imputation step was conducted to replace missing values (NaN)

with intensities that simulate proteins with low abundance. The

PCA was carried out using RStudio v3.6.2 (R Development Core

Team, 2014; https://www.R-project.org/) and visualized with

ggplot2 (Wickham, 2009). Volcano plots comparing two groups

were generated in Perseus, by plotting the −Log P-values on the y-

axis and the log2 fold–transformed difference between the groups

on the x-axis. The false discovery rate (FDR) cutoff was set to 0.05,

and a minimal fold change cut off used was 1.5 [s0 = log2(1.5)].
2.7 Bioinformatics

Subcellular protein localization was predicted using the quick

search tool from SUBA4 (Hooper et al., 2014; Hooper et al., 2017;

https://suba.live) and MuLocDeep (Zhang et al., 2018; Jiang et al.,

2021; Jiang et al., 2023; https://www.mu-loc.org/). Fasta files as

input for the MuLocDeep were obtained from TAIR (Berardini

et al., 2015; www.arabidopsis.org/) with the following options

selected: “Araport11 protein sequence” and “get one sequence per

locus”. PCA of generated proteomes was carried out using RStudio

v3.6.2 (R Development Core Team, 2014; https://rstudio.com) and

visualized with ggplot2 (Wickham, 2009). Gene annotation and

pathway enrichment analysis were performed with Metascape

(Zhou et al., 2019; https://metascape.org). Functional analysis was

carried out with String (version 11.5; Szklarczyk et al., 2021; https://

string-db.org).
2.8 Comparison of proteins released from
mouse and A. thaliana mitochondria

To compare mammalian and plant mitochondrial proteins

involved in cell death, a list of proteins that were released from

mitochondria undergoing permeability transition in mouse liver

cells (Patterson et al., 2000) was compared to list of proteins

released from Arabidopsis mitochondria in this study. The

annotation-based analysis was performed by comparing protein
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names. For sequence-based comparison, FASTA sequences of the

mammalian proteins listed by (Patterson et al., 2000) were obtained

from UniProt (UniProt Consortium, 2021) or The National Center

for Biotechnology Information (NCBI) (Sayers et al., 2022). These

sequences were blasted on NCBI (blastp) with Arabidopsis thaliana

set as target organism. The top three results are listed in

Supplementary Table 5.
2.9 Western blot

Cytosolic and mitochondrial fractions were thawed on ice and

mixed. Samples (10 µg of protein) were combined with 4× Laemmli

buffer (Bio-Rad) and 5% b-mercaptoethanol (Sigma-Aldrich). All

samples were briefly vortexed, spun down, and heat-treated for 5

min at 95°C before loading on precast 8%–16% polyacrylamide gels

(Bio-Rad) in a tank buffer [25 mM Tris (Fisher Bioreagents), 192

mM glycine (Fisher Bioreagents), and 0.1% sodium dodecyl sulfate

(SDS) (VWR Life Science)]. After the electrophoresis, proteins were

transferred onto 0.2 µM nitrocellulose membrane (Bio-Rad, 20 V

for 7 min or 5 min for cytochrome c), and the transfer was validated

via Ponceau staining (Sigma-Aldrich). The blots were rinsed twice

and washed three times for 5 min with Tris-Glycine-Tween-20

(TGT) buffer under gentle shaking [25 mM Tris, 1.92 M Glycine,

and 0.2% Tween 20 (Thermo Scientific)]. The membranes were

blocked for 1 h with 5% skimmed milk powder (Marvel) in TGT

and, subsequently, incubated with primary anti-body overnight.

Antibodies and respective concentrations used are as follows: anti-

mouse HSP60 (LK2) (ENZO ADI-SPA-807E), 1:2,000; anti-rabbit

cytosolic HSP70 (Agrisera AS08 371), 1:5,000, anti-rabbit IDH2

(Agrisera AS06 203A), 1:3,000; and anti-mouse mitochondrial

HSP70 (Agrisera AS08 347), 1:3,000. Blots were rinsed twice and

washed three times for 10 min with TGT buffer, followed by a 1-h

incubation with anti-mouse (Biosciences Ltd., 32430) or anti-rabbit

antibody (Biosciences Ltd., 656120) at a 1:2,000 dilution. Anti-

mtHSP70 was incubated for 2 h. After another two rinses and three

10-min washes, four washes for anti-ctHSP70, chemiluminescent

was detected with Western Lightning Plus ECL substrate

(PerkinElmer), and images were acquired with the LAS-4000

Image Analyzer (Fujifilm). Exposure times varied per anti-body

between 2 and 8 min, as indicated per blot (Supplementary Figure

S1). Densitometric analyses of the chemiluminescent were

performed using GelAnalyzer 19.1 (www.gelanalyzer.com) by

Istvan Lazar Jr., PhD, and Istvan Lazar Sr., PhD, CSc.
3 Results

3.1 Effect of heat stress and lanthanum
chloride on PCD rates in A. thaliana
suspension cells

HS (54°C, 10 min) was applied to induce PCD in A. thaliana

suspension cells (ecotype Landsberg erecta, Ler), and, 30 min pre-

treatment with extracellular calcium channel blocker, lanthanum

chloride (750 µM LaCl3) was used to inhibit it, as previously
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described (Kacprzyk et al., 2017). The resulting rates of PCD,

necrosis, and viability (Figure 1A) were determined 1, 3, 6, and

24 h after HS (Figure 1B). Twenty-four hours following HS, 87% of

cells underwent PCD, manifesting as loss of FDA fluorescence and

development of hallmark PCD morphology: shrinkage of the

protoplast away from the cell wall. As previously observed

(McCabe et al., 1997; Kacprzyk et al., 2017), the presence of LaCl3
caused complete inhibition of PCD, and this loss of a regulated cell

death pathway instead led to damaged cells dying via necrosis,

considered to be an uncontrolled cell death mode. Treatment with

LaCl3 also significantly delayed the loss of viability following the HS,

although this effect was less pronounced. There was no significant

effect of LaCl3 on rates of PCD, necrosis, and viability in cells that

were not subjected to HS. Subsequently, we used this experimental

system for generation of proteomic datasets characterizing changes

in protein abundance and localization associated with the early

stages of PCD induction. The cells were subjected to HS in the

presence and absence of 750 µM LaCl3, as described above, and the

cellular fractionation protocol was started directly (within 10 min)

following the HS. Subsequently, MS-based proteomics was

performed on the purified fractions to generate mitochondrial

and cytosolic proteomes.
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3.2 Subcellular fractionation protocol
results in enrichment of mitochondrial
proteins in the isolated mitochondrial
fraction

The proteomes of mitochondrial and cytosolic fractions of

control (untreated) cells were analyzed to evaluate the purity of

isolated mitochondria. A total of 2,674 proteins were detected

across both fractions, of which 1,062 were unique to the cytosolic

fraction and 688 were unique to the mitochondrial fraction

(Table 1; Supplementary Table S1). Subsequently, we compared

our dataset to a previously published A. thaliana mitochondrial

proteome (Jiang et al., 2021). This revealed that 89 % (612) of

proteins uniquely detected here in mitochondrial fraction were

previously associated with this organelle, in contrast to only 14%

(153) of unique cytosolic proteins (Table 1). Furthermore, the

cellular localization of the remaining 76 proteins unique to the

mitochondrial fraction was analyzed using SUBA4 (Hooper et al.,

2014; Hooper et al., 2017) and MuLocDeep (Jiang et al., 2021; Jiang

et al., 2023) (Supplementary Tables S1, S2). Consensus localization

predicted by the SUBcellular location database for Arabidopsis

proteins version 4 (SUBA4) for these proteins was mitochondrial
BA

FIGURE 1

LaCl3 modulates the rates of PCD induced by heat stress (HS) in A. thaliana suspension cells (Ler ecotype). (A) FDA-stained cells were categorized on
the basis of their morphology as previously described (Reape and McCabe, 2008). Cells that died through PCD exhibit no fluorescence and present
hallmark morphology with easily identifiable retraction of the protoplast (white arrow). Scale bar, 10 µm. (B) Rates of PCD, necrosis, and viability 1, 3,
6, and 24 h following HS (54°C, 10 min) with and without 750 µM LaCl3. Bars represent means of three experiments ± SD, where each sample has
been scored three times (200 cells examined each time). Individual data points are indicated. Following ANOVA, differences between treatments at
each time point were analyzed using Tukey honestly significant difference (HSD) post-hoc test. Means labeled with different letters are statistically
different at 0.05 level. Crt, control; La, LaCl3; HS, heat stress; HS_La, heat stress in presence of LaCl3.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1194866
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Schwarze et al. 10.3389/fpls.2023.1194866
(33 proteins) and plastidic (22 proteins) with the remaining

proteins distributed across other cellular compartments

(Supplementary Table S2A). Similarly, MuLocDeep annotated

most of the investigated proteins as mitochondrial (33 proteins)

or plastidic (19 proteins) (Supplementary Table S2B). Collectively,

these results confirmed that mitochondrial proteins were enriched

in the mitochondrial fraction isolated from A. thaliana suspension

cells and, this way, validated the subcellular fractionation protocol

employed in this study.
3.3 The effect of PCD-inducing heat stress
and lanthanum chloride on mitochondrial
and cytosolic proteomes

PCA of the generated proteome datasets highlighted distinct

protein compositions of cytosolic and mitochondrial fractions, with

extensive changes induced by the PCD-inducing HS treatment

(Figure 2A). In contrast, the effect of lanthanum chloride on the

global proteome profiles of both fractions appeared marginal. This

was confirmed by the subsequent quantitative analysis of relative

protein abundances (Figure 2B; Supplementary Table 3) that

revealed changes in abundance for the majority of detected

proteins following the HS. Of 2,840 proteins detected across all

samples, 2,093 proteins in the cytosolic and 2,326 proteins in the

mitochondrial fraction changed their abundance in response to HS

at least 1.5-fold at 0.05 significance level (Supplementary Table S3).

The changes induced by LaCl3 treatment alone were small in

comparison, with no proteins changing their abundance in the

cytosolic fraction, and only six proteins being upregulated in the

mitochondrial fraction (Figure 2B). Comparison of samples heat-

treated in the absence and presence of LaCl3 (HS vs. HSLaCl3) also

identified only a small number of proteins differing in abundance:

10 (cytosolic fraction) and 15 (mitochondrial fraction).

We also investigated the effect of LaCl3 on the HS-induced

proteome changes in the cytosolic and mitochondrial fractions

(Figure 3). There was a notable overlap between proteins up- and

downregulated in response to HS in the presence and absence of

LaCl3 in both fractions (Figures 3A, B). As the similarities and

differences between proteomic datasets may be more readily

recognized at the pathway level than by comparing lists of

individual proteins, we also performed a functional enrichment

analysis using Metascape (Zhou et al., 2019). As highlighted by the

Circos plots (Figures 3C, D), the functional overlap among proteins

up/downregulated in the presence and absence of LaCl3 in both
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fractions (indicated by the blue links) exceeds the overlap between

the respective protein lists (indicated by purple links), further

underscoring the limited effect of LaCl3 on global proteomic

changes induced by HS. The top 20 enriched clusters were largely

unchanged in the presence of LaCl3 (Figures 3E, F). However, for

the proteins upregulated in the mitochondrial fraction, HS caused

enrichment of cluster of Gene Ontology (GO) terms related to the

ribosome (ath03010: Ribosome – Arabidopsis thaliana) in the

absence but not in the presence of LaCl3.
3.4 Identification of candidate proteins
involved in plant PCD

Release of mitochondrial proteins into the cytosol is a key event

of the apoptotic pathway in animal cells (Bock and Tait, 2020). In

the present study, 288 proteins were upregulated in the cytosol, but

downregulated in the mitochondrial fraction following the HS

(Supplementary Table S4A), which may suggest their

translocation into the cytosol in response to PCD-inducing

stimuli. The majority of the proteins had mitochondrial (125

proteins), plastidic (107), or peroxisomal (27) localization

according to SUBA4 (Supplementary Table S4A). It needs to be

noted that, although proteins from different cellular compartments

may copurify with the mitochondrial fraction as an artifact of

cellular fractionation protocol, they can be also localized to

multiple organelles (e.g., to both mitochondria and plastids),

which is not always registered by protein localization databases

(Jiang et al., 2021). Supplementary Table S4A provides a summary

of available experimental evidence for their localization (based on

MS and/or studies using fluorescent protein–based visualizations).

Of the 125 proteins annotated as mitochondrial, 113, including

cyt c, showed HS-induced downregulation in mitochondrial

fraction greater than that observed for the matrix protein

isocitrate dehydrogenase [NADP(+)] type 2 (IDH2; AT2G17130,

log2FC = −2.09762) that is frequently used as mitochondrial

structural marker (Rikhvanov et al., 2007; Lopez-Huertas and del

Rıó, 2014; Lee et al., 2019; Supplementary Table S4A, highlighted in

yellow), indicating that, although populations of mitochondria lose

structural integrity and burst early after the PCD-inducing

treatment, the controlled release of specific proteins, such as cyt c,

is also observed. This group of proteins also included nucleoside

diphosphate kinase (NDPK3) with nuclease activity specific to

structured supercoiled nucleic acids that was previously

hypothesized to play a role in PCD-associated DNA degradation
TABLE 1 MS profiling confirms enrichment in mitochondrial proteins in isolated mitochondrial fraction.

A Cytosolic
fraction

Unique cytosolic
proteins

Mitochondrial
fraction

Unique mitochondrial
proteins

Total proteins identified 1,986 1,062 1,612 688

Proteins included in Arabidopsis mitoproteome by
Jiang et al. (2021)

754 153 1,213 612

38% 14% 75% 89%
Proteins detected in cytosolic and mitochondrial fractions from control (untreated) A. thaliana suspension cells, compared to previously published Arabidopsis mitoproteome by Jiang et al. (2021).
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after its translocation to the nucleus (Hammargren et al., 2007).

Hexokinase I (HX-1) was also released, which might be significant

considering the multiple lines of evidence, suggesting that plant

mitochondrial hexokinases can modulate PCD through interactions

with voltage-dependent anion channel (VDAC) proteins in the

OMM (Kim et al., 2006; Godbole et al., 2013).

When HS was performed in the presence of the PCD inhibitor

LaCl3, only 18 (6.3%) of the 288 proteins translocated from the

mitochondrial fraction were not downregulated in the

mitochondrial fraction (Table S4A, highlighted in green). None of

them were annotated as mitochondrial by SUBA4, with 12 proteins

having plastidic, two peroxisomal, and four cytosolic localizations.

This suggests that LaCl3 treatment had no effect on the stress-

induced release of mitochondrial proteins into cytosol but could

have partially ameliorated stress-induced degradation of organelles

copurifying with the mitochondrial fraction (plastids and

peroxisomes). The proteins released from the mitochondria of A.

thaliana after PCD-inducing stimuli were also compared to the
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proteins released from mouse mitochondria following the

chemically induced permeability transition (Patterson et al., 2000;

Supplementary Table S5). Briefly, putative Arabidopsis homologs

were identified for 69 of the 76 known proteins listed by Patterson

et al. (2000) based on sequence similarity and/or annotation as

detailed in Materials and Methods (Supplementary Table S5) and

compared to proteins translocated from mitochondrial to cytosolic

fraction in the present study (Table S4). For 52 (>75%) proteins

released from mouse mitochondria, at least one of the identified

putative Arabidopsis homologs was also released from the

mitochondrial fraction following the HS. A total of 74 proteins

that were translocated from plant mitochondria into cytosol were

putative homologs of proteins released from this organelle in mice

during permeability transition (Patterson et al., 2000). We also

performed a functional enrichment on the list of the remaining 442

proteins upregulated in the cytosol following the heat shock but not

downregulated in mitochondrial fraction (Supplementary Table

S4B). String-DB (version 11.5, Szklarczyk et al., 2021) analysis
B

A

FIGURE 2

Effect of PCD-inducing heat stress and lanthanum chloride pre-treatment on the proteome profiles of mitochondrial and cytosolic fractions from A.
thaliana suspension cells. (A) PCA plot of analyzed protein profiles (n = 4). (B) Number of proteins differing in abundance (minimum, 1.5-fold change)
between the indicated sample types at false discovery rate (FDR) cutoff of 0.05 and 0.1. Total proteins detected across all samples: 2,840; individual
proteins are listed in Supplementary Table S3.
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highlighted the enrichment of terms that may be linked not only to

the PCD-associated degradation of cellular content, such as

peptidase activity (GO:0008233, 34 proteins) and hydrolase

activity (G0:0016787, 82 proteins), but also to the activation of

pro-survival signaling, such as antioxidant activity (GO:0016209, 14

proteins) (Supplementary Material File SM1 ). Most of these 442

proteins upregulated in the cytosolic fraction were annotated as

cytosolic (211), plastidic (71), nuclear (48), or, interestingly,

extracellular (or vacuolar) (13) (SUBA4, Table S4B). Many of

them were previously identified as cell death and stress response

modulators in plants (Table S4B, highlighted in yellow). The

observed upregulation of 33 extracellular proteins in the cytosolic

fraction early after PCD-inducing treatment is of particular interest,

considering previous studies reporting proteins normally residing

in extracellular space being imported back into cytosol to play a role

in plant PCD (Chichkova et al., 2010; Williams et al., 2015). String-

DB analysis highlighted term “Hydrolase activity” GO:0016787 as

being significantly enriched with 16 members of this group

including six proteins with protease activity (subtilisin-like

protease SBT2.2, AT4G20430; AT4G12910, scpl20; AT1G15000,

scpl50; AT5G67360.1, ARA12; AT2G22970.3, SCPL11;
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AT4G36195.3, AT4G36195) and one ribonuclease (AT2G02990,

RNS1). Notably, upregulation of 138 (31%) of the 442 proteins in

the cytosolic fraction (SUBA4 annotation: 62 cytosolic, 18 plastidic,

23 nuclear, nine extracellular, and seven vacuolar) was not observed

when HS was performed in the presence of PCD inhibitor LaCl3
(Supplementary Table S4B, highlighted in green), suggesting that

the changes in their cytosolic abundance may be linked to the

PCD process.
3.5 Large-scale downregulation of proteins
in the cytosolic fraction following the
PCD-inducing HS

In the cytosolic fraction, 1,362 proteins were downregulated

following the PCD-inducing HS (Supplementary Table S6A). This

indicates that degradation of the cell content may start early after

the stress insult and can be linked to the observed upregulation of

proteins with hydrolytic activity in this fraction. The targeted

degradation of pro-survival proteins may also be a key event in

the initiation and/or execution of the plant PCD pathway. Indeed,
B

C D

E F

A

FIGURE 3

Changes in proteome profiles of cytosolic and mitochondrial fractions induced by heat treatment. (A, B) Venn diagrams for proteins down- and
upregulated in response to HS, in the presence and absence of LaCl3 in cytosolic and mitochondrial fractions. (C, D) The Circos plots compare the
overlap between proteins down- and upregulated by HS in the presence of LaCl3 in cytosolic and mitochondrial fractions, respectively. The outside
arc indicates the protein list identity, the orange color on the inside arc represents proteins that appear in multiple lists, and the light orange color
represents proteins unique to that list. Purple lines link the genes shared by both lists, whereas the blue lines link the proteins falling into the same
enriched ontology term. (E, F) Clustered heatmaps presenting 20 top enriched clusters, and 20 most selective enriched clusters, as well as their
enrichment patterns for cytosolic and mitochondrial fractions. The heatmaps are colored by the significance (log p-value) of enrichment. The
minimum enrichment factor was set to 2 with p-value cutoff of 0.01.
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the list of proteins undergoing downregulation in the cytosolic

fraction included Tudor staphylococcal nuclease 1 and 2 (TSN1 and

TSN2). TSN sustains cell viability, and cleavage of TSN appears an

evolutionary conserved element of the cell death pathway in both

plants and animals (Gutierrez-Beltran et al., 2016). However, 1,026

of the 1,362 proteins downregulated in the cytosolic fraction

following HS were also simultaneously upregulated in the

mitochondrial fraction (Supplementary Table S6A). The observed

upregulation of a large number of proteins in the mitochondrial

fraction following the HS can at least partially result from stress-

induced aggregation of cytoplasmic proteins that further copurify

with the mitochondria during the subcellular fractionation

protocol, such as stress granules (SGs) and other membraneless

cytoplasmic protein assemblies. Although there are limited data on

the proteome composition of the plant SGs, out of the 118 SGs

localized proteins recently identified in Arabidopsis (Kosmacz et al.,

2019), 75 were upregulated in the mitochondrial fraction after the

HS, including SG markers such as RNA BINDING PROTEIN 47 A

(RBP47), RBP47B, OLIGOURIDYLATE-BINDING PROTEIN 1C

(AtUBP1c, AT3G14100), and POLY-A BINDING PROTEIN 2

(PABP2) (Sajeev et al., 2022). Furthermore, Kosmacz et al. (2019)

reported cross contamination of purified SGs with mitochondrial

and plastidic proteins, and SGs were reported to physically interact

with mitochondria in animal cells to regulate metabolic remodeling

(Amen et al., 2021). Therefore, formation of SGs, as well as other

cytosolic protein aggregates, is a potential explanation for the

observed upregulation of proteins in the mitochondrial fraction.

String-DB analysis revealed significant enrichment of many

terms related to cytoprotective and stress response pathways

(Supplementary Material File SM2). Examples include terms

related to stress response (e.g., GO:0006950 Response to stress,

252 proteins; GO:0033554 Cellular response to stress, 109 proteins;

GO:0034976 Response to endoplasmic reticulum stress, 21 proteins;

and GO:0009266 Response to temperature stimulus, 69 proteins).

Other enriched terms are related to proteasome function and

structure [e.g., GO:0043161 Proteasome-mediated ubiquitin–

dependent protein catabolic process (28 proteins), GO:0043248

Proteasome assembly (six proteins), GO:0005838 Proteasome

regulatory particle (23 proteins), GO:0000502 Proteasome

complex (25 proteins), and GO:0031597 Cytosolic proteasome

complex (nine proteins)], DNA repair [e.g., GO:0006281 DNA

repair (35 proteins), GO:0000727 Double-strand break repair via

break-induced replication (six proteins), GO:0061077 Chaperone-

mediated protein folding (14 proteins), GO:0044183 Protein folding

chaperone (nine proteins), GO:0051085 Chaperone cofactor-

dependent protein refolding (11 proteins), and GO:0051131

Chaperone-mediated protein complex assembly (four proteins)],

and heat shock proteins [e.g., GO:0031072 Heat shock protein

binding (15 proteins), IPR001404 Heat shock protein Hsp90

family (six proteins), and IPR013126 Heat shock protein 70

family (nine proteins)]. Moreover, in line with the hypothesis that

the observed downregulation of cytosolic proteins could at least

partly be due to their sequestration into SGs, terms related to SG

formation [e.g., GO:0010494 Cytoplasmic SG (10 proteins) and

GO:0034063 SG assembly (four proteins)] and SG function in

translational control [e.g., GO:0006417 Regulation of translation
Frontiers in Plant Science 09
(50 proteins) and GO:0006412 Translation (80 proteins)] were

significantly enriched. Furthermore, to identify which of these

stress-induced changes might be particularly relevant in the

context of cell death regulation, we examined the effect of PCD

inhibitor and calcium channel blocker LaCl3 on heat-induced

downregulation of proteins from the cytosolic fraction. The

presence of LaCl3 inhibited downregulation of 109 proteins

(Supplementary Table 6a, highlighted in green). STRING-DB

analysis highlights a cluster of these proteins enriching terms

GO:0006412 Translation (nine proteins), GO:0010467 Gene

expression (17 proteins), and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway ath03010 Ribosome (12 proteins)

(Supplementary Materials File SM3). Only one protein, BCL-2–

associated athanogene 7 (BAG7, AT5G62390.1), showed an

opposite direction of regulation in the cytosolic fraction due to

LaCl3 treatment. BAG7 was downregulated by HS in the cytosolic

fraction but upregulated if HS was performed in the presence of

LaCl3. This may suggest one of the mechanisms underlying the pro-

survival effect of LaCl3, as BAG7 is an essential element of unfolded

protein response and its knockout mutants are more sensitive to

heat and cold (Williams et al., 2010). Moreover, several other

proteins that were downregulated by HS in the cytosolic fraction,

but not in the presence of LaCl3, were also previously described in

context of cell death and stress responses (Supplementary Table 6b,

highlighted in red). This includes UP-FRAMESHIFT1 (UPF1)/

LOW-LEVEL BETA-AMYLASE 1 (LBA1), required for nonsense-

mediated mRNA that, under normal conditions suppresses

activation of plant immunity (Raxwal et al., 2020), as well as

LYSOPL2, involved in tolerance to oxidative stress (Gao

et al., 2010).
3.6 Changes in abundance of heat
shock proteins

HSPs are molecular chaperones mediating a diverse range of

processes including stress signaling; unfolded protein response;

formation of SGs; protein translocation, targeting, and

degradation; and PCD (Vierling, 1991; Kotak et al., 2007; Dogra

et al., 2019; Verma et al., 2021). Analysis of the generated proteomes

revealed that HSPs with consensus localization (SUBA4) in the

cytosol generally decreased in abundance in the cytosolic fraction

following the HS, with many of them showing simultaneous

increase in the mitochondrial fraction (Supplementary Table S7).

However, many of HSPs with consensus localization in the

mitochondria, including HSP60s (AT3G23990, AT2G33210, and

AT3G13860) and HSP70s (AT5G09590 and At4G32208) family

members, demonstrated the opposite trend, with abundance

decreasing in the mitochondrial fraction and going up in the

cytosol after the HS, possibly caused by their release from the

mitochondria during PCD. To ascertain whether these changes in

HSP abundance are specific to PCD induction rather than the heat

response in general, we subjected A. thaliana (Col0) suspension

cells to PCD (10 min, 54°C) or sublethal (10 min, 33°C) stress

treatment (Figure 4A). Sublethal level of stress was determined by

identifying the highest HS temperature that does not result in
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viability drop below 90% within 24 h post-treatment. Subsequently,

cytosolic and mitochondrial fractions were isolated directly

following the treatment and WB used to identify changes in

abundance of cytosolic and mitochondrial HSP70 as well as

mitochondrial HSP60 and IDH2 (structural marker for this

organelle (Rikhvanov et al., 2007; Lopez-Huertas and del Rıó,
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2014; Lee et al., 2019) (Figure 4B). The results suggested that

levels of IDH2, HSP60, and mtHSP70 decrease in the

mitochondrial fraction in response to PCD-inducing, but not to

sublethal, levels of heat. The decrease of cytosolic HSP70 was also

observed only in the case of PCD-inducing treatment. The release of

HSP60, but not mtHSP70, exceeded that observed for the
B

CA

FIGURE 4

Changes in abundance of selected HSPs in mitochondrial and cytosolic fractions following sub-lethal and PCD-inducing heat treatment. (A) Arabidopsis cell
suspension culture (ecotype Col-0) was subjected to 10 min of control (25°C), sublethal (33°C), or PCD-inducing (54°C) temperature. Bars represent mean of
three experiments ± SD for rates of PCD, necrosis, and viability 24 h following heat treatment. (B) For WB, 10 µg of proteins from cytosolic and
mitochondrial fractions, isolated directly after heat treatment, were loaded per lane. Densitometry analysis was performed using GelAnalyzer. Bars represent
mean signal intensity (± SD) relative to signal of mitochondrial control fraction (IDH2, HSP60, and mtHSP70) or control cytosolic fraction (ctHSP70). Means
labeled with different letters are statistically different at 0.05 level (ANOVA, followed by Tukey HSD post-hoc test). AB, antibody; Sub, sublethal; Crtl, control.
(C) Percentage of mitochondrial proteins released after PCD-inducing HS (54°C, 10 min). Bars represent mean of three experiments ± SEM, *p < 0.01 (paired
Student’s t-test).
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mitochondrial matrix protein and structural marker IDH2

(Figure 4C). This further supports the controlled release of

HSP60 from plant mitochondria occurring during PCD

induction. Overall, the WB results were in agreement with MS-

based observations and the use of second cell suspension culture of

a different ecotype, which additionally validated the reported

findings. Full images of immunoblots and respective exposure

times are available in Supplementary Figure S1.
4 Discussion

We used an approach combining Arabidopsis cell suspension

culture, a well-established model system for studying plant PCD

(Swidzinski et al., 2002; Swidzinski et al., 2004; Reape et al., 2015),

with cellular fractionation and the state-of-the art MS-based

proteomics to obtain an in-depth profile of the proteomic

changes associated with early stages of plant PCD induced by HS.

In addition, we investigated the effect of the calcium channel

blocker, LaCl3, on HS-induced changes in protein abundance.

This approach enabled the identification of proteins specifically

associated with the PCD process, as opposed to the general cellular

stress response to heat.
4.1 Changes to mitochondrial proteome
upon PCD induction

We first confirmed that the subcellular fractionation protocol

results in enrichment of mitochondrial proteins in the isolated

mitochondrial fraction and, therefore, is suitable for studying early

mitochondrial proteome changes associated with plant PCD. This

was achieved using a previously published Arabidopsis cell culture

mitoproteome (Jiang et al., 2021), as well as protein localization

database SUBA4 (Hooper et al., 2014; Hooper et al., 2017) and

MuLocDeep protein localization prediction tool (Jiang et al., 2021;

Jiang et al., 2023). The mitochondrial localization was previously

validated, or predicted, for the majority of proteins uniquely

detected in the mitochondrial fraction, with plastidic proteins

being the main contaminants, similar to observations from other

studies employing the mitochondrial isolation protocol (Rao et al.,

2017). HS induced extensive changes in composition of both

cytosolic and mitochondrial fractions, and functional enrichment

analysis underlined proteasome and protein folding as key

mediators of stress and also, potentially, the PCD response.

Unfolded protein response is generally a pro-survival mechanism

but may also induce PCD in plants subjected to severe or chronic

stress levels (Williams et al., 2014; Liu and Howell, 2016). Likewise,

although the disruption of proteasome function may lead to PCD

activation (Kim et al., 2003), multiple studies report pro-PCD

proteasome roles at different stages of plant PCD (Vacca et al.,

2007; Pajerowska-Mukhtar and Dong, 2009). Protein homeostasis

machinery seems, therefore, to be tightly interconnected with

regulation of life and death decisions in plant cells. Given that the

release of specific mitochondrial proteins, such as cyt c, SMAC,

Omi, and AIF into the cytosol activates a critical series of events
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during PCD in animal cells (Bock and Tait, 2020), we attempted to

identify candidate proteins similarly involved in plant PCD by

determining mitochondrial proteins undergoing controlled release

into the cytosol upon stress insult. A total of 125 proteins with

mitochondrial localization according to SUBA (Hooper et al., 2014)

were translocated into cytosol in response to HS, as indicated by

their decreasing and increasing abundance in the mitochondrial

and in the cytosolic fractions, respectively (Supplementary Table

S4A). For 113 of these proteins, the downregulation in the

mitochondrial fraction exceeded that observed for the

mitochondrial matrix structural marker IDH2 (Rikhvanov et al.,

2007; Lopez-Huertas and del Rıó, 2014; Lee et al., 2019), suggesting

that their presence in the cytosol is not simply a consequence of

mitochondrial degradation in response to heat but instead a more

selective release from the mitochondria into the cytosol. As

anticipated, this included not only cyt c, whose release is well

documented during plant PCD (Balk et al., 1999; Balk and

Leaver, 2001; Virolainen et al., 2002; Yao et al., 2004; Morimoto

et al., 2007), but also other proteins that could play a role in PCD

regulation in plants such as NDPK3 and HX-1. The nuclease

activity inhibited by ATP and specific to structured supercoiled

nucleic acids was previously demonstrated for the NDPK3 ortholog

from pea mitochondria (Hammargren et al., 2007) with the authors

hypothesizing that NDPK3 located in soluble IMS could be

activated by a decreasing ATP concentration during plant PCD,

released from mitochondria and translocated into the nucleus for

DNA degradation (Hammargren et al., 2007). Although our dataset

supports the early PCD-associated release of NDPK3 from plant

mitochondria, further investigation is required to determine its role

in PCD regulation. HX-1 has previously been mainly studied as a

glucose sensor in plants (Moore et al., 2003) but has been also

reported to play a role in PCD regulation (Kim et al., 2006; Godbole

et al., 2013). Although further studies are required, the observed

translocation of HX-1 into the cytosolic fraction could be an event

amplifying the PCD signal, similar to animal models where

dissociation of HX-1 from the OMM was demonstrated to induce

VDAC1-dependent mitochondrial permeability transition pore

opening and consequently apoptotic cell death (Abu-Hamad

et al., 2008).

Potential similarities between animal and plant PCD programs

were further highlighted by comparing the list of proteins

translocated from the mitochondria into the cytosol in the

present study to those released from mouse mitochondria

following chemically induced permeability transition (Patterson

et al., 2000). This comparison suggested a potential role in plant

PCD regulation for proteins that were already identified as cell

death modulators in animal models, such as adenylate kinases

(Köhler et al., 1999; Lee et al., 2007). Similarly, the release of a

fraction of the mitochondrial antioxidant pool, including enzymes

such as manganese superoxide dismutase 1 (MSD1), thioredoxins,

peroxiredoxins, and ferredoxins, could indicate a relative

deprotection of mitochondrial membranes from oxidative

reactions, as previously suggested in the case of animal cell death

(Patterson et al., 2000) and, therefore, result in a stronger PCD

induction signal. The release of mitochondrial HSPs (HSP10,

HSP60, and mtHSP70) was also observed. These HSPs are key
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mitochondrial chaperones with essential functions in mitochondrial

biogenesis, such as import and folding of proteins (Böttinger et al.,

2015), and, hence, their release may lead to accumulation of

mitochondrial damage and loss of mitochondrial function. This is

supported by a previous study reporting increased cell viability

following heat and H2O2 treatment resulting from overexpression

of mtHSP70 in rice (Qi et al., 2011). Data presented herein are also

in line with a previous study using Arabidopsis cell suspension

culture that, although not focused on the early stages of PCD

induction, nevertheless, demonstrated that the lethal levels of heat

cause upregulation of mitochondrial HSP60 synthesis and induce

its release from mitochondria during 2 h of stress recovery

(Rikhvanov et al., 2007). The immunoblotting performed here

suggests that this controlled release of HSP60 occurs early during

PCD induction but not in response to sub-lethal levels of HS. In

addition to causing mitochondrial damage and, this way,

amplifying the PCD-inducing signal, the released HSP60 could

also play a PCD regulatory role in the extramitochondrial locations.

This is plausible considering data from animal model systems where

the early translocation of HSP60 into cytosol was recorded during

apoptosis induced in mammalian cells (Samali et al., 1999; Chandra

et al., 2007). Released HSP60 seemed to promote cell death by

accelerating caspase-3 activation in the cytosol (Samali et al., 1999;

Chandra et al., 2007). In contrast, de novo accumulation of cytosolic

HSP60 appears to play a pro-survival role (Chandra et al., 2007;

Chun et al., 2010). Consequently, it was proposed that the pro-

survival or pro-death function of HSP60 in the cytosol is dependent

on its origin, with a mitochondrial release of HSP60 promoting

apoptosis (Chandra et al., 2007; Huang and Yeh, 2019). Exploring

the potential analogous, localization-dependent PCD-related roles

of mitochondrial HSP60 is, therefore, recommended to further

elucidate the cell death signaling in plants. In conclusion,

although the functional involvement in plant PCD regulation

remains elusive for the array of identified proteins released from

mitochondria, the generated dataset will provide a starting point for

the future research efforts in this area.
4.2 Changes to cytosolic proteome upon
PCD induction

The present study identified upregulation of many proteins of

non-mitochondrial origin in the cytosolic fraction (Supplementary

Table S4B), enriching GO terms related to both pro-PCD and pro-

survival signaling. For example, not only the positive PCD regulator

metacaspase 1 (AT1G02170) but also its inhibitor SERPIN1 (Lema

Asqui et al., 2018) were among the upregulated cytosolic proteins.

Upregulation of ACD2 (accelerated cell death 2) protein in the

cytosolic fraction following PCD-inducing heat treatment was also

observed, in line with a previously reported shift in ACD2

localization during pathogen-induced cell death, from being

largely in chloroplasts to partitioning to chloroplasts,

mitochondria, and cytosol (Yao and Greenberg, 2006). Another

upregulated cytosolic protein, BAG4, was previously suggested to

inhibit plant PCD and to function in stress tolerance in plants

(Doukhanina et al., 2006; Kabbage et al., 2017; Thanthrige et al.,
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2020). Spermidine synthases 1, 2, and 3 (AT1G23820, AT1G70310,

and AT5G53120); key enzymes from the polyamine synthesis

pathway (Liu et al., 2015); and proteinase inhibitor cystatin B

(AT3G12490, Wong et al., 2006) were among upregulated

cytosolic proteins previously implicated in regulation of stress

tolerance in plants. Intriguingly, the data also suggest cytosolic

uptake of extracellular proteins, with many of them exhibiting

hydrolase activities, such as subtilisin-like proteases and one

ribonuclease RNS1. Their translocation from the apoplast into

cytosol may be a critical step in execution of plant PCD, as

previously described for phytaspase, a proteolytic enzyme that is

secreted from healthy plant cells but upon induction of PCD

reimported from the intercellular space into the dying cells for

the degradation of intracellular proteins (Chichkova et al., 2010).

Similarly, the extracellular ribonuclease S-RNAse has been

previously shown to promote PCD associated with pollen

incompatibility after internalization via a yet unconfirmed

mechanism (Williams et al., 2015). Indeed, overexpression of one

of the proteases identified here, SBT2.2, was reported to induce cell

death dependent on the plasma membrane protein ACD6 (Zhu

et al., 2021), and RNS1 was previously identified as a positive

regulator of fumonisin B1-induced PCD (Goodman et al., 2022).

Re-importing hydrolytic enzymes back to the cytosol to drive the

cell content degradation may, therefore, be a common strategy

during plant PCD. Another potential explanation for the observed

increase in abundance of extracellular proteins in the cytosol upon

PCD induction is rapid inhibition of their secretion in response to

stress stimulus. Future research is required to further investigate

both possibilities.

We also observed a downregulation of >1,300 proteins in the

cytosolic fraction following a PCD-inducing heat treatment

(Supplementary Table S6A), enriching GO terms related to stress

response, proteasome structure and function, HSPs, and DNA

repair and translat ion. We attr ibute this large-scale

downregulation of proteins from the cytosolic fraction not only to

the possible proteolytic degradation of cell contents associated with

PCD driven by the observed increase in proteins with hydrolytic

activity but also to sequestration of proteins into SGs and other

protein aggregates that are removed from cytosolic fraction and

may copurify with the mitochondria during the isolation protocol.

The presence of SG marker proteins and the comparisons to SG

proteome (Kosmacz et al., 2019) support this hypothesis and

highlight that the role of SGs and other cytoplasmic protein

aggregates should be further explored in context of balancing life

and death decisions of plant cells and carefully considered by future

studies employing subcellular fractionation protocols in

combination with stress treatments.

The immunoblotting experiments confirmed downregulation of

cytosolic HSP70 after the HS and suggested that it at least partially

copurifies with the mitochondrial fraction after PCD-inducing

treatment, which could be explained by interactions between this

molecular chaperone and misfolded protein aggregates (Żwirowski

et al., 2017). Lower concentrations of cytosolic HSP70 could also

promote PCD signaling in plants. In animals, HSP70 counteracts

the death signaling by inhibition of caspase-3-like proteases

(Jäättelä et al. , 1998). In tomato and tobacco, HSP70
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accumulation stimulated by mild heat minimizes cell death rates

after subsequent SA exposure (Cronjé and Bornman, 1999; Cronjé

et al., 2004). HSP70 is also involved in developmental PCD at

perforation sites of lace plant leaves (Rowarth et al., 2020).
4.3 Effect of lanthanum chloride on HS-
induced changes to mitochondrial and
cytosolic proteomes

In line with previously published data (McCabe et al., 1997;

Kacprzyk et al., 2017), the LaCl3 applied before HS resulted in

almost complete inhibition of PCD, with cells exhibiting delayed

viability loss and dying via necrosis instead of PCD. Globally, the

effect of LaCl3 on protein composition of isolated fractions appeared

limited, and we did not detect any effect of LaCl3 on the release of

mitochondrial proteins triggered by heat. We hypothesize that LaCl3
acts downstream of the mitochondrial cell death initiation signal in our

system, as indeed there were certain differences in changes of protein

abundance induced by HS in cells treated in the presence of LaCl3. The

upregulation of 31% proteins in the cytosolic fraction was inhibited in

the presence of LaCl3. Interestingly, this group included several

proteins from the WD40/transducin family that is known to mediate

cell death and survival in animal models (Zhang and Zhang, 2015), and

GO terms for this group of proteins were enriched for hydrolase and

peptidase activities. LaCl3 also partially inhibited upregulation of

nuclear, plastidic, peroxisomal, and vacuolar proteins in the cytosolic

fraction following the HS, suggesting that the cells heat-treated in

presence of LaCl3 better preserve the integrity of these organelles. The

import of nine (out of 33) extracellular proteins, including SBT2.2

protease, into the cytosol, was also inhibited in the presence of LaCl3.
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Overall, this pattern may indicate that LaCl3 likely delayed/inhibited

the execution/degradation phase of plant PCD. The downregulation of

proteins in the cytosolic fraction was also partially inhibited when HS

was performed in the presence of LaCl3, with several of them being

previously linked to cell death and/or stress responses in plants (e.g.,

BAG7, LBA1, and LYSOPL2) (Gao et al., 2010; Williams et al., 2010;

Raxwal et al., 2020). Moreover, functional enrichment analysis of

proteins not downregulated by HS in the presence of LaCl3
highlighted the terms related to gene expression and translation,

indicating that LaCl3-treated cells may maintain the ability to

activate pro-survival responses dependent on de novo gene

expression and protein synthesis. Notably, BAG7 was the only

protein showing an opposite direction of regulation in the cytosolic

fraction due to LaCl3 treatment, downregulated by HS in the cytosolic

fraction but upregulated if HS was performed in presence of LaCl3.

Previous studies suggest that, when localized in the ER, BAG7 acts as a

cell death suppressor (Williams et al., 2010), but it may also promote

immunity-related cell death after proteolytic cleavage and translocation

to nucleus (Zhou et al., 2021). The data presented here, therefore,

warrant further detailed investigations into localization-dependent

roles of this protein in cell death regulation in plants.
5 Conclusions

We used an Arabidopsis cell suspension model andMS proteomics

to characterize changes in protein abundance and localization

associated with the early stages of HS-induced PCD (Figure 5). We

identified 113 proteins that may undergo controlled release from

mitochondria following the PCD-inducing HS, including the IMS-
FIGURE 5

Summary figure. (A) Comparisons of the proteomic profiles of cytosolic and mitochondrial fraction from Arabidopsis suspension cells identified 113
proteins undergoing controlled release from mitochondria upon the PCD-inducing stress insult. (B) The changes in the cytosolic fraction revealed
upregulation of proteins putatively involved in cell death and stress response and (C) suggested that import of extracellular hydrolases into the
cytosol may promote degradation of cellular content during PCD. (D) Degradation and/or sequestration of proteins from the cytosolic fraction
indicate another layer of regulation of plant PCD process. The calcium channel blocker and PCD inhibitor LaCl3 had no effect on the release of
proteins from mitochondria in this system; however, it had partially prevented changes observed in the cytosolic fraction after PCD induction.
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localized NDPK3 with nuclease activity and Arabidopsis homologs of

mitochondrial proteins with previously identified roles in regulation of

animal cell death, such as adenylate kinases and HSP60. Future studies

are required to differentiate proteins with a functional cytosolic role in

plant PCD process from the innocent bystanders released from plant

mitochondria. Furthermore, we characterized the proteome changes in

the cytosolic fraction resulting from PCD-inducing stress, underscoring

the importance of proteasome function, chaperone-mediated protein

folding, and HSPs in life-death decision in plant cells. Our data

uncovered increases in cytosolic abundance of both pro-PCD and

pro-survival proteins and indicated that extracellular proteins with

hydrolytic activities may be reimported back to the cytosol for

degradation of cell content, in a manner similar to the previously

described PCD-promoting protease, phytaspase (Chichkova et al.,

2010). Moreover, we hypothesize that HS-induced downregulation of

proteins in the cytosolic fraction could be linked to both proteolytic

degradation and sequestration of proteins into cytosolic aggregates

such as SGs and that both processes maymodulate the balance between

pro-survival and pro-death signaling pathways during the cellular

stress response. Experiments with the calcium channel blocker and

PCD inhibitor LaCl3 suggested that, in our system, it acted downstream

of the mitochondrial cell death initiation signal, by partially inhibiting

stress-induced changes in protein abundance in the cytosolic fraction

that may be related to PCD processes, such as upregulation of proteins

with hydrolytic activity or downregulation of general translation

machinery. In particular, the presence of LaCl3 reversed the effect of

HS on ER-associated BAG7 protein that was previously suggested to

have localization-dependent roles in plant PCD regulation. Collectively,

we point out that the results presented here will form a resource to

enable the further elucidation of the regulation of the fundamental

programmed death process in plants.
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Cronjé, M. J., and Bornman, L. (1999). Salicylic acid influences Hsp70/Hsc70
expression in lycopersicon esculentum: dose- and time-dependent induction or
potentiation. Biochem. Biophys. Res. Commun. 265, 422–427. doi: 10.1006/
bbrc.1999.1692
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Hammargren, J., Salinas, T., Maréchal-Drouard, L., and Knorpp, C. (2007). The pea
mitochondrial nucleoside diphosphate kinase cleaves DNA and RNA. FEBS Lett. 581,
3507–3511. doi: 10.1016/j.febslet.2007.06.062

Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature 407, 770–776. doi:
10.1038/35037710

Hogg, B. V., Kacprzyk, J., Molony, E. M., O’Reilly, C., Gallagher, T. F., Gallois, P.,
et al. (2011). An in vivo root hair assay for determining rates of apoptotic-like
programmed cell death in plants. Plant Methods 7, 45. doi: 10.1186/1746-4811-7-45

Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., and Millar, A. H.
(2017). SUBA4: the interactive data analysis centre for arabidopsis subcellular protein
locations. Nucleic Acids Res. 45, D1064–D1074. doi: 10.1093/nar/gkw1041

Hooper, C. M., Tanz, S. K., Castleden, I. R., Vacher, M. A., Small, I. D., and Millar, A.
H. (2014). SUBAcon: a consensus algorithm for unifying the subcellular localization
data of the arabidopsis proteome. Bioinformatics 30, 3356–3364. doi: 10.1093/
bioinformatics/btu550

Huang, Y.-H., and Yeh, C.-T. (2019). Functional compartmentalization of HSP60-
survivin interaction between mitochondria and cytosol in cancer cells. Cells 9, 23. doi:
10.3390/cells9010023

Hubner, N. C., Bird, A. W., Cox, J., Splettstoesser, B., Bandilla, P., Poser, I., et al.
(2010). Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo
protein interactions. J. Cell Biol. 189, 739–754. doi: 10.1083/jcb.200911091

Jäättelä, M., Wissing, D., Kokholm, K., Kallunki, T., and Egeblad, M. (1998). Hsp70
exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17,
6124–6134. doi: 10.1093/emboj/17.21.6124

Jiang, Y., Jiang, L., Akhil, C. S., Wang, D., Zhang, Z., Zhang, W., et al. (2023).
MULocDeep web service for protein localization prediction and visualization at
subcellular and suborganellar levels. Nucleic Acids Res. gkad374. doi: 10.1093/nar/
gkad374

Jiang, Y., Wang, D., Yao, Y., Eubel, H., Künzler, P., Møller, I. M., et al. (2021).
MULocDeep: a deep-learning framework for protein subcellular and suborganellar
localization prediction with residue-level interpretation. Comput. Struct. Biotechnol. J.
19, 4825–4839. doi: 10.1016/j.csbj.2021.08.027

Kabbage, M., Kessens, R., Bartholomay, L. C., and Williams, B. (2017). The life and
death of a plant cell. Annu. Rev. Plant Biol. 68, 375–404. doi: 10.1146/annurev-arplant-
043015-111655

Kacprzyk, J., Brogan, N. P., Daly, C. T., Doyle, S. M., Diamond, M., Molony, E. M.,
et al. (2017). The retraction of the protoplast during PCD is an active, and interruptible,
calcium-flux driven process. Plant Sci. 260, 50–59. doi: 10.1016/j.plantsci.2017.04.001

Kim, M., Ahn, J.-W., Jin, U.-H., Choi, D., Paek, K.-H., and Pai, H.-S. (2003).
Activation of the programmed cell death pathway by inhibition of proteasome function
in plants. J. Biol. Chem. 278, 19406–19415. doi: 10.1074/jbc.M210539200

Kim, M., Lim, J.-H., Ahn, C. S., Park, K., Kim, G. T., Kim, W. T., et al. (2006).
Mitochondria-associated hexokinases play a role in the control of programmed cell
frontiersin.or
g

https://doi.org/10.3389/fpls.2019.00704
https://doi.org/10.1046/j.1365-313X.2003.01748.x
https://doi.org/10.1105/TPC.010116
https://doi.org/10.1016/S0014-5793(99)01611-7
https://doi.org/10.1002/dvg.22877
https://doi.org/10.1042/BC20090015
https://doi.org/10.1038/s41580-019-0173-8
https://doi.org/10.1074/jbc.M115.642017
https://doi.org/10.1074/jbc.M115.642017
https://doi.org/10.3389/fpls.2020.01235
https://doi.org/10.3389/fpls.2020.01235
https://doi.org/10.1016/S0300-9084(02)01376-7
https://doi.org/10.1016/S0300-9084(02)01376-7
https://doi.org/10.1074/jbc.M702777200
https://doi.org/10.1038/emboj.2010.1
https://doi.org/10.1371/journal.pone.0009422
https://doi.org/10.1007/s00709-007-0250-2
https://doi.org/10.1074/mcp.O112.021543
https://doi.org/10.1006/bbrc.1999.1692
https://doi.org/10.1006/bbrc.1999.1692
https://doi.org/10.1002/cyto.a.20036
https://doi.org/10.1016/bs.ctdb.2018.10.006
https://doi.org/10.1146/annurev-cellbio-111315-124915
https://doi.org/10.1016/S0981-9428(00)01178-5
https://doi.org/10.1111/j.1438-8677.2008.00078.x
https://doi.org/10.1093/jxb/erz151
https://doi.org/10.1074/jbc.M511794200
https://doi.org/10.1093/jxb/erp320
https://doi.org/10.1016/s0092-8674(00)00008-8
https://doi.org/10.1371/journal.pone.0225881
https://doi.org/10.1104/pp.113.2.313
https://doi.org/10.1111/j.1365-313X.2010.04209.x
https://doi.org/10.1111/j.1365-313X.2010.04209.x
https://doi.org/10.1007/s00425-007-0654-4
https://doi.org/10.1007/s00425-007-0654-4
file:///C:\Programs\MaxTraCt2\@3G_XML\LinkRefs\www.gelanalyzer.com
https://doi.org/10.1007/s00709-012-0470-y
https://doi.org/10.1111/nph.18211
https://doi.org/10.1101/cshperspect.a006080
https://doi.org/10.1038/cdd.2016.93
https://doi.org/10.1016/j.febslet.2007.06.062
https://doi.org/10.1038/35037710
https://doi.org/10.1186/1746-4811-7-45
https://doi.org/10.1093/nar/gkw1041
https://doi.org/10.1093/bioinformatics/btu550
https://doi.org/10.1093/bioinformatics/btu550
https://doi.org/10.3390/cells9010023
https://doi.org/10.1083/jcb.200911091
https://doi.org/10.1093/emboj/17.21.6124
https://doi.org/10.1093/nar/gkad374
https://doi.org/10.1093/nar/gkad374
https://doi.org/10.1016/j.csbj.2021.08.027
https://doi.org/10.1146/annurev-arplant-043015-111655
https://doi.org/10.1146/annurev-arplant-043015-111655
https://doi.org/10.1016/j.plantsci.2017.04.001
https://doi.org/10.1074/jbc.M210539200
https://doi.org/10.3389/fpls.2023.1194866
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Schwarze et al. 10.3389/fpls.2023.1194866
death in nicotiana benthamiana. Plant Cell 18, 2341–2355. doi: 10.1105/tpc.106.041509

Köhler, C., Gahm, A., Noma, T., Nakazawa, A., Orrenius, S., and Zhivotovsky, B.
(1999). Release of adenylate kinase 2 from the mitochondrial intermembrane space
during apoptosis. FEBS Lett. 447, 10–12. doi: 10.1016/S0014-5793(99)00251-3

Kosmacz, M., Gorka, M., Schmidt, S., Luzarowski, M., Moreno, J. C., Szlachetko, J.,
et al. (2019). Protein and metabolite composition of arabidopsis stress granules. New
Phytol. 222, 1420–1433. doi: 10.1111/nph.15690

Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling, E., and Scharf, K.-
D. (2007). Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10,
310–316. doi: 10.1016/j.pbi.2007.04.011

Lee, H.-J., Pyo, J. O., Oh, Y., Kim, H. J., Hong, S. H., Jeon, Y. J., et al. (2007). AK2
activates a novel apoptotic pathway through formation of a complex with FADD and
caspase-10. Nat. Cell Biol. 9, 1303–1310. doi: 10.1038/ncb1650

Lee, D. W., Lee, S., Lee, J., Woo, S., Razzak, M., Vitale, A., et al. (2019). Molecular
mechanism of the specificity of protein import into chloroplasts and mitochondria in
plant cells. Mol. Plant 12, 951–966. doi: 10.1016/j.molp.2019.03.003

Lema Asqui, S., Vercammen, D., Serrano, I., Valls, M., Rivas, S., Van Breusegem, F., et al.
(2018). AtSERPIN1 is an inhibitor of the metacaspase AtMC1-mediated cell death and
autocatalytic processing in planta. New Phytol. 218, 1156–1166. doi: 10.1111/nph.14446

Liu, J.-X., and Howell, S. H. (2016). Managing the protein folding demands in the
endoplasmic reticulum of plants. New Phytol. 211, 418–428. doi: 10.1111/nph.13915

Liu, J.-H.,Wang,W.,Wu, H., Gong, X., andMoriguchi, T. (2015). Polyamines function in
stress tolerance: from synthesis to regulation. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00827
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