
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Xiaoyulong Chen,
Guizhou University, China

REVIEWED BY

Lin Jiao,
Anhui University, China
Guanqiu Qi,
Buffalo State College, United States

*CORRESPONDENCE

Chaoqun Xue

xuecq@ztri.com.cn

Hongbo Qiao

qiaohb@henu.edu.cn

RECEIVED 05 April 2023
ACCEPTED 10 July 2023

PUBLISHED 14 August 2023

CITATION

Xu X, Shi J, Chen Y, He Q, Liu L, Sun T,
Ding R, Lu Y, Xue C and Qiao H (2023)
Research on machine vision and deep
learning based recognition of cotton
seedling aphid infestation level.
Front. Plant Sci. 14:1200901.
doi: 10.3389/fpls.2023.1200901

COPYRIGHT

© 2023 Xu, Shi, Chen, He, Liu, Sun, Ding, Lu,
Xue and Qiao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 14 August 2023

DOI 10.3389/fpls.2023.1200901
Research on machine vision and
deep learning based recognition
of cotton seedling aphid
infestation level

Xin Xu1, Jing Shi1, Yongqin Chen1, Qiang He1, Liangliang Liu1,
Tong Sun1, Ruifeng Ding2, Yanhui Lu3, Chaoqun Xue4*

and Hongbo Qiao1*

1College of Information and Management Science, Henan Agricultural University, Zhengzhou, China,
2Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China, 3Institute of
Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China, 4Zhengzhou Tobacco
Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
Aphis gossypii Glover is a major insect pest in cotton production, which can

cause yield reduction in severe cases. In this paper, we proposed the A. gossypii

infestationmonitoringmethod, which identifies the infestation level of A. gossypii

at the cotton seedling stage, and can improve the efficiency of early warning and

forecasting of A. gossypii, and achieve precise prevention and cure according to

the predicted infestation level. We used smartphones to collect A. gossypii

infestation images and compiled an infestation image data set. And then

constructed, trained, and tested three different A. gossypii infestation

recognition models based on Faster Region-based Convolutional Neural

Network (R-CNN), You Only Look Once (YOLO)v5 and single-shot detector

(SSD) models. The results showed that the YOLOv5 model had the highest mean

average precision (mAP) value (95.7%) and frames per second (FPS) value (61.73)

for the same conditions. In studying the influence of different image resolutions

on the performance of the YOLOv5 model, we found that YOLOv5s performed

better than YOLOv5x in terms of overall performance, with the best performance

at an image resolution of 640×640 (mAP of 96.8%, FPS of 71.43). And the

comparison with the latest YOLOv8s showed that the YOLOv5s performed better

than the YOLOv8s. Finally, the trained model was deployed to the Android

mobile, and the results showed that mobile-side detection was the best when

the image resolution was 256×256, with an accuracy of 81.0% and FPS of 6.98.

The real-time recognition system established in this study can provide technical

support for infestation forecasting and precise prevention of A. gossypii.
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1 Introduction

Cotton is an important cash crop in China, with Xinjiang

serving as the main production location. In 2022, the cotton

planting area in Xinjiang was 2.4969 million hectares, accounting

for 83.22% of China; the yield per unit area was 2158.9 kilograms

per hectare; the total production was 5.391 million tons, accounting

for 90.20% of China’s total production (National Bureau of

Statistics, 2022). Aphis gossypii Glover is one of the most serious

insect pests in cotton cultivation (Luo et al., 2017), and can cause

leaf curling and wilting after sucking nutrients from cotton leaves,

which in turn affects the growth and development of cotton plants,

leading to a decrease in yield and quality. The occurrence of A.

gossypii leads to a cotton yield reduction of approximately 15% to

30% and can cause total crop failure in severe cases (Herron et al.,

2000; Fan et al., 2013). Therefore, it is important to study the A.

gossypii occurrence patterns and infestation features and to explore

a fast and efficient method for monitoring and detecting this pest. In

this way, the efficiency of early warning and forecasting can be

improved cotton yield reduction can be mitigated.

The current method of A. gossypii infestation detection is still

mainly based on manual investigation, mainly through manual field

inspection, measurement, statistics and expert identification (Liu

et al., 2019), which is not only time-consuming and laborious but

also subjective, with a high rate of misjudgment and poor real-time

response. Thus, there is an urgent need for a time- and labor-saving

technology for A. gossypii detection to improve the efficiency of

infestation level recognition.

Image processing technology, in which image signals are

converted into the corresponding digital signals and are processed

by using computers, provides new technological solutions for the

detection of crop pests and diseases(Arnal, 2013). Crop pest and

disease image recognition technology has the characteristics of

rapidity, accuracy and real-time employability. Research on this

technology has mainly focused on three aspects: crop pest and

disease image segmentation, feature extraction and classification

recognition. Zhang et al. (2018) proposed an automatic image

segmentation model for diseased leaves with active gradients and

local information in which image details such as cotton leaves with a

background of uneven illumination, shadows and weeds could be

segmented to better achieve the ideal extraction of leaf edges. Lu and

Ye (2020) proposed a semiautomatic locust species and age

information detection model based on locust image segmentation,

feature variable extraction and support vector machine classification,

with 96.16% detection accuracy. Nabilah et al. (2020) used six

traditional feature methods and six deep learning feature methods

to extract significant pest features from chili leaf images, and the

extracted features were fed into a support vector machine (SVM),

random forest, and an artificial neural network for the recognition

task. The results showed that the deep learning feature-based methods

outperformed the traditional feature-based methods, and the best

accuracy of 92.10% was obtained using the SVM classifier. Khan et al.

(2020) designed a cucumber leaf disease detection and classification

system and achieved 98.08% classification accuracy for five cucumber

leaf diseases using a multi-class support vector machine (M-SVM)
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approach. Wang et al. (2019) proposed a pest detection and

identification diagnosis system based on transfer learning, which

was able to train and test 10 types of pests with an accuracy of

93.84%. Wang et al. (2020) proposed a convolutional neural network

recognition model based on the Inception module and dilated

convolution. By setting different parameters, six improved models

were obtained, which were trained to recognize 26 diseases in 14

different crops. The final experiment could achieve an average

recognition accuracy of 99.37%. Hu et al. (2020) proposed a

convolutional neural network based on data augmentation

combined with migration learning to recognize corn leaf diseases,

and achieved an average recognition accuracy of 97.6% for Corn Gray

leaf spot, Corn Common rust, Corn Northern Leaf Blight, and healthy

leaves, with an accuracy of more than 95% for each category. To

accurately identify small agricultural pests, Dong et al. (2021)

proposed a CRA-Net which included a channel recalibration feature

pyramid network and adaptive anchor module. The results showed

that the method achieved an average precision of 67.9%, which was

superior to other state-of-the-art methods. Gu et al. (2021) proposed a

method for diagnosing plant diseases and identifying pests with deep

features based on transfer learning, and the proposed model achieved

96.02% and 99.61% accuracy, respectively. To solve the problem of

small pest identification and detection, Wang R. J. et al. (2021)

proposed a sampling-balanced region proposal generation network,

and designed a novel adaptive regionally of interest selection method

to learn features at different levels of the feature pyramid. Several

experiments on the proposed AgriPest21 data set showed that the

method could achieve an average recall rate of 89.0% and mAP of

78.7%, superior to other state-of-the-art methods. Wei et al. (2022)

proposed a multiscale feature fusion-based crop pest and disease

classification method and achieved good classification results on 12

pest data sets, with a correct classification rate of 98.2%. Jiao et al.

(2022) developed a CNN-based method for the detection of multi-

class pests in complex scenarios, and conducted a large number of

comparative experiments on the AgriPest21 data set. The results

showed that the method could achieve 77.0% accuracy, which was

significantly better than other most advanced methods. Mallick et al.

(2023) proposed an innovative deep learning-based approach for

automatic multi-class mung bean pests and diseases detection and

classification, and for each class, the proposed model had an overall

pests and diseases detection accuracy of 93.65%. Although the above

studies achieved good results, image segmentation and feature

extraction in complex and variable background environments were

still difficult for their models, the number of experimental samples was

limited, and the crop pest and disease recognition models they

established were unstable, which indicates that there is still a large

gap between research and practical application.

With the development of artificial intelligence technology,

researchers have started to detect and study crop pests and

diseases with the help of deep learning. Deep learning can

automatically, efficiently and accurately extract object features

from a large number of crop pest and disease images, thus

making up for the shortcomings of traditional manual

recognition and enabling crop pest and disease image recognition.

Deep learning-based image object detection techniques have
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enabled great advances, and at present, two main detection methods

have been developed. One category is object detection based on

deep convolutional networks with region proposal, and the

representative models are Fast Region-based Convolutional

Neural Network (R-CNN) (Ross, 2015), Faster R-CNN (Ren

et al., 2015), and Mask R-CNN (He et al., 2017). Among these

models, Faster R-CNN is unique in abandoning the traditional

sliding window and selective search methods and instead generates

detection boxes directly using a region proposal network (RPN),

which greatly improves the detection box generation speed.

Another category is object detection based on deep convolutional

networks with regression computation, and the representative

models include You Only Look Once (YOLO) (Redmon et al.,

2016), and single-shot detector (SSD) (Liu et al., 2016). Of the

different models in the YOLO series, YOLOv5 uses the PyTorch

framework and is user-friendly, not only making it easy to configure

the environment but also enabling very fast training of the model.

Moreover, it has very good performance in detecting smaller

objects. SSD integrates the YOLO concept of fast detection, offers

the advantages of RPN that are found in Faster R-CNN, and

improves the handling of multi-size objects, which is to say it

does not rely solely on the top-level feature map for prediction.

Currently, the research on agricultural object detection for both

fruit detection and pest and disease recognition is increasingly turning

to deep learning. Shen et al. (2018) used Faster R-CNN to extract

regions in images that might contain insects and to classify the insects

in these regions, and its mean average precision reached 88%. Liu and

Wang (2020) proposed a method for early recognition of tomato leaf

spot based on the MobileNetv2-YOLOv3 model, and the results

showed that in all test sets, the F1 scores and average precision (AP)

values were 93.24% and 91.32%, respectively, and the average IOU

value was 86.98%. Chu et al. (2021) developed a novel suppressedMask

R-CNN for apple detection, and the network they developed had an F1

value of 0.905 and a detection time of 0.25 seconds per frame on a

standard desktop computer, which were better than the values for state-

of-the-art models. Wang X. W. et al. (2021) proposed an improved

object detection algorithm based on YOLOv3 to address the problem of

the complex background in early stage images of tomato pests and

diseases in natural environments; this model enhanced the recognition

of pests and diseases, with an average recognition accuracy of 91.81%.

Li. et al (2021) proposed a detection method named Lemon-YOLO (L-

YOLO) to improve the accuracy and real-time detection of lemons in

natural environments. The experimental results show that the AP value

and FPS value of the proposed L-YOLO on the lemon test set are

96.28% and 106, respectively 5.68% and 28 higher than that of

YOLOv3. Zhang et al. (2021) first developed a synthetic soybean leaf

disease image data set, and then designed a multi-feature fusion Faster

R-CNN (MF3 R-CNN) to detect soybean leaf disease in complex

scenes, obtaining the best average precision of 83.34% in the actual test

data set. Sun et al. (2021) proposed a mobile-based detection model,

Mobile End AppleNet (MEAN)-SSD, for the real-time detection of

apple leaf diseases on mobile devices that can automatically extract

apple leaf spot features and detect five common apple leaf spots. Qi

et al. (2022) proposed a squeeze-and-excitation (SE)-YOLOv5-based

object detection model to recognize tomato virus disease. The trained

network model was evaluated on a test set, and its mean average
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precision reached 94.10%. Zhao et al. (2022) proposed a new Faster

R-CNN architecture and constructed a strawberry leaf, flower and

fruit data set. The results showed that the model was able to

effectively detect healthy strawberries and seven strawberry

diseases under natural conditions with a mAP of 92.18% and an

average detection time of only 229 ms. Liu et al. (2022) proposed a

tomato pest identification algorithm based on an improved YOLOv4

fusion triple attention mechanism, and the proposed algorithm was

tested on the established data set with an average recognition

accuracy of 95.2%. Ahmad et al. (2022) implemented an

automated system in the form of a smartphone IP camera for pest

detection from digital images/video based on eight YOLO object

detection architectures, and the results showed that the YOLOv5x

architecture achieved the highest mAP (98.3%) at real-time inference

speed and could correctly recognize 23 pests in 40.5 ms. The models

presented in these studies can achieve fruit detection as well as accurate

classification and recognition of pests and diseases; however, most of

the existing studies on models for the recognition of crop pests and

diseases focus on recognition of the pests themselves, but A. gossypii,

due to its small size, large quantities and dense accumulation on the

undersides of leaves, is a pest that is difficult to identify directly.

Therefore, utilizing the different infestation symptoms cotton

leaves exhibit when infested by A. gossypii and determining the

severity of A. gossypii occurrence through the features of leaf

infestation is an alternative approach. In this study, the level of A.

gossypii infestation was determined by creating a model that can assess

the symptoms in cotton leaves caused byA. gossypii infestation. Images

ofA. gossypii infestation in the field environment were quickly acquired

using smartphones, and then the data were annotated to construct four

types of data sets: level 0, level 1, level 2 and level 3. On this basis, three

different A. gossypii infestation recognition models based on Faster R-

CNN, YOLOv5 and SSD were constructed, and the test results of the

three models were compared and analyzed to select the optimal A.

gossypii infestation recognition model to deploy it to android mobile

side, which provides a fast, convenient and low-cost method for A.

gossypii infestationmonitoring. The infestation class recognitionmodel

of A. gossypii established in this study can provide technical support

for prediction forecast and precise prevention and cure of A. gossypii,

which will enhance the utilization rate of pesticides in the field, reduce

the cost of agricultural production and enhance the yield and quality of

cotton. Afterwards, it will continue to be deployed to the spraying

machinery, striving to achieve simultaneous identification and precise

prevention and cure as soon as possible.
2 Materials and methods

2.1 Experimental design

The experiment was conducted in 2018, 2019, and 2022 at the

Korla Experimental Station of the Institute of Plant Protection,

Chinese Academy of Agricultural Sciences (41°44′59″N, 85°48′30″
E). The experimental station is located in Heshilike Township,

Korla City, Bayingol Mongolian Autonomous Prefecture, Xinjiang,

China, which is located in the central part of Xinjiang and on the

northeastern edge of the Tarim Basin, near the Tianshan Branch to
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the north and the Taklimakan Desert to the south. Cotton is the

main crop grown in this area, and is cultivated with large-scale and

simple cropping structures. A. gossypii is the main cotton pest in the

region, and its peak season occurs from late June to early July (Lu

et al., 2022). Experimental plots with severe occurrence of A.

gossypii were selected in the field for data acquisition. No

pesticides were applied to suppress the population growth of

this pest during the experiment. The cotton crops selected for the

test were the experimental cultivars ‘Zhongmiansuo49’ and

‘Xinluzhong66’ from the Cotton Insect Group of the Institute of

Plant Protection, Chinese Academy of Agricultural Sciences. The

cotton was sown in mid to late April with a film mulching

cultivation mode, and with spot sowing on the film. Standard

water and fertilizer management was carried out through drip

irrigation under the film.
2.2 Data acquisition

Cotton image data were collected at the Korla Experimental

Station of the Institute of Plant Protection, Chinese Academy of

Agricultural Sciences in 2018, 2019 and 2022 (Table 1). The

collection dates for 2018 and 2019 were from late June to mid-

July, and the collection dates for 2022 were from early June to early

July. The collections were made on sunny days and with low light

intensity to avoid image overexposure. To allow the model to learn

more features of A. gossypii infestation during training, multiple

smartphones were used to acquire the cotton images. Image data

acquisition was conducted in 2018 and 2019 with the HUAWEI

Nova, OnePlus7pro, iPhone 8 Plus, andMi Note 3 smartphones and

in 2022 with the iPhone 8 Plus, iPhone 12, iPhone 13, iPhone XR,

and Redmi 5 Plus smartphones. The image acquisition method was

overhead vertical shooting. The researchers stood next to the cotton

plants with mobile equipment in hand and vertically shot images of

the cotton seedlings from a vantage of 1.2-1.5 meters. The data

acquired in 2018 and 2019 were used for training, validation, and

testing of the A. gossypii infestation recognition model, and the
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cotton images collected all featured the ‘Zhongmiansuo49’

cultivar. In 2022, in addition to photographing plants of the

‘Zhongmiansuo49’ cultivar, some images of plants from the

‘Xinluzhong66’ cultivar were also collected for testing the A.

gossypii infestation level recognition model detection capabilities

on images of other cultivars.
2.3 Image processing

Directly inputting original images into a model for training can

interfere with training by causing problems such as taking up a large

amount of memory on the device, slowing down the training speed

of the model, and causing memory overflow. Therefore, the original

images must be preprocessed. When inputting images into the

model, the image formats are adjusted to a certain size. To prevent

soil and crop backgrounds from interfering with object detection,

the original image is cropped to remove redundant information

such as soil from the image. To crop the images, we first started

from the center of each original cotton image, cropping the image to

3000×3000 and uniformly adjusting the image resolution to

1024×1024. Then the data were annotated. The data preprocessing

process of this paper is shown in Figure 1.
2.4 Data set construction

Because the training data of the object detection model need to

be manually labeled, LabelImg (Tzutalin, 2015) was chosen as the

image labeling tool in this experiment. Examples of acquired images

for this experiment are shown in Figure 2. When labeling the image

data, the A. gossypii infestation grading standard referred to the

national grading standard (GB/T 15799-2011, 2011) (Table 2).

Since the level of infestation suffered by cotton leaves at the

seedling stage rarely reaches level 4, individual level 4s were

classified as level 3s when conducting data annotation to avoid

serious imbalance in the data set. The annotation entailed using
TABLE 1 Summary of data acquisition characteristics.

Cotton cultivars Device Rear camera pixels (million) Image resolution Aperture Value Focal length (mm)

‘Zhongmiansuo49’

HUAWEI Nova 12
4032 × 3016
3016 × 3016

f/2.2 4

OnePlus7pro 48
4000 × 3000
4608 × 3456

f/1.6
f/2.2

5
2

iPhone 8 Plus 12 3024 × 4032 f/1.8 4

Mi Note 3 12 3016 × 4032 f/1.8 4

‘Zhongmiansuo49’

iPhone 12 12 3024 × 4032 f/1.6 4

iPhone 13 12 3024 × 4032 f/1.6 5

iPhone XR 12 3024 × 4032 f/1.8 4

iPhone 8 Plus 12 3024 × 4032 f/1.8 4

‘Xinluzhong66’
iPhone XR 12 3024 × 4032 f/1.8 4

Redmi 5 Plus 12 3000 × 4000 f/2.2 4
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rectangular boxes to annotate the cotton images, and according to

the grading standard in Table 2, the leaves in the central region of

the cotton plant were annotated as level 0, level 1, level 2 and level 3

according to their different morphological characteristics, and the

generated annotation files were all saved as XML files in PASCAL

VOC format. The annotated images included the images collected

by the various collection devices in 2018 and 2019, and a total of

3051 ‘Zhongmiansuo49’ cotton images were annotated, including

295 from the HUAWEI Nova, 1237 from the OnePlus7pro, 1270

from the iPhone 8 Plus and 249 from the Mi Note 3.

To balance the number of labels, we also performed a left-right

flip operation on 188 annotated images from the iPhone 8 Plus and

151 annotated images from the Mi Note 3, resulting in 3390

annotated images. After data enhancement by flipping up and

down, adding Gaussian noise and changing image brightness, the

number of images was 16,950, and 16,950 annotated images were

used as the data set for this experiment. The data set was first

divided into a training validation set and a test set at a ratio of 9:1,

and then the training validation set was divided into a training set

and a validation set at a ratio of 9:1. The final training set was

13,729, the validation set was 1,526, the test set was 1,695, and the

number of labels for each infestation level was 10,554 for level 0,

10,854 for level 1, 11,066 for level 2, and 11,025 for level 3.
2.5 Model construction

In this study, three classical object detection models, Faster R-

CNN, YOLOv5 and SSD, were chosen to conduct the study of A.

gossypii infestation level recognition.

The structure of the Faster R-CNN (Ren et al., 2015) model is

shown in Figure 3. The model first used the feature extraction network

to extract the feature map of each input cotton image, which was shared

by the subsequent RPN with the Fast R-CNN network. RPN performs

the binary classification task through a softmax classifier, determines

whether the anchor belongs to the foreground or background, and

obtains the candidate box position through anchor regression. The Fast
Frontiers in Plant Science 05
R-CNN synthesizes the information from the feature maps and

candidate boxes, determines the category to which the foreground

belongs, and generates the exact location of the final detection box.

The structure of the YOLOv5 (Jocher, 2020) model is shown in

Figure 4. The network structure of the model is divided into four

parts according to the processing stage: input, backbone, neck and

prediction. The input part completes basic processing tasks such as

data enhancement, adaptive image scaling and anchor box

calculation. The backbone network mainly uses a common spatial

pattern (CSP) structure to extract the main information from the

input samples for use in subsequent stages. The neck part uses

feature pyramid network (FPN) and path aggregation network

(PAN) structures and uses the information extracted from the

backbone to enhance feature fusion. The prediction component

makes predictions and calculates the value of each loss. YOLOv5

has four model styles, s, m, l and x. They have the same network

structure, and only the depth and width of the models are different.

The structure of the SSD (Liu et al., 2016) model is shown in

Figure 5. The model inputted cotton images into the backbone

network, which could obtain feature maps of different sizes from the

pretrained base network, and feature maps of six convolutional

layers of different sizes, Conv4_3, Conv7, Conv8_2, Conv9_2,

Conv10_2, and Conv11_2, were the output. Six default candidate

boxes with different aspect ratios were constructed from each pixel

point of these feature maps and then detected and classified

separately to generate multiple initial eligible default candidate

boxes. Finally, the nonmaximum suppression method was used to

screen out the eligible candidate boxes to generate the final set of

detected boxes, that is, the A. gossypii infestation level.
2.6 Experimental environment

On the basis of the construction model, the hardware environment

was as follows: graphics processor, NVIDIA A 100-PCIE-40 GB;

CUDA Cores, 6912; total memory, 4060 MB; and memory interface,

5120-bit. The software environment included PyCharm (2020.3,
FIGURE 1

Data preprocessing flow chart.
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JetBrains, Prague, Czech), Linux (Ubuntu 20.04.4 LTS, Linus Benedict

Torvalds, Helsinki, Suomi), Python (Python 3.8.12, Python Software

Foundation, State of Delaware, USA), PyTorch (PyTorch 1.10.2 or

PyTorch 1.10.0+CUDA 11.3, Facebook AI Research, California, USA),

and Android Studio (2021.2.1, Google, California, USA).
2.7 Evaluation metrics

To quantitatively analyze the performance of a detection

algorithm, researchers have formulated many evaluation metrics,

each reflecting different aspects of the performance to some extent.
Frontiers in Plant Science 06
The object detection performance evaluation metrics used in this

experiment were Precision (Yang, 1999). Recall (Yang, 1999),

Accuracy, Average Precision (AP), mean Average Precision

(mAP), and Frames Per Second (FPS).

For each category, a curve can be drawn according to the

precision and recall rate, and the AP value is the area under the

curve. The mAP value is the average value of AP for each

category. The classification and localization ability of the object

detection model is its main performance representation, and the

mAP value is its most intuitive expression. The larger the mAP

value is, the higher the precision of the model; the detection speed

represents the computational performance of the object detection
A B

D EC

FIGURE 2

Example of acquired images: (A) level 0, (B) level 1, (C) level 2, (D) level 3, (E) level 4.
TABLE 2 Aphis gossypii Glover infestation grading standards.

Infestation level Infestation description

0 No aphids, spreading leaf blades.

1 There are aphids, but the leaves are not damaged.

2 There are aphids, and the most severely damaged leaves are crinkled or slightly rolled, nearly semicircular.

3 There are aphids, and the most heavily damaged leaves are curled up in a semicircle or more than semicircle, and are arc-shaped.

4 There are aphids, and the most heavily damaged leaves are completely curled and appear spherical.
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model and is represented by the FPS value, and the larger the FPS

value is, the better the detection speed of the algorithm model (Xu

et al., 2021).

The formula for calculating each evaluation metric is shown below:

P =
TP

TP + FP
                                              (1)

R =
TP

TP + FN
                                              (2)

Accuracy=
TP+TN

TP+FP+FN+TN
                                        (3)

     AP=
Z1

0

P(R)dR                                                           (3)

       mAP=      o
n
1AP

n
                                               (4)
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FPS=    
f rameNum
elapsedTime

                                       (5)

Where P is precision, R is recall, TP is positive samples correctly

predicted as positive samples, FP is negative samples incorrectly

predicted as positive samples, FN is positive samples incorrectly predicted

as negative samples, TN is negative samples correctly predicted as

negative samples, n is the number of categories, frameNum is number

of images, and elapsedTime is detection time.
3 Results

3.1 Selecting the best model

In this experiment, three models, Faster R-CNN, YOLOv5 and

SSD, were selected, and the same data set was used with each model.

Since the width and depth of Yolov5x model were the largest among

the four model styles, x model was chosen here to participate in the

comparison test. Before training, the image resolution was

uniformly set to 512×512, the learning rate was set to 0.0005, the

iteration rounds were set to 300 rounds, and the batch size of each

iteration was set to 16. The training model was saved, and then the
FIGURE 4

YOLOv5 model structure.
FIGURE 3

Faster R-CNN model structure.
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model was tested and evaluated with the test set. The AP, mAP, and

FPS obtained for the three models’ tests are shown in Table 3.

As shown in Table 3, it can be seen that the mAP value after testing

was 87.4% for the Faster R-CNNmodel, 95.7% for the YOLOv5model,

and 61.5% for the SSD model. Through the test results, it was revealed

that the mAP value of the YOLOv5 model for recognizing A. gossypii

infestation levels was higher than those of the Faster R-CNN and SSD

models, which indicates that this model has the highest precision. The

YOLOv5 model took the least amount of time to train, at 15.62 hours,

under the same conditions that were used with all three models, while

the Faster R-CNN and SSD models took 34.32 hours and 33.24 hours

to train, respectively. It can also be seen from Table 3 that the YOLOv5

model had the fastest detection speed, with an FPS value of 61.73,

which was much faster than the other two models, indicating that this

model has the best detection speed.

In summary, the test results showed that the YOLOv5 model

requires the shortest training time and has the highest mAP value

and the fastest detection speed, with a mAP value of 95.7% and an

FPS value of 61.73. Therefore, this model has the best performance.
3.2 Influence of different image resolutions
on the performance of the YOLOv5 model

After the comparison of the threemodels, it was found that the best

performance at an image resolution of 512×512 was the YOLOv5

model. To verify the effect of different image resolutions on model

performance, two model styles, s and x, in the YOLOv5 model were

selected to study the performance of the model at image resolutions of

1024×1024, 640×640, 512×512, 256×256, and 128×128.

The data set used in this experiment was the same as the data set

used in the construction of the three models, the learning rate was

uniformly set to 0.0005, the number of iterations rounds was set to

10,000, the batch size of each iteration was set to 16, and the image

resolution was set appropriately for each according to the requirements
Frontiers in Plant Science 08
of the experiment before training. There is an early stop mechanism in

the YOLOv5 model; that is, after a certain quantity of training iteration

rounds, if the model effectiveness has not improved, then the model

training is stopped early. The patience parameter set in this experiment

was 100; that is, during the model training, training was stopped if the

model effectiveness did not improve within 100 consecutive rounds.

The training models with different image resolutions were saved. The

training results for YOLOv5x and YOLOv5s are shown in Figures 6, 7.

Then, the training models for each image resolution were evaluated

with the test set. The test results obtained are shown in Table 4.

As shown in Figure 6, the convergence speed of the YOLOv5x

model was the slowest when the image resolution was 128×128, and

the convergence speed for several other image resolutions did not

differ much. When the image resolution was 1024×1024, the mAP

value of the validation set reached 96%, which was the highest mAP

value among the five image resolutions, indicating that this was the

resolution at which the model had the best train effect.

As shown in Figure 7, the convergence speed of the YOLOv5s

model was the slowest when the image resolution was 128×128, and

the convergence speed of the remaining image resolutions was

relatively similar. When the image resolution was 640×640, the

mAP value of the validation set reached 97.1%, which was the

highest mAP value among the five image resolutions, indicating that

this was the resolution at which the model had the best train effect.

Comparing Figures 6 , 7, it can be seen that the convergence

speed of the YOLOv5s model was significantly lower than that of

the YOLOv5x model. Except for at the 128×128 image resolution in

the YOLOv5x model, the YOLOv5s model generally had more

training rounds than the YOLOv5x model for all image resolutions.

As shown in Table 4, it can be seen that in the YOLOv5x model,

when the image resolution was 1024×1024, the model took the longest

time from training to stopping, at 141.55 hours, and the test set had the

highest mAP value, at 95.9% but the lowest FPS value, at 34.65. When

the image resolution was 256×256, the model took the least amount of

time from training to stopping, at 33.48 hours, and the test set had the
TABLE 3 Precision evaluation of each model for detection of Aphis gossypii Glover infestation level.

Model
AP (%)

mAP (%) FPS
0 1 2 3

Faster R-CNN 88.1 86.2 86.8 88.6 87.4 10.44

YOLOv5x 94.6 94.4 96.7 97.3 95.7 61.73

SSD 63.2 59.2 50.8 73 61.5 7.64
FIGURE 5

SSD model structure.
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lowest mAP value, at 93.7%. When the image resolution was 128×128,

the test set had the highest FPS value, at 81.22. Overall, the performance

was best when the image resolution was 640×640, as the mAP value for

that image resolution was 0.1% lower than the highest mAP value,

which was for an image resolution of 1024×1024, but the FPS value was

17.17 higher. In the YOLOv5s model, when the image resolution was

640×640, the test set had the highest mAP value, at 96.8%. When the

image resolution was 128×128, the model took the longest time from

training to stopping, at 132.21 hours, and the test set had the lowest

mAP value, at 91.6%, but the highest FPS value, at 92.32. When the

image resolution was 1024×1024, the test set had the lowest FPS value,

at 62.71. When the image resolution was 512×512, the model took the

least amount of time from training to stopping, at 52.16 hours. Overall,

the performance was best when the image resolution was 640×640

because although the FPS value for this image resolution was not the

highest, the mAP value was the highest, at 96.8%.

Comparing the YOLOv5x and YOLOv5s models, as seen in

Table 4, the YOLOv5s model performed better than the YOLOv5x

model, both in terms of mAP values and FPS values. The model

performed best when the image resolution was 640×640 with a

mAP value of 96.8% and an FPS value of 71.43.
3.3 Supplementary tests

The best performance of YOLOv5s was found in the previous

study comparison, and its authors updated YOLOv8 version in

early 2023, so this paper conducts a supplementary experiment to

compare the YOLOv5s model in this paper with the latest YOLOv8s

model, and its comparison results are shown in Table 5.

As shown in Table 5, the YOLOv5s model achieves the mAP

value of 96.8% and the FPS value of 71.43 on the test set. The
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YOLOv8s model achieved the mAP value of 97.5% and the FPS value

of 67.75 on the test set. Compared to the YOLOv5s model, the mAP

value of YOLOv8s improved by 0.7% and the FPS value decreased by

3.68. Although YOLOv8s improved 0.7 percentage points in

detection precision over YOLOv5s, the detection speed dropped by

3.68. So all in all, YOLOv5s performed better than YOLOv8s.
3.4 YOLOv5 model based on the Android
mobile platform

To facilitate real-time detection in the field, the YOLOv5model with

the best test results was deployed to Android mobile. Based on the test

results presented in Table 4, we chose to deploy the trained YOLOv5s

models of each image resolution in Figure 7 to the Android mobile

platform one by one and compare their detection effects. Themodel files

saved after training were first converted into the corresponding files,

then the code was debugged in Android studio and finally deployed to

the Android mobile platform, and the test machine used in this

experiment was a Redmi 5 Plus (Android Version:8.1.0; GPU Model:

Adreno 506; Operating Memory:3GB; Storage Capacity:32GB). After

deployment, the Android Package Kit (APK) for each resolution had an

application size of 1.62 GB and required 16.38 KB of user data.

In this experiment, 20 original images of ‘Zhongmiansuo49’

cultivar plants from the image data collected in 2018 and 2019 were

reselected for mobile platform detection, and the results of the

mobile platform detection for different image resolutions are shown

in Figure 8; Table 6. The total number of leaves detected at different

resolutions were between 35 and 50. The confusion matrix indicates

whether the model confounds different categories by comparing the

actual infestation grades of the blades in the mobile platform test

data with the predicted infestation grades. As shown in Table 6,
FIGURE 6

Training results of the YOLOv5x model with different image resolutions.
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when the image resolution was 256×256, the accuracy of the mobile

platform was the highest, at 81.0%, and the detection speed was also

the fastest, with an FPS value of 6.98. Therefore, the detection of the

mobile platform is the best at this image resolution.
3.5 Evaluation of model performance in
the field environment

Separately selecting 20 cotton images from the ‘Zhongmiansuo49’

and ‘Xinluzhong66’ cultivars from the new data collected in 2022, the

accuracy and usefulness of the YOLOv5 model, which had been

successfully deployed on the Android platform, were evaluated. The
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test results are shown in Figure 9; Table 7, and an example of the

detection results is shown in Figure 10.

By comparing the actual infestation levels and predicted infestation

levels of the leaves in the mobile platform test data (Figure 9), it can be

seen that the adjacent levels are easily confused with each other, and

that level 3 is confused the least, probably because the leaf features at

levels 0 and 1 are similar, and that the curl of the leaves at level 3 is very

obvious and easy to judge. As presented in Table 7, the mobile-side

detection accuracy for infested leaves of the ‘Zhongmiansuo49’ cultivar

was 84.6%, and the detection speed FPS value was 8.61; the mobile-side

detection accuracy for infested leaves of the ‘Xinluzhong66’ cultivar was

85.2%, and the detection speed FPS value was 8.19. As shown in

Table 7, the accuracy and usefulness of the YOLOv5 model deployed
FIGURE 7

Training results of the YOLOv5s model with different image resolutions.
TABLE 4 Comparisons of the test results of the YOLOv5 model with different image resolutions.

Model Image size Train time (hour)
AP (%)

mAP (%) P (%) R (%) FPS
0 1 2 3

YOLOv5x

1024×1024 141.55 94.0 95.2 96.6 97.7 95.9 96.9 93.5 34.65

640×640 44.66 94.2 94.6 96.6 97.7 95.8 96.1 92.7 51.82

512×512 35.65 93.5 94.4 95.8 96.7 95.1 95.5 92.0 61.79

256×256 33.48 91.4 92.1 95.2 95.9 93.7 95.2 90.4 76.39

128×128 89.77 92.2 93.0 95.3 95.8 94.1 95.6 89.9 81.22

YOLOv5s

1024×1024 111.40 95.8 94.7 97.7 97.8 96.5 96.9 93.3 62.71

640×640 108.27 96.1 95.3 97.7 98.1 96.8 97.8 93.4 71.43

512×512 52.16 95.1 95.4 97.0 97.9 96.3 95.9 93.1 78.58

256×256 90.91 95.4 95.9 97.7 97.9 96.7 97.1 92.5 82.56

128×128 132.21 87.3 92.7 93.3 93.0 91.6 89.5 85.5 92.32
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TABLE 5 Comparison of model test results between YOLOv5s and YOLOv8s.

Model
AP (%)

P (%) R (%) mAP (%) FPS
0 1 2 3

YOLOv5s 96.1 95.3 97.7 98.1 97.8 93.4 96.8 71.43

YOLOv8s 96.4 97.1 98.1 98.3 97.6 93.9 97.5 67.75
F
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FIGURE 8

Confusion matrix of detection results for different image resolutions.
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on the Android platform are relatively ideal and can provide a more

convenient and faster means for field investigators to use the model.
4 Discussion

For A. gossypii infestation class identification, other researchers

have more often studied multispectral (Zeng et al., 2021; Fu et al.,

2022) and hyperspectral (Feng and Liu, 2020) cotton images

collected by unmanned aerial vehicle (UAV), while our study was

based on cotton images collected by smartphones. The methods of

the two approaches are different; the cotton images collected by

UAV can qualitatively determine the degree of A. gossypii

infestation at a macro level, with the degree of A. gossypii

infestation reflected by the spectral curve characteristics of the

cotton canopy, while the cotton images taken by smartphones in

this paper can quantitatively determine the degree of A. gossypii

infestation of a single cotton plant, with more accurate results. The

object detection models constructed in this study were all able to

recognize A. gossypii infestation levels, the mAP value for the best

YOLOv5 model reached 96.8%, and its FPS value reached 71.43.

After comparing the test results of the three models, it was found

that the mAP values of the SSD model were much lower than those of

the other two models. By reviewing the model debugging details, it
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appears that this result may be due to the use of a static learning rate or

an excessively high learning rate setting. To compare the three models,

the learning ratemust be uniformly set to a static learning rate; thus, the

same learning rate was set for all three models in this paper.

The objectives of this study were to compensate for the shortcomings

of traditional A. gossypii survey methods, to enhance the efficiency of A.

gossypii infestation detection and to expand the application of object

detection algorithms. Most of the current field applications of pesticides

in production are quantitative, which can lead to overuse of pesticides,

thus increasing production costs and simultaneously causing

environmental pollution. The best model identified in this study

achieves real-time and rapid recognition of the degree of infestation of

A. gossypii to help mitigate the abovementioned problem. Successfully

deploying the model to the mobile platform, and subsequently deploying

the model to plant protection UAVs and pesticide application tractors to

establish a precision pesticide application technology system for

controlling A. gossypii infestation will provide technical support for

precise pesticide application, which will enhance the utilization rate of

pesticides, reduce the cost of agricultural production and improve the

ecological conditions of the environment.
5 Conclusion

This study used smartphones to quickly and easily collect images

of cotton seedlings. Three classical object detection models to achieve

fast recognition of A. gossypii infestation levels were constructed. The

three models were tested, and it was found that the YOLOv5 model

had the best performance, with mAP values 8.3% and 34.2% higher

than those of the Faster R-CNN and SSD models, respectively, and

FPS values that were 51.29 and 54.09 higher than those of the Faster

R-CNN and SSD models, respectively, with higher precision and

faster detection speed. Based on further testing guided by these

results, it was determined that the comprehensive performance of

the YOLOv5s model was better than that of the YOLOv5x model at

different image resolutions, and that the best performance was
TABLE 6 Detection results of the mobile platform at different
image resolutions.

Image size Accuracy (%) FPS

1024×1024 80.6 6.76

640×640 75.6 6.53

512×512 79.5 6.79

256×256 81.0 6.98

128×128 71.4 6.87
A B

FIGURE 9

Confusion matrix of the detection results for infested leaves of two different cultivars: (A) ‘Zhongmiansuo49’, (B) ‘Xinluzhong66’.
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achieved when the image resolution was 640×640. And the

comparison with the latest YOLOv8s showed that the YOLOv5s

performed better than the YOLOv8s. Regarding detection speed and

mobility, we successfully deployed the YOLOv5s model to the

Android mobile platform, and after testing, it was found that the

detection effect onmobile was the best when the image resolution was

256×256. The accuracy was 0.4%, 5.4%, 1.5%, and 9.6% higher at this

image resolution than at several other resolutions, and the FPS values

were 0.22, 0.45, 0.19, and 0.11 higher than at the other image

resolutions, respectively. In addition to images from the

‘Zhongmiansuo49’ cultivar, the model in this study was also used

tested on images from the ‘Xinluzhong66’ cultivar, with a final

accuracy of 85.2% and an FPS value of 8.19, indicating that the A.

gossypii infestation level recognition model presented in this paper

can be used for the detection of this pest in other cotton cultivars. The

A. gossypii infestation level recognition model established in this

study can provide a faster and more convenient technical mean for A.

gossypii infestation monitoring, preventing the outbreak of the insect

pest in advance and achieving precise prevention and cure, which in

turn can help enhance the yield and quality of cotton.
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FIGURE 10

Examples of detection results for infested leaves of two different cultivars (A) ‘Zhongmiansuo49’, (B) ‘Xinluzhong66’.
TABLE 7 Mobile platform detection results for infested leaves of two
different cultivars.

cultivars Accuracy (%) FPS

‘Zhongmiansuo49’ 84.6 8.61

‘Xinluzhong66’ 85.2 8.19
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