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essential roles in plant
development and stress
response via regulating
pH homeostasis
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SYP71, a plant-specific Qc-SNARE with multiple subcellular localization, is essential

for symbiotic nitrogen fixation in nodules in Lotus, and is implicated in plant

resistance to pathogenesis in rice, wheat and soybean. Arabidopsis SYP71 is

proposed to participate in multiple membrane fusion steps during secretion. To

date, the molecular mechanism underlying SYP71 regulation on plant development

remains elusive. In this study, we clarified that AtSYP71 is essential for plant

development and stress response, using techniques of cell biology, molecular

biology, biochemistry, genetics, and transcriptomics. AtSYP71-knockout mutant

atsyp71-1 was lethal at early development stage due to the failure of root

elongation and albinism of the leaves. AtSYP71-knockdown mutants, atsyp71-2

and atsyp71-3, had short roots, delayed early development, and altered stress

response. The cell wall structure and components changed significantly in

atsyp71-2 due to disrupted cell wall biosynthesis and dynamics. Reactive oxygen

species homeostasis and pH homeostasis were also collapsed in atsyp71-2. All these

defects were likely resulted from blocked secretion pathway in the mutants.

Strikingly, change of pH value significantly affected ROS homeostasis in atsyp71-2,

suggesting interconnection between ROS and pH homeostasis. Furthermore, we

identified AtSYP71 partners and propose that AtSYP71 forms distinct SNARE

complexes to mediate multiple membrane fusion steps in secretory pathway. Our

findings suggest that AtSYP71 plays an essential role in plant development and stress

response via regulating pH homeostasis through secretory pathway.

KEYWORDS

AtSYP71, pH homeositasis, ROS homeostasis, cell wall biosynthesis and dynamics, root
development, vesicle trafficking
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Introduction

Cell wall is an important feature of plant cells which provides

cell shapes and strength (Keegstra, 2010). Cell wall is a complex

extracellular matrix containing cellulose, hemicellulose,

polysaccharides, lignin and a small amount of functional

glycoproteins (Kumar and Turner, 2015), playing essential roles

in cell morphogenesis, signal transduction, development, defense

and stress tolerance (Fry, 2004; Liu et al., 2018). Plant cell wall is

usually divided into two categories: primary cell wall (PCW) and

secondary cell wall (SCW) (Keegstra, 2010). In Arabidopsis, the

PCW consists of cellulose microfibrils cross-linked by xyloglucan

(XyG), and embedded in pectin matrix (Gigli-Bisceglia et al., 2020),

and the SCW consists of cellulose, hemicellulose, lignin, and xylans

(Meents et al., 2018). XyG is the most enriched hemicellulose in

PCWs (Julian and Zabotina, 2022). In addition, cell wall-specific

proteins (e.g. extensins, expansins, hydroxyproline-/glycine-rich

proteins and glycoproteins), polysaccharides and polyphenols are

related to cell wall dynamics and response to environmental stimuli

(Zhu, 2018). Lignin plays essential roles on plant growth and

development and acts as a physical barrier against biotic and

abiotic stress (Liu et al., 2018). Lignin is a heteropolymer of

monolignols synthesized primarily through the general

phenylpropanoid pathway (GPP), a main synthetic pathway for

secondary metabolites e.g. flavonoids etc. (Geng et al., 2020). Lignin

precursors are secreted by plasma membrane (PM)-localized

transporters such as ATP binding cassette (ABC) transporters

(Kaneda et al., 2010; Li and Chapple, 2010; Miao and Liu, 2010;

Alejandro et al., 2012), and diffuse in both PCWs and SCWs for

active lignification (Tobimatsu et al., 2013; Schuetz et al., 2014;

Pandey et al., 2016; Geng et al., 2020). The monolignols

polymerization is catalyzed by plant-specific class III peroxidases

(PRXs) and laccases (Dixon and Barros, 2019). PRXs, the secretory

peroxidases accumulated in the plant cell wall or the vacuole

(Kidwai et al., 2020), are related to cell wall polymerization such

as lignification, suberisation and cross-linking of cell-wall

constituents, and consumption of hydrogen peroxide (H2O2), etc.

(Meng et al., 2021). PRXs reduce H2O2 to oxidize monolignols

(Meyer et al., 2009; Didi et al., 2015). Plant laccases, the multicopper

oxidases, are necessary and nonredundant with PRXs for

lignification during vascular development in Arabidopsis. Laccase

4 (LAC4)/11/17 are redundantly required for asymmetric

lignification (Zhao et al., 2013). Unlike PRXs, laccases reduce O2

to H2O to oxidize monolignols without consuming reactive oxygen

species (ROS) (Wang et al., 2015).

Flavonoids are broadly distributed in plants, and is essential for

plant development and defense (Falcone Ferreyra et al., 2012;

Sharma et al., 2019). In plant cells, flavonoids are mainly

synthesized in the cytoplasmic face of the endoplasmic reticulum

(ER) and then uploaded into the ER lumen (Zhao and Dixon, 2010;

Falcone Ferreyra et al., 2012; Zhao, 2015). The PM-localized

flavonoid transporters are mainly ABC transporters (Ferrer et al.,

2008; McFarlane et al., 2010; Sharma et al., 2019), e.g. ABCG (ATP

binding cassette sub-family G) protein. ABCG10 secrets

isoflavonoids to the apoplast for plant defense (Klink et al., 2017),

ABCG1 and ABCG16 are required for secretion of suberin and
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pollen wall synthetic materials (Zhao, 2015; Shanmugarajah et al.,

2019; Liu et al., 2020; Dhara and Raichaudhuri, 2021). SNARE-

mediated exocytosis pathways or nondirectional secretion are

also proposed to mediate in the efflux of flavonoids into the

extracellular space (Zhao and Dixon, 2010) Higher plants

have developed a unique vesicle trafficking system to meet the

needs of plant development and environmental adaption. Vesicle

trafficking involves multiple organelles, and carries out material

communication and signal transmission (Adnan et al., 2019). The

Golgi functions as a vesicle transport hub, accepting ER-derived

vesicles, and facilitating sorting of the cargo into various vesicles.

Moreover, the Golgi is also a factory which holds protein post-

translational modification (e.g. glycosylation) and substance

synthesis (e.g. hemicellulose biosynthesis and assembly) (Bui

et al., 2021). The protein glycosylation initiates in the ER lumen

and is completed in the Golgi cisternae (Frankova and Fry, 2013).

For example, glycosylation of arabinogalactan proteins (AGPs) is

completed by Glycosyltransferases (GTs) at the Golgi (Frappaolo

et al., 2020).The trans-Golgi network (TGN) is a sorting hub for

both exocytosis and endocytosis (Heinze et al., 2020). At the TGN,

hemicelluloses and secretory proteins are sorted into endosomes

and targeted to the PM (Kang et al., 2011). The TGN-PM cycling

pathway and vacuolar degradation pathways coordinately fine-tune

homeostasis of the PM proteins, especially under environmental

stimuli (Meents et al., 2018; Gigli-Bisceglia et al., 2020). Thus it can

be seen that Golgi apparatus plays an important role in the secretion

of cell wall biosynthetic materials and in stress response. The

process of vesicle trafficking includes budding, directional

movement, tethering, anchoring and membrane fusion (Cui et al.,

2022), and each step is regulated by various factors, such as

coatomer, SM, tether, SNARE and Rab proteins, which are highly

conserved in yeast, mammals and plants (Singh and Jurgens, 2018).

The soluble N-ethylmaleimide-sensitive factor attachment protein

receptor (SNARE) proteins play an essential role on membrane

fusion of arriving vesicles with the target membrane (Yoon and

Munson, 2018; MartiniEre and Moreau, 2020). SNAREs usually

contain an N-terminal region, a SNARE motif and a

transmembrane domain (Fasshauer and Margittai, 2004).

According to the conserved amino acids, glutamine or arginine

residues in core of SNARE domain, SNARE proteins are divided

into Q-SNAREs on the target membrane and R-SNAREs on the

vesicle (Fasshauer et al., 1998). Q-SNAREs include Qa-, Qb- and

Qc-SNARE, the three Q-SNAREs combine with R-SNARE to form

trans-SNARE complex facilitating membrane fusion (Antonin et al.,

2000). SYP71 is a plant-specific Qc-SNARE (Sanderfoot et al.,

2000), with multiple subcellular localization of the ER, plasma

membrane (Suwastika et al., 2008), endosome and cell plate (Bao

et al., 2012; Klink et al., 2017). It is reported that SYP71 is essential

for symbiotic nitrogen fixation in nodules in Lotus (Hakoyama

et al., 2012), and participates in pathogen resistance in Glycine max

(Klink et al., 2017), rice (Bao et al., 2012), wheat (Liu et al., 2016)

and Arabidopsis (Wei et al., 2013). Arabidopsis SYP71 is proposed

to localize at the PM, endosome and ER, and be involved in multiple

membrane fusion steps during secretion (Tyrrell et al., 2007).

Moreover, AtSYP71 coordinates with Qa-SNARE KNOLLE, Qb-

SNARE NPSN11 and R-SNAREs VAMP721/722 to facilitate cell
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plate formation during cytokinesis (Suwastika et al., 2008; Bao et al.,

2012; Yoon and Munson, 2018). However, the molecular

mechanism underlying AtSYP71 regulatory roles on plant

development is elusive.

In this study, we illustrate that AtSYP71 is essential for plant

development and stress response. Homozygous mutant atsyp71-1

was seedling lethal, the knockdown mutants atsyp71-2 and atsyp71-

3 exhibited severe early development defects, such as short roots

and delayed bolting. Transcriptome analysis indicated that cell wall

biosynthesis, metabolism and stress response were greatly affected

in atsyp71-2. In response to transcriptomic data, the cell wall

components and structures significantly altered, and ROS and pH

homeostasis were disrupted in atsyp71-2. Furthermore, secretion

was blocked in atsyp71-2. AtSYP71-interacting SNAREs were

identified by pull down-LC-MS/MS analysis. The results suggest

that AtSYP71 forms distinct SNARE complex at multiple steps in

secretory pathway. Our findings suggest that AtSYP71 regulates pH

homeostasis by controlling vesicle transport pathways, thereby

affecting plant development and stress responses.
Materials and methods

Plant materials and growth conditions

Arabidopsis thaliana ecotype Col-0 was used as wild type. T-

DNA mutants were generated from Col-0. atsyp71-1

(GABI_367A08), atsyp71-2 (SALK_081547), atsyp71-3

(SALK_201897) and atsyp71-4 (SAIL_813_A05) were obtained

from the Arabidopsis Biological Resource Center (ABRC) at Ohio

State University (https://abrc.osu.edu). Homozygous plants were

isolated by PCR genotyping using the insertion-specific primers

listed in Supplementary Table 3. The seeds were surface-sterilized

and sown either in soil or on 1/2 Murashige and Skoog medium

(PhytoTech) with 1% (w/v) sucrose and 0.8 or 1.2% agar. Plants

were grown at 22°C under 16 h: 8 h/light: dark cycles, horizontally

or vertically as needed. The root length was measures using

ImageJ software.

Transgenic plants (Col-0) expressing myc (TAP)-tagged

AtSYP71 were generated using a modified pNTAPa vector

described by (Li et al., 2013).
Antibody preparation

To prepare antibodies against AtSYP71, a polypeptide (Cys-

LPARIEAIPDGTA GGPKSTSAWTPSSTTSRPDIKFDSDGR

FDDDYFQESN) was synthesized and conjugated to a Carrier

protein KLH linked by an N-terminal Cys residue. The AtSYP71

peptide–KLH conjugates were injected into two rabbits to generate

antibodies. The antibodies were subjected to ProteinA/G

purification from the serum and ELISA detection. Polypeptide

synthesis and antibody preparation were commissioned to GL

Biochem (Shanghai) Ltd.
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Immunoblotting

Immunoblot analysis was performed as described previously (Li

et al., 2006). Antibodies were diluted as follows: anti-AtSYP71,

1:2,000. The secondary antibody was against rabbit IgG (ZB2301

and ZSGB-BIO), 1:5000. Immunoreactive signals were detected using

a chemiluminescence detection system (LAS-4000 and FYJIFILM).
Confocal microscopy

Fluorescent images were obtained using a point scanning

confocal microscope (Leica TCS SP8). Confocal imaging was

preset for GFP (Ex:488 nm, Em:500–550 nm) or for propidium

iodide staining (Ex:543 nm, Em: 580–640 nm).
Yeast two-hybrid Assay

For the yeast two-hybrid assay, the fragments of AtSYP71

(cytosolic region), MIP2 (Sec39 domain) and MIP3 were

amplified using cDNA obtained from seedlings with specific

primers and ligated into pEASY-Blunt vector (TransGen,

#CB101-01), respectively. After Sanger sequencing confirmation,

the fragments were transferred into pGADT7 or pGBKT7 vectors,

respectively. AtSYP81, AtSEC20 and MAG2 constructs were

generated in our previous study (Li et al., 2006; Zhao et al., 2018).

The paired constructs were introduced into Saccharomyces

cerevisiae strain AH109 (Clontech) and selected on SD/-Leu/-Trp

medium. The interactions were detected on SD/-Leu/-Trp/-His/-

Ade medium.
RNA extraction and RT-qPCR

Total RNA was extracted as described previously (Guan et al.,

2021) using 9-day-old seedlings grown on 1/2MS medium

horizontally. Reverse transcription Quantitative polymerase

chain reaction (RT-qPCR) was performed according to the

manufacturer’s instructions. The specific primers are listed in

Supplementary Table 3.
RNA sequencing

Total RNA was extracted from 9-day-old seedlings grown on 1/

2MSmedium horizontally. Illumina cDNA libraries were constructed

with the TruSeq RNA Sample Prep Kits v2 (Illumina, San Diego, CA,

USA) following the manufacturer’s protocol. Sequencing of the

cDNA libraries was performed by pair-end methousing an Illumina

HISEQ-x10 with a 150-bp read length and a sequence depth ~20

million uniquely mapped reads. Three biological replicates per

sample. The data presented in the study are deposited in the NCBI

repository, the BioProject ID is PRJNA971388.
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Sequence trimming, mapping and
expression level determination

Reads were trimmed using the CLC Genomics Workbench 6.5.1

(CLC bio, Denmark) with the following parameters: ‘quality scores-

0.005; trim ambiguous nucleotides-2; remove 5’ terminal nucleotides-1;

remove 3’ terminal nucleotides-1; discard reads below length 25’.

Trimmed reads were mapped using the RNA-seq mapping

algorithm implemented in the CLC Genomics Workbench to the

reference Arabidopsis thaliana genome (TAIR10) allowing only unique

mapping (length fraction=1, similarity fraction=0.95). In order to

estimate the influence of non-uniquely mapped reads on gene

expression we also mapped reads using the same software and

parameters as indicated above, but allowing multiple mapping (up to

10 hits). For each gene, total gene reads (TGR) was determined as the

sum of all reads mapped to this gene. To avoid bias due to different

library sizes, TGR values were normalized by a size factor as described

in Anders and Huber (Anders and Huber, 2010).
Identification of DEGs

DEGs were identified using the R package ‘DESeq’ (Anders and

Huber, 2010). A false discovery rate (FDR) of 0.05 and a fold change

of 2.0 were chosen as the threshold for significantly differential

expression. The original transcriptomic data of atsyp71-2 vs Col-0 is

in Supplementary Table 1.
GO enrichment analysis

Downregulated and upregulated DEGswere analyzed for GO

and other annotation (as key words or protein domain) enrichment

using the DAVID gene functional annotation tool https://

david.ncifcrf.gov/, with an FDR value of 0.05 and a fold change of

category representation of 2.0 as the threshold of significance

(Huang da et al., 2009a; Huang da et al., 2009b).
Enrichment analysis of differential
gene KEGG

KEGG enrichment analysis was performed using KOBAS

(v2.0). Rich factor, P-value and the number of genes indicated the

degree of KEGG enrichment. Rich factor means the ratio of

enriched DEGs to all genes annotated in the pathway. Therefore,

the higher the Rich factor value, the greater the enrichment of the

pathway. Parameter setting: Corrected P-Value < 0.05.
Determination of lignin

The first segment of stems from ten-weeks-old plants were

harvested and dried at 80°C to constant weight, then were ground

and passed through a 40 mesh sieve. About 5 mg was put into a 10
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mL glass test tube with 1 mL of glacial acetic acid containing 30%

acetyl bromide and 40 uL of perchloric acid, sealed with a sealing film,

fully mixed, then incubated in water bath at 80°C for 40 min, shaking

every 10 min. After natural cooling, 1 mL of 2 mol/L NaOH and

glacial acetic acid (equal volume) were added and fully mixed. Add

1,960 uL of acetic acid to 40 uL of supernatant and fully mixed. Then,

absorbance of the mixture was determined by spectrophotometer at

280 nm wavelength versus the prepared blank.
Determination of cellulose

The first segment of stems from ten-weeks-old plants were

harvested and incubated overnight in 80% ethanol at 65°C. Dry

materials were ball milled to fine powder. Cellulose content was

determined by Anthrone sulfuric acid colorimetry using Cellulose

determination kit (CLL-2-Y, Comin, Suzhou Keming

Biotechnology Co., Ltd.) according to Xiao et al. (2016). D-Glc

(Sigma) was used as a standard for calculation of cellulose content.

Three repeats per sample.
Determination of total flavonoids

The flavonoid content was determined by colorimetric assay

(Kim et al., 2003). A 250 mL of standard solution of rutin at different

concentrations or appropriately diluted samples were added to

10 ml volumetric flask containing 1 ml of distillate water,

respectively, then, 75 ml of NaNO2 (5%) was added and mixed

thoroughly. After 6 min of incubation, 75 ml of AlCl3 (10%) was

added, fully mixed and incubated for 6 min, then 500 ml of NaOH
(1N) was added. Immediately, the solution was diluted by adding

2.5 ml of methanol and mixed thoroughly. Absorbance of the

mixture was determined by spectrophotometer at 506 nm

wavelength versus the prepared blank. Total flavonoid

compounds in plant were indicated as mg rutin equivalents (CE

mg/ml). Three repeats per sample.
Analysis of enzyme activities

For determination of activities of ROS-scavenging enzyme, 0.2 g

of roots from nine-day-old seedlings were ground in 1.6 ml of

precooled 50 mM phosphate-buffered saline (PBS) buffer (pH7.8).

The homogenate was centrifuged at 16,000 g for 20 min at 4°C, and

the supernatant was used for the assays. Determination of activities

of peroxidase (POD), superoxide dismutase (SOD) and superoxide

catalase (CAT) were performed according to established protocols

(Luo et al., 2020). Three biological replicates per sample.
Chemical determination of cell
wall monosaccharides

0.1g dry powder of the first stem segments from ten-weeks-old

Col-0 and atsyp71-2 plants were used for determination of cell wall
frontiersin.org
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monosaccharides according to the method reported by Liu et al.

(Liu et al., 2022a).

Histological analysis and
immunofluorescence analysis

The first stem segments from 10-weeks-old Col-0 and atsyp71-2

plants were fixed and made into paraffin slices (Wang et al., 2020),

and subjected to immunofluorescence analysis according to

previously reported method (Wang et al., 2016).

Pull down assay and Shotgun
LC-MS/Ms analysis

Pull-down assay was performed as described previously using a

mMACS™ epitope tag protein isolation kit (Anti-c-myc

MicroBeads, Miltenyi Biotec, Order No. 130-091-123). Two

grams of ten-day-old seedlings were used for initiation. The

eluates were used for Shotgun liquid chromatography-tandem

mass spectrometry (LC-MS/MS) analysis.

LC-MS/MS analysis was mainly performed as described

previously (Qin et al., 2017), with slight modifications.

Results

AtSYP71 is essential for plant growth
and development

To explore the biological function of AtSYP71 on plant growth

and development, four T-DNA insertion mutants of AtSYP71,
Frontiers in Plant Science 05
atsyp71-1 to atsyp71-4 were obtained. Genotyping and sequencing

confirmed that T-DNA was inserted in 5’-UTR, different sites of the

first intron region and the seventh intron of AtSYP71, respectively, in

atsyp71-1 to atsyp71-4 (Figure 1A). RT-qPCR analysis indicated that

AtSYP71 expression was eliminated in atsyp71-1, and was

significantly downregulated in atsyp71-2 to atsyp71-4 (Figure 1B).

Consequently, atsyp71-2 to atsyp71-4 were knockdown alleles, and

atsyp71-1was knockout allele. The complementation lines of atsyp71-

1 (atsyp71-1 com) and atsyp71-2 (atsyp71-2 com) were generated by

crossing atsyp71-1 (using heterozygous plant) and atsyp71-2 with

pAtSYP71::GFP-AtSYP71-expressing wild type (Col-0) line,

respectively. The complemented lines restored the AtSYP71

expression in atsyp71-1 and atsyp71-2 mutants (Figure 1B). p35S::

TAP-AtSYP71 (AtSYP71 OE) conferred significantly increased

AtSYP71 expression in wild-type background (Figure 1B).

Comparison of the early development phenotypes of Col-0, atsyp71

mutants, complementation lines (atsyp71-1/-2 com) andAtSYP71OE

revealed that seven-day-old seedlings of atsyp71-2 and atsyp71-3

developed much shorter primary roots (about 67% decrease) and

smaller shoots than Col-0, while, the root length and shoots of

atsyp71-4 and AtSYP71 OE had no significance compared with that

of Col-0 (Figures 1C, D). However, the development of the knockout

allele atsyp71-1 was inhibited. After germination, roots of atsyp71-1

cannot elongate, cotyledons were albino or vitrified, and the true

leaves were very small and turned yellow and vitrified (Figure 1E).

And the so-called seedlings dead at about ten days after germination.

The bolting of atsyp71-2 and atsyp71-3 plants was significantly

delayed compared with that of Col-0 (Figure 1F). The phenotypes

of atsyp71-1 com and atsyp71-2 comwere restored (Figures 1C, D, F).
A B D

E

F

C

FIGURE 1

AtSYP71 is essential for plant morphogenesis and early development. (A) AtSYP71 gene structure diagram. Black boxes represent exons, gray lines
represent introns, and gray boxes represent untranslated regions (UTRs). The triangles indicate the T-DNA insertion sites of the atsyp71 mutants.
(B) Statistics of RT-qPCR detection of the relative expression levels of AtSYP71 in atsyp71 mutants, the atsyp71 complementation lines and AtSYP71
overexpression line. Three independent experiments per sample, two repeats per experiment. (C) Phenotype of seven-day-old seedlings of Col-0,
atsyp71 mutants, atsyp71-2 com and AtSYP71 OE lines. (D) Statistics of primary root length of the displayed genotypes (n ≥ 44). Three biological
replicates per sample. **P < 0.01; ***P < 0.001. Student’s t test. (E) Five-day-old seedlings of Col-0 and atsyp71-4 mutant. Magnified pictures
highlighted growth defects of atsyp71-4. Bar, 0.5 cm. (F) Bolting of atsyp71-2 and atsyp71-3 was delayed. Four- (right panel) and five (left panel)-
week-old plants of the displayed genotypes.
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These results suggest that AtSYP71 is essential for plant

morphogenesis and early development.
Transcriptome analysis of
atsyp71-2 mutant

To explore the mechanism of AtSYP71 regulatory role on plant

growth and development, we performed transcriptome analysis

using roots of nine-day-old Col-0 and atsyp71-2 seedlings. The

sequencing obtained 34,524 and 33,113 reliable clean reads above

100 bp in Col-0 and atsyp71-2, respectively. After comparison using

tophat2 software, 87.68% and 86.59% of clean reads matched to the

reference genome sequence, respectively. Statistical evaluation of

sequencing quality value showed that base Q30% was 92.37% and

92.16%, respectively (Supplementary Figure 1A), indicating the

high quality of transcriptome sequencing and reliable original

data for subsequent analysis. Volcano map indicated the overall

distribution of the differentially expressed genes (DEGs). A total of

165 DEGs were identified, of which 69 were up regulated, and 96

were down regulated (Supplementary Figure 1B). Gene Ontology

(GO) analysis revealed that in Biological process (BP), the DEGs

were enriched in Response to biotic and abiotic stimuli/stress,

Defense responses (Figure 2A, red arrows), and Redox processes

(yellow arrows), etc. In Cellular component (CC), DEGs were

enriched in Cell wall and External encapsulating structure (blue

arrows). Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis indicates that DEGs were mainly enriched in

Glucosinolate Biosynthesis, 2-Oxocarboxylic acid metabolism and

Phenylpropanoid biosynthesis, Metabolic and Secondary metabolic

processes, and Amino acids metabolism, etc (Figure 2B). These

results suggest that down regulation of AtSYP71 disturbed plant
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response to stimuli and stress through redox processes and

metabolism etc.
The expression of cell wall-relating genes
were affected significantly in atsyp71-2

Go enrichment analysis of the DEGs in Cellular component

(GO:0005575, CC) indicated that the DEGs were enriched in the

Extracellular region (GO:0005576) and External encapsulating

structure (GO:0030312) containing Cell wall (GO:0005618) which

includes Plant-type cell wall (GO:0009505) (Figure 3A, rectangles).

The DEGs include five PRXs (class III peroxidases), three LTPs (lipid

transfer proteins), three XTHs (xyloglucan endotransglucosylase/

hydrolase), five EXPAs (expansins) and some other cell wall

biosynthesis-related genes, and most of these genes were down-

regulated (Figure 3B; Supplementary Table 2), suggesting that

AtSYP71 is related to cell wall biosynthesis and dynamics.

Phenylpropanoid biosynthesis pathway is reported to be involved

in cell wall biosynthesis (Lewis et al., 1987; Merali et al., 2007), and the

enriched DEGs include nine PRXs and BGLU25, a b-D-glucosidase
gene (Figure 3C). The five PRXs in CC were also included in this

pathway. RT-qPCR analysis indicate that the changes of the DEGs in

this pathway and CC were the same, and most of the DEGs had

significances (Figures 3D, E). Among these factors, PRXs are involved

in lignification, suberization, cross-linking of extensins, metabolism

of reactive oxygen species (ROS), as well as cell wall dynamics, e.g. cell

wall loosening and strengthening, etc. (Almagro et al., 2009; Francoz

et al., 2015). XTH enzymes play a role in cell wall loosening through

the modification of xyloglucan chains (Opazo et al., 2017). EXPAs are

located in the cell wall and activated by low apoplastic pH (Cosgrove,

2005), and act on cell wall loosening resulting in cell elongation
A B

FIGURE 2

Comparative transcriptome analysis of DEGs in atsyp71-2. (A) Gene ontology (GO) enrichment analysis of DEGs. X axis represents DEG number. Y
axis represents GO terms. (B) Top 20 pathways of KEGG enrichment analysis. X axis represents enrichment factors; Y axis represents pathways. The
color bar indicates the P value, the circle size indicates DEG number.
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(Pacifici et al., 2018). Moreover, BGAL8 (beta-galactosidase)

(Chandrasekar and van der Hoorn, 2016), LTPs (lipid transfer

proteins) (Chae et al., 2009; Bard et al., 2016), BBE19/OGOX1

(FAD-binding Berberine Bridge Enzyme 19/oligogalacturonide

oxidase 1) (Benedetti et al., 2018), ABCG1 (Shanmugarajah et al.,

2019) and ATPP2 (Phloem protein 2)-B13 (Bobbili et al., 2018)

participate in cell wall biosynthesis and dynamics, and GSTF6

(glutathione s-transferase 6), CYP706A1 (cytochrome p450 family

706, subfamily A, polypeptide 1), BGLU25 (beta glucosidase 25) and

SCPL12 (serine carboxypeptidase-like 12) are involved in

biosynthesis of flavonoids which is related to stress response (Xu

et al., 2004; Su et al., 2011).

In addition to the DEGs in CC, expression of some

transcription factors (TFs) related to cell wall dynamics/

biosynthesis and stress response also altered significantly
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(Figure 3F). RT-qPCR analysis confirmed that except for MYB15,

the changes of the TF genes were consistent with those of

transcriptomic data, and most of them had significances

(Figure 3G). It has been demonstrated that MYB15 plays a

central role on pathogen-induced lignification (Kim et al., 2020a),

and WRKY18 and WRKY53 coordinate with histone

acetyltransferase1 (HAC1) to regulate responses to sugars, the

structural components of cell wall (Rolland and Sheen, 2005;

Chen et al., 2019). WRKY46, WRKY48 and WRKY51 are

responsible for abiotic stress response, and HRS1 is involved in

nitrogen saturation signaling (Xing et al., 2008; Gao et al., 2011;

Chen et al., 2017; Li et al., 2021). To further confirm that the

alteration of expression of these genes was resulted from

knockdown of AtSYP71, we checked the expression of some of

the genes randomly in atsyp71-3. The results showed the same
A B
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FIGURE 3

Changes in DEG Enrichment in atsyp71-2 mutant. (A) The enriched GO terms in Cellular component (GO:0005575) of DEGs in Col-0 and atsyp71-2
seedlings. Rectangles indicate the significant terms. The colors of rectangles and ovals represent the relative significances, ranging from red (the
most significant, P < 0.0001), orange (the second significant, P < 0.001), light yellow (the third significant; P < 0.05) and white (no significance). (B)
Transcriptomic analysis of DEGs in CC. (C) Statistics of RT-qPCR analysis of DEG expression levels in (B). (D, E) Transcriptomic analysis and statistics
of RT-qPCR analysis of DEGs in Phenylpropanoid biosynthesis pathway. (F, G) Transcriptomic analysis and statistics of RT-qPCR analysis of some
other DEGs related to cell wall biosynthesis. (H, I) Transcriptomic analysis and statistics of RT-qPCR detection of Transcription factors related to cell
wall biosynthesis. Total RNA for RT-qPCR analysis were from roots of seven-day-old seedlings. All RT-qPCR Data are presented from three
independent experiments performed with four technical replicates per sample. *P < 0.05; **P < 0.01; ***P < 0.001; Student’s t-test. Abbreviations:
ABCG1, ATP binding cassette sub-family G 1; AGP1, Arabinogalactan protein 1; BBE19/OGOX1, FAD-binding Berberine Bridge Enzyme 19/
oligogalacturonide oxidase 1; BGAL8, beta-galactosidase 8; BGLU25, beta glucosidase 25; CYP706A1, cytochrome p450 family 706, subfamily A,
polypeptide 1; EXPA1, expansin A1; GSTF6, glutathione s-transferase 6; JAL22, jacalin-related lectin 22; LAC12, LACCASE 12; LTP2 (lipid transfer
protein 2); LTPG1 (glycosylphosphatidylinositol-anchored lipid protein transfer 1), PP2-B13, PHLOEM PROTEIN 2-B13; PRX, peroxidase; SCPL12,
serine carboxypeptidase-like 12; XTH20, xyloglucan endotransglucosylase/hydrolase 20.
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trends of change (Supplementary Figure 2). The significant

alteration of expression of these genes in atsyp71 mutants suggest

that AtSYP71 regulates cell wall biosynthesis, dynamics and plant

stress response.
The cell wall components and structure
were affected in atsyp71-2 mutant

Transcriptome analysis reveals that in CC, all DEGs were

enriched in Cell wall and External encapsulating structure

(Figure 2A, blue arrows), indicating AtSYP71 is closely related to

cell wall homeostasis. Therefore, we first determined the contents of

cell wall components in atsyp71-2 stems. The results indicate that

the content of lignin in atsyp71-2 stems increased significantly,

while, the content of cellulose didn’t change obviously (Figure 4A),

but the content of flavonoids reduced significantly compared with

that in Col-0 (Figure 4B). Determination of cell wall

polysaccharides indicate that the contents of glucose and XyG

increased significantly, of galactose decreased significantly, and of

arabinose didn’t change significantly compared with that in Col-0

(Figure 4C). Immunofluorescence images indicate that the content

of AGPs decreased significantly, and of XyG increased significantly

which is consistent with the result of polysaccharides determination

(Figure 4D; Supplementary Figure 3). To investigate the effects of

changes in the component abundance on cell wall structure, we

observed the cross section of stems. The images revealed that the

stem diameter didn’t change obviously (Figures 4E, F), but the

average xylem number and total area in atsyp71-2 increased
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significantly compared with that in Col-0 (Figures 4E, G).

Moreover, the cell wall thickness of interfascicular fiber (IF) cells

was significantly thicker than that of Col-0 (Figures 4H, I). It can be

speculated that the increased xylem area and the thickness of IF cell

wall may be the main reasons for the increase in lignin content.

These results strongly suggest that AtSYP71 regulates cell wall

biosynthesis and dynamics.
Stress response of atsyp71-2 was
significantly altered

Transcriptome analysis indicates that in BP, a large amount of

the DEGs were enriched in processes of stimuli/stress response

(Figure 2A, red arrows), indicating AtSYP71 is essential for plant

stress adaption. Therefore, we investigated the redox status of

atsyp71 mutants. The activities of antioxidases e.g. peroxidase

(POD), superoxide dismutase (SOD) and superoxide catalase

(CAT) significantly increased in atsyp71-2 (Figure 5A). The DAB

and NBT staining results revealed that H2O2 and O−
2 levels in

atsyp71-2 decreased significantly compared with those in Col-0

(Figures 5B, C). These results indicate that ROS homeostasis was

disturbed due to knockdown of AtSYP71. Then, we checked stress

response of atsyp71-2. Under 75 mmH2O2 treatment, root length of

Col-0 declined by about 13%, whereas that of atsyp71-2 and

atsyp71-3 only declined by 2-5%. Under treatment of 0.1 mM
methylviologen (MV, donor of O−

2 ), root length of Col-0 declined

dramatically by about 71%, however, that of atsyp71 mutants only

declined by 17-19%. While, under 0.1 mM MV + 75 mm H2O2
A B D E
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FIGURE 4

The cell wall components and structure altered in atsyp71-2 mutant. (A-C) Statistics of contents of lignin, cellulose (A), polysaccharides (B) and total
flavonoids (C) in the first section of stems from ten-week-old plants. Three biological replicates per sample. (D) Statistics of fluorescence intensity of
Immunolabeling of AGPs with anti-LM2 antibody and XXXG xyloglucan with anti-LM15 antibody, respectively.nCol-0 = 6, natsyp71-2 = 7. (E) The paraffin
sections with Safranine and Fast Green double staining of stems from the same batch as those in (A). (F, G) Statistics of stem diameter (E) and total
xylem area (F) shown representatively in (D). n≥8 stems. (H) Magnified images of the stem cross sections. (I) Statistics of cell wall thickness of
interfascicular fiber cells. n≥50 cells. *P < 0.05; **P < 0.01; ***P < 0.001. Student’s t test. Ara, arabinose; Gal, galactose; Glu, glucose; XyG,
xyloglucan; co, cortex; ep, epidermis; if, interfascicular fibers; ph, phloem; xy, xylem. ns, no significance.
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treatment, root length of both Col-0 and atsyp71mutants decreased

more sharply, that of Col-0 declined by about 80%, and that of

atsyp71 mutants declined by 41-43% (Figures 5D-F). These results

indicate that the ROS homeostasis was seriously interrupted in

atsyp71 mutants. Under 120 mM NaCl and 150 mM mannitol

treatments, root length of Col-0 and AtSYP71 OE seedlings reduced

significantly, but that of atsyp71-2 didn’t change obviously

(Figures 5G-J). These results suggest that AtSYP71 modulates

ROS homeostasis and affects plant stress response.
Secretion of H+ in atsyp71 mutant
roots increased

Since GO Enrichment analysis revealed a DEG enrichment in

Response to acid chemical process (Figure 2A, green arrow), we

further investigated growth of atsyp71 mutants under different pH

value. In 1/2MS medium with pH7 condition, the root length of

both Col-0 and atsyp71-2 increased significantly. Under pH8

condition, root growth of Col-0 largely recovered, however, root

growth of atsyp71-2 increased more significantly than that at pH5.8,

and at pH9, root growth of Col-0 was inhibited significantly,

however, root length of atsyp71-2 was still significantly higher
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than that at pH5.8 (Figures 6A-C), means that atsyp71-2 root

growth was better under alkaline conditions. Therefore, we

speculated that atsyp71-2 roots probably secreted more acidic

substances to the apoplast to alleviate the inhibition of root

growth under alkali stress. To verify our speculation, bromocresol

purple, a pH indicator, was used to detect the acidification of the

medium growing atsyp71-2 mutants and Col-0. As expected, the

medium around atsyp71-2 and atsyp71-3 roots showed higher

acidification than that around Col-0 and AtSYP71 OE roots

(Figure 6D). These results demonstrate that AtSYP71 may affect

root pH homeostasis. Then, we added MES [2-(N-morpholino)

ethanesulfonic acid], a broadly used Good’s buffer, to 1/2MS

medium to observe its effects on root growth. To obtain the

appropriate MES concentration for treatment, 0.1% and 0.5%

MES were tested. It was found that at 0.5% MES condition, root

length of atsyp71 mutants was recovered better that that at 0.1%

MES condition (Supplementary Figure 4). Thus, 0.5% MES was

used for subsequent experiments.

Under pH5.8 with 0.5% MES condition, the root length of both

Col-0 and atsyp71-2 increased significantly compared with that at

pH5.8, while, the root elongation of atsyp71-2 (by 306%) was more

significant than that of Col-0 (by 114%). At pH7 and pH8 with 0.5%

MES, the root growth of Col-0 was inhibited and the root length was
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FIGURE 5

Alteration of ROS homeostasis and stress response in atsyp71 mutants. (A) Statistics of antioxidase activities in roots of nine-day-old Col-0 and
atsyp71-2 seedlings. (B) DAB and NBT staining of roots of Col-0 and atsyp71-2 nine-day-old seedlings. (C) Statistics of DAB and NBT staining
intensities measured by Photoshop 2019. (D) Treatments on Col-0 and atsyp71 nine-day-old seedlings with 75 mm H2O2, 0.1 mM MV, or 75 mm
H2O2 + 0.1 mM MV. n≈50. Three biological replicates per sample. (E) Statistics of root length shown representatively in (D). (F) Statistics of ratio of
root length in (E). (G) Seven-day-old seedlings under 120 mM NaCl treatment. (H) Nine-day-old seedlings under 150 mM mannitol treatment. (I, J)
Statistics of root length in (G, H), respectively. n≈50. Three biological replicates per sample. (K, L) Statistics of ratio of root length in (I, J),
respectively. ns, no significance; *P < 0.05; **P < 0.01; ***P < 0.001. Student’s t test.
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significantly shorter than that at pH5.8 (by 71% and 47%,

respectively), whereas root length of atsyp71-2 was still

significantly longer than that at pH5.8 (by 216% and 109%,

respectively). And under pH9 with 0.5% MES, root growth of

both Col-0 and atsyp71-2 was inhibited seriously (Figures 6E-G).

To study root apical meristem (RAM) activity under adding MES

condition, we observed the mitotic marker CycB1;1::GUS which

was introduced into atsyp71-2 by crossing. The GUS staining results

revealed that under pH5.8, the RAM activity in atsyp71-2 roots was

seriously inhibited compared with that in Col-0, but when added

0.5% MES, the RAM activity in atsyp71-2 was restored and was

close to the level in Col-0 (Figure 6H). These results suggest that

AtSYP71 regulates root development via modulating pH

homeostasis. To figure out whether pH homeostasis is connected

with ROS homeostasis, we checked ROS level in atsyp71 roots under

MES condition. First, we determinated antioxidase activities of the

seedlings grown on 1/2MS medium (pH5.8) with or without 0.5%

MES. At pH5.8 with 0.5% MES, the POD activities of Col-0 did not

change significantly, whereas that of atsyp71 mutants decreased

significantly compared with that at pH5.8. There was no significant

difference in POD activities between Col-0 and atsyp71 mutants

after adding 0.5% MES (Figure 6I). On the other hand, in the
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presence of 0.5% MES, the CAT activities of Col-0 increased

significantly, while, that of atsyp71-2 reduced significantly

compared with that without MES. And there was no significant

difference in CAT activities between Col-0 and atsyp71 mutants

after adding 0.5% MES (Figure 6J). The DAB and NBT staining

revealed that under 0.5% MES condition, H2O2 and O−
2 levels in

both Col-0 and atsyp71-2 increased significantly, but there was little

difference between Col-0 and atsyp71-2 (Figures 6K-N). These

results indicate that MES buffered the excess H+ produced by

atsyp71-2 roots and consequently restored the ROS level,

suggesting that AtSYP71 affects ROS homeostasis and root

development via regulating pH homeostasis.
Secretion was disturbed in
atsyp71-2 mutant

Since cell wall biosynthesis and acid substance secretion are

regulated by secretion pathway, we observed the localization of the

secretory marker SecGFP (Batoko et al., 2000; Leucci et al., 2007),

in atsyp71-2 root cells. Confocal images revealed that in atsyp71-2

root cells, SecGFP displayed apparent cytoplasmic localization
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FIGURE 6

Alkali stress response altered in atsyp71 mutants. (A) Phenotype of nine-day-old seedlings grown on 1/2MS medium with different pH value. (B) Statistics of root
length of seedlings in (A). (C) Statistics of ratio of root length in (B). (D) Visualization of root acidification of Col-0, atsyp71 mutants nd AtSYP71 OE seedlings using
the pH indicator, bromocresol purple. Five-day-old seedlings grown on 1/2MS medium (pH5.8) were transferred to 1/2MS medium (pH 6.8) containing 0.006%
(w/v) bromocresol purple, and photographed three-day after transfer. (E) Phenotype of nine-day-old seedlings grown on 1/2MS medium containing 0.5% MES
with different pH value. (F) Statistics of root length of seedlings in (E). (G) Statistics of ratio of root length in (F). (H) Nomarski images of CycB1;1::GUS-expressing
cells in roots of nine-day-old Col-0 and atsyp71-2 seedlings. (I, J) POD (H) and CAT (I) activities of nine-day-old seedlings grown on 1/2MS medium (pH5.8) with
or without 0.5% MES. (K, L) DAB (K) and NBT (L) staining of nine-day-old seedlings grown on 1/2MS medium (pH5.8) with or without 0.5% MES. (M, N) Statistics
of staining intensities in (K) and (L). ns, no significance; *P < 0.05; **P < 0.01; ***P < 0.001. Student’s t test.
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which was absent in Col-0 (Figure 7A, arrows), indicating that part

of SecGFP was blocked in secretion pathway, suggesting that

AtSYP71 plays crucial role on secretion.

Then, we identified AtSYP71- associating proteins. AtSYP71 is

reported to localize on the ER, endosome, plasma membrane and

cell plate (Alexandersson et al., 2004; Marmagne et al., 2004;

Mongrand et al., 2004; Uemura et al., 2004; Morel et al., 2006),

suggesting its multiple functions. During cytokinesis, AtSYP71

associates with Qa-SNARE KNOLLE, Qb-SNARE NPSN11, and

R-SNARE VAMP721/722 to form a tetrameric SNARE complex in

cell plate (El Kasmi et al., 2013). To further identify AtSYP71

partners, we generated myc-AtSYP71/atsyp71-2 lines by crossing

myc-AtSYP71 (AtSYP71OE) line with atsyp71-2 mutant.

Immunoblot analysis indicates recovery of AtSYP71 protein level

and root length compared with atsyp71-2 (Supplementary Figure 5),

implying that myc-AtSYP71 proteins were functional. Then, we

performed pull down of myc-AtSYP71 and identified PM-localized

Qa-SNARE SYP131, SYP121 and SYP122, PM-Qb-SNARE

NPSN11 and NPSN12, prevacuolar compartment (PVC)-localized

Qb-SNARE VTI11 and SYP22 (Table 1). Among these factors,

SYP121/SYP122, NPSN11/NPSN12, and SYP22 are demonstrated

to be co-immunoprecipitated with AtSYP71 (Fujiwara et al., 2014).

For the rest unclarified factors, VTI11 and SYP131, we performed

yeast two hybrid (Y2H) analysis. As expected, Y2H results

confirmed the interactions of AtSYP71 with VTI11 and SYP131,

respectively (Figure 7B). AtSYP71 is also localized at the ER, but the

pull down products did not include ER-localized SNAREs,

suggesting the interaction of AtSYP71 with the ER-SNARE was

minor. Therefore, we performed pull down-LC-MS/MS analysis

using myc-tagged ER-Qa-SNARE AtSYP81-overexpressing plants.

The elution products include AtSYP71, and ER-Qb-SNARE SEC20,

as well as the PM- and PVC-localized AtSYP71 partner proteins

(Table 2). Y2H confirmed the interactions of AtSYP71 with
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AtSYP81 and SEC20, respectively (Figure 7B). These results

suggest that during interphase, AtSYP71 may form distinct

SNARE complexes with different set of SNAREs to mediate

membrane fusion of multiple steps in secretory or vacuole-

targeting pathways, respectively.
Discussion

AtSYP71 affects plant development via
regulating secretory pathway

AtSYP71 has an unusual multiple localization on the ER,

endosome, PM and cell plate, the compartments in the secretory

pathways (Suwastika et al., 2008; El Kasmi et al., 2013). It is clarified

that AtSYP71 binds with Qa-KNOLLE, Qb-SNARE NPSN11 and

R-SNAREs VAMP721 and VAMP722 to form a SNARE complex

regulating cytokinesis (El Kasmi et al., 2013). AtSYP71 is also

demonstrated to be co-immunoprecipitated with SYP121/SYP122,

NPSN11/NPSN12, and SYP22 (Fujiwara et al., 2014). In this study,

we found that in addition to the mentioned factors, AtSYP71

interacted with PVC-localized SNARE, VTI11, suggesting that

AtSYP71 may be also involved in vacuole-targeting pathway.

Considering importance of AtSYP71 functions, deficiency of

AtSYP71 will definitely seriously affect AtSYP71-dependent

vesicle trafficking and organelle functions. Lethality of the knock-

out mutant atsyp71-1 (Figure 1C) resembled the phenotype of

syp71amiR and npsn11 syp71amiR, the cytokinesis defective mutants

(El Kasmi et al., 2013). The failure of morphogenesis may be due to

the blocked delivery of materials required for cell plate formation,

implying essential role of AtSYP71 in secretion and development in

Arabidopsis. On the contrary, Ljsyp71 mutants grow similarly to

wild-type plant when supplied with combined nitrogen. OsSYP71
A B

FIGURE 7

AtSYP71 regulated secretion. (A) Confocal images of SecGFP in Col-0 and atsyp71-2 with PI staining. The magnified images on the right are the part
with white boxes. Arrows indicate the cytoplasmic localization of Sec-GFP. (B) Yeast two hybrid analysis of AtSYP71 interactors. Yeast strain AH109
was transformed with the paired constructs as shown. Transformants were streaked onto SD/_Leu/_Trp/_His/_Ade medium. AtSYP81/pGADT7 vs
AtSec20/pGBKT7 served as a positive control. Each construct and its corresponding empty vector were used as negative controls. cyt, cytoplasmic
fragment; FL, full length. +, has an interaction; -, no interaction.
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and TaSYP71 deficient mutants didn’t show obvious phenotypes

under normal growth conditions (Bao et al., 2012; El Kasmi et al.,

2013). These suggest that LjSYP71, OsSYP71 and TaSYP71 are not

essential for plant growth and development. This probably because

that SYP71 orthologues in different species gain functional division

during evolutionary.

The knock-down mutants, atsyp71-2 and atsyp71-3, also

displayed developmental defects. While, the short root phenotype

was rescued by alkali pH and 0.5% MES which buffers H+

(Figure 6). The acidification of atsyp71-2 and atsyp71-3

rhizosphere indicate that the pH homeostasis was affected,

suggesting that homeostasis of PM-localized ion channels and

other PM-residents may also be disturbed. For example, SLAH3

mainly inhibit the inward-rectifying K+ channel KAT1 by protein-

protein interaction and consequently prevent stomatal opening

(Zhang et al., 2016). CIPK3 regulates K+ homeostasis through

activating vacuolar K+ efflux to the cytoplasm (Tang et al., 2020).

Transcriptional levels of these two genes altered significantly in

atsyp71-2 (Supplementary Figure 6A), suggesting AtSYP71 effects

on ion homeostasis. The fundamental reason of unbalanced

homeostasis in the mutants was the block of secretory and cycling

pathways which maintain homeostasis of PM-localized ion

channels and other residents, as well as exocytosis of cell wall

biosynthetic materials which led to changes of cell wall structure

and components (Figure 4; Supplementary Figure 3).

Knockdown of AtSYP71 definitely impacted the organelle

functions. The ER and the Golgi apparatus are responsible for

protein glycosylation. Thus, post transcriptional modification of the

glycoproteins, e.g. laccases, PRXs and AGPs, were likely disrupted

in atsyp71 mutants. Transcriptome analysis indicate that the

expression of PRX4/15/25/37/49/52/53/54/62, LAC12 and AGP1

genes decreased significantly (Figure 3), and the protein level of

AGPs were also reduced significantly in atsyp71-2 (Figure 4D).

Furthermore, the expression of UDP-glucosyltransferase, UGT74E2

and AT2G18560, the cell wall biosynthesis regulators, were also

altered significantly (Supplementary Figure 6B). These changes

validate effects of AtSYP71 on the regulatory machinery of cell

wall biosynthesis. In addition, expression of many cell wall

dynamics regulatory genes were also affected in atsyp71-2. For

example, EXPA proteins are responsible for cell wall extension

and induce stress relaxation and extension of cell wall in a pH-

dependent manner (Cosgrove, 2000). XTH proteins catalyze

molecular grafting and/or hydrolysis of cell wall xyloglucans

(Jiang et al., 2020), and their function are pH-dependent

(Cosgrove, 2000). LTP2 plays a role in maintaining the integrity

of the cuticle-cell wall interface (Julke and Ludwig-Muller, 2015).

PP2-B13, is a phloem protein 2 (PP2)-like protein. PP2 is a

component of the phloem protein bodies, directly bind with the

chitin cell wall and play important roles in defense and wound

healing (Beneteau et al., 2010). BGLU25 belongs to beta-glucosidase

family which is involved in cellulose degradation (Roepke and

Bozzo, 2015; Han et al., 2020). Expression of these genes altered

significantly (Figure 3), suggesting AtSYP71 regulatory role on cell

wall dynamics. Among the genes, EXPA and XTH proteins function

in a pH-dependent manner (Cosgrove, 2000; Jiang et al., 2020), and

excessive acidification of atsyp71 mutants likely destroyed the
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optimal working pH of these kinds of proteins and resulted in

defects on cell elongation.
AtSYP71 regulates ROS homeostasis
partially via controlling pH homeostasis

Abiotic stresses induce high level of ROS production. The ROS

scavenging system includes enzymatic and non-enzymatic

antioxidant (You and Chan, 2015). The enzymatic antioxidants

include SOD, CAT, POD, APX, glutathione peroxidase (GPX),

glutathione-S-transferase (GST) etc. which reduce O
Ä
n−
2 and H2O2

(Gill and Tuteja, 2010; Nadarajah, 2020). SODs have diverse forms

containing distinct metal ions such as Fe, Mn or Cu/Zn, and are

distributed in the apoplast (Kim et al., 2008), cytosol, chloroplasts,

mitochondria and peroxisomes (Pilon et al., 2011). Respiratory burst

oxidase homologues (RBOHs), the plant NADPH oxidases (NOXs),

are localized on the PM and convert oxygen to O
Ä
n−
2 in the apoplast

(Segal, 2016). Under stress conditions, O−
2 /H2O2 production occurs in

cytoplasmic vesicles derived from the PM or ER (Leshem et al., 2006),

and RBOHD is internalized into PM-derived vesicles (Hao et al.,

2014). Oxidation also occurs inside the ER lumen to promote protein

folding depending on disulfide bonds formation by a FAD-

containing ER oxidase (ERO) and protein disulfide isomerases

(PDIs) (Bulleid, 2012). The homeostasis of the organelles

determines ROS homeostasis, thus, dysfunction of the ER and PM

in atsyp71-2 definitely affected ROS homeostasis (Figure 5).

Apoplastic H2O2 influences PRX-mediated lignification and

cross-linking of cell wall polymers (Marjamaa et al., 2009; Shigeto

et al., 2015). In atsyp71-2, in addition to PRXs, expression of many

redox-related genes altered significantly, such as AOC3 (endothelial

amine oxidase), POX1 (proline oxidase family FAD-linked

oxidoreductase), AT4G20830 and AT5G44400 (FAD linked

oxidase homologues), LAC1 (multicopper oxidase) and

AT1G31710 (Copper amine oxidase homologue) (Supplementary
Frontiers in Plant Science 13
Figure 6B). The changes in these enzyme activities may be one of

the reason of unbalanced ROS homeostasis. And the significantly

increased lignin content was probably the consequence of the

unbalanced ROS homeostasis in atsyp71-2.

The non-enzymatic antioxidants contain ascorbic acids, a-
tocopherol, flavonoids, phenolic compounds, glutathione,

carotenoids and lipids, which mitigate oxidative damage by their

antioxidant activities through utilization of H2O2 (Duan et al., 2012;

Kim et al., 2020b). Flavonoids distribute widely in plants and are one

of the most bioactive plant secondary metabolites. Flavonoids are

synthesized on the ER surface and uploaded into the ER lumen, and

subsequently transported to the vacuole or is secreted to the apoplast

(Zhao and Dixon, 2010; Falcone Ferreyra et al., 2012; Zhao, 2015).

The PM-localized ABCG transporters mediated flavonoid efflux

(Banasiak et al., 2013; Liu et al., 2022b). In atsyp71-2, expression of

ABCG1 decreased significantly (Figure 3); in response, content of

flavonoids decreased significantly (Figure 4B). Dysfunction of the ER

and PM in atsyp71-2 definitely affected flavonoids production and

secretion, which subsequently affected stress response of the mutants.
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