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Remote sensing enables the rapid assessment of many traits that provide

valuable information to plant breeders throughout the growing season to

improve genetic gain. These traits are often extracted from remote sensing

data on a row segment (rows within a plot) basis enabling the quantitative

assessment of any row-wise subset of plants in a plot, rather than a few

individual representative plants, as is commonly done in field-based

phenotyping. Nevertheless, which rows to include in analysis is still a matter of

debate. The objective of this experiment was to evaluate row selection and plot

trimming in field trials conducted using four-row plots with remote sensing traits

extracted from RGB (red-green-blue), LiDAR (light detection and ranging), and

VNIR (visible near infrared) hyperspectral data. Uncrewed aerial vehicle flights

were conducted throughout the growing seasons of 2018 to 2021 with data

collected on three years of a sorghum experiment and two years of a maize

experiment. Traits were extracted from each plot based on all four row segments

(RS) (RS1234), inner rows (RS23), outer rows (RS14), and individual rows (RS1, RS2,

RS3, and RS4). Plot end trimming of 40 cm was an additional factor tested.

Repeatability and predictive modeling of end-season yield were used to evaluate

performance of these methodologies. Plot trimming was never shown to result

in significantly different outcomes from non-trimmed plots. Significant

differences were often observed based on differences in row selection. Plots

with more row segments were often favorable for increasing repeatability, and

excluding outer rows improved predictive modeling. These results support long-

standing principles of experimental design in agronomy and should be

considered in breeding programs that incorporate remote sensing.

KEYWORDS

remote sensing, high-throughput phenotyping, RGB, lidar, hyperspectral, UAV, plot
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1 Introduction

Maize (Zea mays L.) and sorghum (Sorghum bicolor (L.)

Moench) are among the most important crops in the world that

are utilized for food, animal feed, biofuels, and other applications.

These crops are desirable because of their C4 photosynthetic

pathways that enable greater photosynthetic potential in hot, dry

environments. These crops are likely to be of increasing global

importance in the coming years and continued crop improvement

are needed to improve food security (Ray et al., 2013).

Remote sensing using sensors attached to uncrewed aerial

vehicles (UAV) enables in-season field measurements with high

spatial and temporal resolutions necessary for small-plot research

(Maes and Steppe, 2019; Ravi et al., 2019; Masjedi et al., 2020).

Remote sensing has been used for plant phenotyping for a number

of crops including maize (Zaman-Allah et al., 2015; Pugh et al.,

2018; Anderson et al., 2019; Anche et al., 2020), sorghum

(Watanabe et al., 2017; Pugh et al., 2018; Masjedi et al., 2020;

Yang K. et al., 2021), soybean (Moreira, 2020), and wheat (Tattaris

et al., 2016; Crain et al., 2018; Hassani et al., 2023). Various sensors

are now widely flown on a UAV including RGB (red-green-blue)

cameras, multispectral/hyperspectral sensors, and LiDAR (light

detection and ranging) units. With an onboard Global Navigation

Satellite System/Inertial Navigation System (GNSS/INS) and system

calibration, data from these sensors can be georeferenced directly

with high spatial accuracy (Ravi et al., 2019). These sensors collect

large amounts of data that provide opportunities for the

measurement, estimation, or prediction of a wide range of

attributes such as grain yield, biomass productivity, leaf area

index, canopy cover, plant counts, nitrogen content, and disease

detection (Yang et al., 2007; Zarco-Tejada et al., 2012; Mathews and

Jensen, 2013; Ribera et al., 2017; Li et al., 2018; Toledo et al., 2022;

Hassani et al., 2023).

In maize and sorghum breeding programs, experimental

hybrids are evaluated in field trials, and the genotypes with the

most desirable combinations of traits are selected and advanced in

the respective breeding programs. Nevertheless, traditional hybrid

testing programs are time consuming and expensive; creating a

phenotyping bottleneck for progress in crop improvement (Cobb

et al., 2013; Yang et al., 2017). Phenotyping by remote sensing has

the potential to relieve the phenotyping strain on breeding

programs by reducing the time-consuming and laborious nature

of low-throughput phenotyping while simultaneously increasing

the throughput on the number of plots that can be evaluated

(Furbank and Tester, 2011; Araus and Cairns, 2014; Araus et al.,

2018). However, given the observation geometry and sensor

technologies, certain traits cannot be computed directly from

remotely sensed data, as with traditional phenotyping methods.

High-throughput phenotyping by remote sensing enables the

evaluation of more plots and can improve genetic gain in plant

breeding. More genotypes can be evaluated in the same land area by

either decreasing the plot size or by maintaining plot size and

increasing land area and consequently cost. Often, this tradeoff is

balanced in a breeding program by using small plots in preliminary

trials and larger plots in advanced breeding trials where yield is a

primary trait of interest (Acquaah, 2012). A common agronomic
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practice is to make phenotyping measurements on the inner rows of

a multi-row plot to minimize border effects between competing

genotypes. The border row effects have been well defined and as a

result these outer plot rows are harvested separately or ignored in

yield trials (Bird, 1929; Genter, 1958; Gomez, 1972, Kramer et al.,

1982; Bowman, 1989; Petersen, 1994; Ceccarelli and Grando, 1996;

Reynolds & Braun, 2022) (Supplemental Figure 1). Zhang et al.

(2019) found that soybean yield was best predicted where

hyperspectral data was analyzed for a subset of 20 to 80% of the

plot area. More work is needed to understand the border effect on

remote sensing traits and their use in breeding programs.

Trait repeatability is an important factor in plant breeding

programs (Bernardo, 2014). Repeatability is defined as the signal

to noise ratio for phenotypic measurements, indicating the relative

importance of genetic effects in comparison to environmental

effects in phenotypic observations. Proper experimental design

including replication, blocking, randomization, and plot size all

influence the trait repeatability. Barmeier and Schmidhalter (2016)

demonstrated that high-throughput spectral phenotyping can be

used in small-plot research comprising single or multiple rows.

However, no study has evaluated the impact of row selection or plot

trimming on the repeatability of remote sensing traits. Additionally,

a primary goal of in-season remote sensing is to predict end-season

yield (biomass or grain). Selection of rows from remote sensing data

products could be an important consideration impacting the results

of predictive modeling.

In this study, experimental hybrids of maize and sorghum were

evaluated in four-row plots in field trials from 2018 to 2021. Remote

sensing flights were conducted with RGB, LiDAR, and VNIR

(visible near infrared) hyperspectral sensors throughout the

growing season. Biomass and grain yield were evaluated in

sorghum and maize, respectively, at the end of the growing

seasons. The objectives of this experiment were to (1) determine

the impact of row selection on repeatability based on remote

sensing traits, (2) compare repeatability of remote sensing-based

traits with end-trimming and no trimming, and (3) demonstrate the

impact of row selection on end-season biomass and grain

yield prediction.
2 Materials and methods

2.1 Field experiment and germplasm

Field trials were conducted from 2018 to 2021 in West

Lafayette, Indiana, US at the Agronomy Center for Research and

Education at Purdue University (40°28’37.18”N, 86°59’22.67”W).

The experiments were planted as four-row plots with a length of

3.05 m by 3 m with 76 cm row spacing (Figure 1). Alleys were 76 cm

in length between ranges. Nutrients, herbicides, and insecticides

were applied according to best agronomic practices to not limit

plant growth and development in these experiments. In each study,

the experiments were planted in a crop rotation with soybean.

In 2018, 2019, and 2020, 619 inbred lines from the sorghum

diversity panel were assessed for their testcross hybrid performance

with ATx623 (sorghum reference genome). This experiment was
frontiersin.org
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planted on May 8, 2018; June 4, 2019; and May 12, 2020 with a

consistent seeding rate of 220,000 seeds ha-1. On June 7, 2018, 28%

liquid UAN was applied at 16 g N m-2. In October 2018, 34 g m-2 of

potash (0-0-60) and 1,121 g m-2 of lime for the 2019 growing

season. Additionally, 18 g N m-2 of anhydrous ammonia was

applied on May 9, 2019. On April 6, 2020, 18 g N m-2 of

anhydrous ammonia was applied. The sorghum experiments

followed a randomized complete block design with 2 replications.
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End-season biomass was harvested from rows two and three of each

plot on August 14, 2018; September 12, 2019; and August 19, 2020

using a Wintersteiger Cibus Biomass Harvester (Wintersteiger Inc.,

Salt Lake City, UT, USA). Moisture content was determined by

sampling ~500 g of chopped biomass from each plot from which

fresh weight and dry weight (after samples were dried for ten days at

72°C) were recorded. Moisture content was used to adjust biomass

from fresh weight to dry weight.

In 2020 and 2021, a maize field experiment was grown

comprised of ten temperate and ten tropical inbred lines

evaluated for their testcross hybrid performance with PHP02.

This experiment was planted on May 12, 2020 and May 23, 2021

at a population of 74,000 seeds ha-1 using a randomized complete

block design with 3 replications. On April 6, 2020, 18 g N m-2 of

anhydrous ammonia was applied. On April 14, 2021, 28% liquid

UAN was applied at 16.25 g N m-2. Grain yield was harvested from

rows two and three of each plot on October 14, 2020 and October

21, 2021 using a Kincaid plot combine (Kincaid 8-XP, Haven KS,

USA) with grain yields adjusted to 15% moisture.
2.2 Sensors

A DJI M600 pro equipped with an onboard Applanix APX-15

GNSS/INS unit, which allowed for direct-georeferencing, and

integrated RGB, LiDAR, and VNIR sensors, was used in each of

the studies. Boresight calibrations were performed for each sensor

for co-alignment of the sensors and flight dates as described by

Habib et al. (2018); Ravi et al. (2018), and LaForest et al. (2019).

RGB data were collected using a Sony Alpha 7R digital mirrorless

camera with a Sony Sonnar T* FE 35 mm lens. The Sony Alpha 7R

camera features a full-frame 36.4 MP sensor delivering high-

resolution images. Georeferenced orthophotos were generated

using a structure-from-motion strategy introduced by He et al.

(2018) and Hasheminasab et al. (2020). LiDAR data were collected

with a Velodyne VLP-16 instrument, which has 16 beams and a

360-degree horizontal field of view with a maximum range of

100 m. It can scan up to 300,000 points second-1 with a typical

accuracy of ±3cm. VNIR data were collected with a Headwall

Photonics Nano-Hyperspec, a hyperspectral push-broom scanner

collecting data in 272 spectral bands at 2.2 mm band-1 from 400 nm

to 1000 nm. It has 640 spatial channels with a7.4mm pixel pitch.

Spectral targets calibrated using re Spectra Vista SVC 1024i were

used in post-processing to convert from radiance to reflectance via

the Empirical Line Method. VNIR orthophotos were obtained using

the digital surface model from the georeferenced LiDAR point cloud

through the approach developed by Lin and Habib (2021).
2.3 Flight information

Flight information including date, growing degree days (GDD),

and sensor data collection is given in Table 1 and Supplemental

Tables 1, 2. Flights were conducted at an altitude of ~40 m with a

speed of ~4 m s-1 for a ground sampling distance of ~1 cm in RGB

orthophotos and ~4cm in VNIR orthophotos. Generally, flights
FIGURE 1

Hyperspectral orthophoto colored as red-green-blue showcasing
the 2020 sorghum (large, blue box) and maize (small, red box)
experiments used in this study.
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were conducted around solar noon on clear days with little wind.

GDD for each day was calculated using the formula, GDD = [(Tmax

+Tmin)/2]-10. When the maximum and minimum temperatures

were greater than 30°C or less than 10°C, then Tmax and Tmin were

set to 30°C and 10°C, respectively (Gilmore and Rogers, 1958).

Flights were organized across years based on GDD into vegetative

(0-650 GDD), flowering (650-900 GDD), and grain filling (900

+GDD) growth stages. These GDD windows were based on the

average beginning and end of flowering across the years of the

maize and sorghum experiments, although there were a few late

maturing sorghum genotypes that did not begin flowering until

later in the growing season each year.
2.4 Remote sensing traits

Remote sensing traits were collected from RGB, LiDAR, and

VNIR sensors and were extracted for each row segment (RS) of a

plot 2D canopy cover (CC) was estimated from RGB imagery as the

ratio of the number of pixels attributed to vegetative material, based

on thresholds in the HSV (Hue, Saturation Value) color space, to

the total number of pixels in a RS (Chen, 2019) and 3D canopy

cover by LiDAR as the number of points above the 10th (CC10)

percentile divided by the total number of points in each RS (Masjedi
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et al., 2020). LiDAR was also used to quantify variation in height

and plot volume. Height was determined at the 95th (Height 95%)

percentile of the nonground points. Plot volume was estimated by

assigning cell sizes 8 cm x 8 cm to each plot. Within each grid,

height was calculated as the average of the 95th percentile height and

the minimum height of nonground points. Average height was

multiplied by the cell size to estimate the volume of vegetation in a

plot. Vegetation indices were calculated from the plant material in

hyperspectral orthophotos where the ground was masked using

thresholds of vegetation indices (Table 2).
2.5 Row selection and plot trimming

Row segmentation was performed as described by Yang et al.

(2021a) to enclose the vegetation in rectangles. Briefly, the

intersections of vertical and horizontal lines result in a grid of N

x M coordinates where N is the number of ranges in the field and M

is the number of rows. These grids result in bounding boxes around

each individual RS of each plot in an early season RGB orthophoto

(Figure 2). Bounding boxes do not all have exactly the same size

because of variations in the location of emerging plants at the ends

of the row segment. The plot means of a given remote sensing trait

can be computed from all four RS (RS1234), the inner RS (RS23),
TABLE 2 Summary of vegetation indices obtained from the VNIR-hyperspectral sensor used in predictive modeling.

Abbreviation Index Name Formula Reference

Carte1 Carter Index 1 R695/R420 Carter (1994)

GNDVI Green NDVI (R750 - R550)/(R750 + R550) Gitelson et al., 1996

mRENDVI Modified Red Edge Simple NDVI (R750 - R705)/(R750 + R705 - 2R445) Sims and Gamon (2002)

NDVI Normalized Difference Vegetation Index (R750 - R705)/(R750 + R705) Gitelson and Merzlyak (1994)

OSAVI Optimized Soil Adjusted Vegetative Index (1 + 0.16)(R800 - R670)/(R800 + R670 + 0.16) Rondeaux et al. (1996)

PRI Photochemical Reflectance Index (R531 - R570)/(R531 + R570) Gamon et al. (1992)

PSRI Plant Senescence Reflectance Index (R680 - R500)/R750 Merzlyak et al. (1999)

SR800680 Simple Ratio Index R800/R680 Sims and Gamon (2002)

SR700670 Simple Ratio Index R700/R670 McMurtrey et al. (1994)

VOG1 Vogelmann Red Edge Index R740/R720 Vogelmann et al. (1993)
TABLE 1 Number of flights with RGB (red-green-blue), LiDAR (light detection and ranging), and VNIR (visible near infrared hyperspectral) at each
growth stage (vegetative, 0 – 650 GDD; flowering, 650 – 900 GDD; grain filling (900+ GDD) in maize and sorghum experiments from 2018 – 2021.

Crop Growth Stage
Sensor Flights

RGB LiDAR VNIR

Maize

Vegetative 8 6 6

Flowering 6 4 3

Grain Filling 8 6 6

Sorghum

Vegetative 9 7 5

Flowering 7 6 4

Grain Filling 6 5 6
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the outer RS (RS14), and individual RS (RS1, RS2, RS3, RS4). For

this study, plots were trimmed by removing 40 cm from the two

ends of the RS boundary (Supplemental Figure 2).
2.6 Repeatability

Broad-sense heritability was calculated on an entry-mean basis

(H2) to estimate repeatability of representative geometric and

spectral remote sensing traits including: CC, CC10, plant height

95th percentile (Height 95th), plot volume, and the normalized

difference vegetation index (NDVI) (Nyquist and Baker, 1991;

Piepho and Möhring, 2007). Variance components were

estimated through restricted maximum likelihood (REML) from

Equation 1 using R package ‘lme4’ (Bates et al., 2015). As remote

sensing traits were observed on different dates across years and

experiments, variance components were predicted for each year

individually using the following model:

Yij =   μ   +  Hi   +  Rj   +   eij (1)

where Yij is the phenotypic measurement of the ith hybrid in the

jth rep. Components of the model include µ that represents the

grand mean, Hi as the random effect of the ith hybrid, Rj as the fixed

effect of the jth replicate, and ϵij as the residual error for the ith

hybrid in the jth rep. Variance components for the random effects,

hybrid and error, were estimated from Equation 1 and used to

evaluate repeatability using Equation 2.
Frontiers in Plant Science 05
H2 =  
s 2
H

s 2
H   +   s

2
e

rep

(2)

where H2 represents repeatability of a given trait. Hybrid and

error variance components are denoted by s2
H and s 2

e , respectively.

The number of replications (2, sorghum; 3, maize) were rep in

Equation 2.
2.7 Predictive modeling

Classical machine learning models including Support Vector

Regression (SVR) and Partial Least Squares Regression were

evaluated, and SVR was selected for further analysis based on its

predictive performance as previously shown in Masjedi et al. (2020).

Nevertheless, the goal of this study was to understand the impact of

row selection and plot trimming on repeatability and predictive

models, not to develop an optimum predictive model. SVR is a non-

parametric regression technique with no statistical assumptions.

SVR transforms the original feature space to find a linear

hyperplane in a higher dimension for predictive modeling

(Cristianini and Shawe-Taylor, 2000). Optimal values of

hyperparameters sigma and cost were determined through cross-

validation in a grid search. Parameters evaluated included sigma

(0.001, 0.001, 0.01, 0.1) and cost (10, 50, 100, 150, 200, n) where n is

the number of features used in the model (Masjedi, 2020). The

correlation (r) of predicted yield with known yield in the testing set

was used to assess model performance. SVR models were developed
FIGURE 2

Row segmentation from a section of the sorghum experiment in 2018. Plots were planted as four-row plots. Row segments (1, 2, 3, and 4) within
each plot were individually segmented. Row segment length was automatically determined based on the proximal and terminal ends of the plants in
the individual row segments. Plot trimming was performed by removing 40 cm from the top and bottom of each row segment.
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in R package ‘caret’ (Kuhn, 2008) implementing the model from R

package ‘kernlab’ (Karatzoglou et al., 2004).

Remote sensing traits throughout the growing season were

standardized (centered and scaled) and used to predict end-

season biomass in sorghum and end-season grain yield in maize.

In sorghum, 10-fold cross-validation repeated 100 times was used to

assess model accuracy. In maize, 3-fold cross-validation repeated

500 times was used to assess model accuracy. An equal number of

temperate and tropical germplasms were selected in each fold of

cross validation to ensure similar population structures of training

and testing datasets in maize. Plots of the same genotype from

different replicates were considered as unique entries, and this was

not a factor controlled in cross validation. Maize was repeated more

than sorghum because of computational efficiency of the smaller

experiment and to improve the precision of the prediction

accuracy estimates.
2.8 Statistical analysis

Statistical analyses were performed in R (R Core Team, 2022).

For the repeatability of a remote sensing trait from different dates

and years, data were grouped based on GDD for degrees of freedom

in analysis of variance (ANOVA). Flights were grouped as from 0 to

650 GDD representing vegetative growth stage, 0 to 900 GDD for

flowering growth stage, and greater than 900 GDD for grain filling

growth stage. Multiple flights in each growth stage interval in each

year provide a robust dataset to perform statistical analyses

(Table 1). ANOVA was used to determine the presence of

significant interaction effects between year, row selection, and plot

trimming in maize and sorghum. Where there was a significant

difference between year, row selection, plot trimming, or the

interaction effects in ANOVA results, a Least Significant

Difference Test in R package ‘agricolae’ (de Mendiburu, 2021)

was used to determine which treatments were significantly

different at r< 0.05. Remote sensing data, yield data, and R code

used for this study are available at the Purdue University Research

Repository (10.4231/PF9S-4G38).
3 Results

3.1 Impact of row selection and plot
trimming on repeatability

The repeatability of remote sensing traits was evaluated in

multi-year sorghum (Table 3) and maize (Table 4) experiments.

The average repeatability of all remote sensing traits was 0.84 in

maize and 0.67 in sorghum. The repeatability values of remote

sensing traits increased at later stages of development. The average

repeatability values in sorghum were 0.54, 0.71, and 0.76 during the

vegetative, flowering, and grain filling growth stages respectively.

The average repeatability values in maize similarly increased at later

growth stages with values of 0.81, 0.84, and 0.87 during the

vegetative, flowering, and grain filling growth stages, respectively.
Frontiers in Plant Science 06
Plot trimming and interaction effects involving plot trimming never

resulted in a significant change in repeatability in either maize

or sorghum.

The interaction effect between row segment and year was

significant in sorghum for CC10 (r<0.05) at flowering stage and

NDVI (r< 0.01) at flowering stage (Supplemental Table 3). The

repeatability value of CC10 at flowering growth stage was best in

RS1234 in 2018, RS1234 in 2019, and RS23 in 2020. The least

repeatable value for CC10 at flowering was from RS4 in 2018, RS3 in

2019, and RS1 in 2020. While the interaction effect was significant

for NDVI at flowering stage in sorghum, the most and least

repeatable data came from RS1234 and RS4, respectively, in all

years of the sorghum experiment. NDVI at the vegetative growth

stage was the only trait with a significant (r< 0.001) row segment x

year interaction in maize with RS4 in 2020 being worse than other

row segment combinations in either year (Supplemental Table 4).

The row segments used to extract remote sensing data was a

significant factor impacting repeatability for ten of the fifteen (five

traits at three growth stages) remote sensing traits in sorghum

(Table 3). Average repeatability across all remote sensing traits was

0.83 in RS1234, 0.82 in RS23, 0.79 in RS2, 0.79 in RS3, 0.77 in RS14,

0.72 in RS4, and 0.71 in RS1. The highest repeatability values were

generally observed for RS1234, but repeatability for RS1234 was

only significantly greater than RS23 for NDVI at flowering growth

stage. Repeatability from RS14 was significantly lower than

repeatability of RS1234 for nine of the fifteen remote sensing

traits. Repeatability from a single outer row was significantly less

repeatable than RS14 (outer rows) for eight of the fifteen traits for

RS1 and six of the fifteen traits for RS4. Often, repeatability of traits

measured in the inner row segments (RS2 and RS3) was

significantly higher than repeatability of traits from the outer row

segments (RS1 and RS4).

Row segment was a significant factor impacting repeatability for

nine of the fifteen (five traits at three growth stages) remote sensing

traits in maize (Table 4). Average repeatability across all remote

sensing traits in all three growth stages was 0.90 in RS1234, 0.89 in

RS23, 0.89 in RS3, 0.88 in RS14, 0.87 in RS2, 0.84 in RS1, and 0.83 in

RS4. Repeatability of traits from RS1234 and RS23 were never

significantly different, and repeatability of traits from RS14 was only

significantly lower for PV at the grain filling stage. Repeatability of

traits extracted from RS1 and RS4 (outside single rows) was

significantly lower than repeatability of traits from RS1234 for

seven and eight remote sensing traits, respectively, and

significantly less repeatable than RS14 for four and eight remote

sensing traits, respectively. Often, repeatability of traits from the

inner row segments (RS2 and RS3) was significantly higher than

traits measured in the outer row segments (RS1 and RS4).
3.2 Impact of row selection on
predictive modeling

End-season sorghum biomass yield averaged 1,737 g m-2 (range:

745 to 3,989) in 2018; 1,720 g m-2 (range: 1,039 to 2,879) in 2019;

and 1,746 g m-2 (range: 619 to 2,653) in 2020. The interaction effect
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TABLE 3 Repeatability of remote sensing traits from RGB (red-green-blue), LiDAR (light detection and ranging), and VNIR (visible near infrared hyperspectral) sensors in sorghum experiments from 2018, 2019
and 2019.

Grain Filling (900+ GDD)

DVIV CCR CC
10%L

Height
95%L

Plot
VolumeL NDVIV

0.8 0.56 0.59 0.92 0.92 0.83

0.72 c – – 0.8 b

0.81 b 0.64 a 0.92 b 0.83 ab

0.85 a 0.54 b 0.93 a 0.84 a

0.84 a 0.69 a 0.96 a 0.95 a 0.88 a

0.83 b 0.68 ab 0.97 a 0.95 a 0.87 ab

0.82 c 0.57 bc 0.91 b 0.92 b 0.84 b

0.77 e 0.48 c 0.84 c 0.88 c 0.74 c

0.8 d 0.6 ab 0.96 a 0.94 ab 0.83 b

0.8 d 0.63 ab 0.96 a 0.94 ab 0.85 ab

0.74 f 0.47 c 0.87 c 0.88 c 0.78 c

.09 NS
0.939
NS

0.575 NS 0.87 NS 0.727 NS
0.322
NS

<0.001
***

0.984
NS

0.002 ** 0.518 NS 0.011 * 0.025 *

<0.001
***

0.987
NS

0.002 ** <0.001 *** <0.001 ***
<0.001
***

.002 **
0.907
NS

0.999 NS 0.389 NS 1 NS
0.712
NS

as significant, letters following the traits indicate significant differences between treatments at
can be used for the trait.
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Vegetative (0 - 650 GDD) Flowering (650 - 900 GDD)

CCR CC
10%L

Height
95%L

Plot
VolumeL NDVIV CCR CC

10%L
Height
95%L

Plot
VolumeL

Mean 0.42 0.37 0.71 0.65 0.56 0.4 0.48 0.94 0.95

Sorghum
2018

0.3 b 0.47 b 0.93 b 0.94 b

Sorghum
2019

0.5 a 0.46 b 0.96 a 0.95 a

Sorghum
2020

0.53 a 0.58 a 0.94 ab 0.94 b

RS1234 0.47 a 0.45 a 0.6 a 0.97 a 0.96 a

RS23 0.45 ab 0.45 a 0.56 ab 0.98 a 0.96 a

RS14 0.43 abc 0.38 b 0.49 cd 0.93 b 0.94 b

RS1 0.36 d 0.3 c 0.38 e 0.87 c 0.93 bc

RS2 0.42 abc 0.43 ab 0.51 bc 0.97 a 0.96 a

RS3 0.41 bc 0.4 ab 0.44 de 0.97 a 0.96 a

RS4 0.4 cd 0.39 ab 0.39 e 0.9 b 0.91 c

Trim
ANOVA

0.722
NS†

0.87 NS 0.993 NS 0.936 NS
0.822
NS

0.294
NS

0.169 NS 0.906 NS 0.835 NS

Year ANOVA
<0.001
***

0.403 NS 0.216 NS 0.244 NS
0.541
NS

0.12 NS
<0.001
***

<0.001 *** 0.04 *

RS ANOVA
<0.001
***

0.844 NS 0.901 NS 0.83 NS
0.885
NS

<0.001
***

<0.001
***

<0.001 *** <0.001 ***

RS x Y
ANOVA

0.292
NS

1 NS 1 NS 1 NS 1 NS
0.355
NS

0.014 * 0.198 NS 0.492 NS

Significant differences were declared using ANOVA between plot trimming (Trim) techniques, years (Y), row segments (RS), and interaction (RS x Y) effects. Where ANOVA w
r< 0.05. The same letters signify no significant differences between treatments. Where there were not significant differences in ANOVA, values were removed and the mean
CC, Canopy Cover; R, Trait from RGB sensor; L, Trait from LiDAR sensor; V, Trait from VNIR-hyperspectral sensor; RS, Row Segment; Y, Year.
† = ANOVA significance based on p-value: >0.05= NS,<0.05 = *,<0.01 = **,<0.001 = ***.
N

0

0
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TABLE 4 Repeatability of remote sensing traits from RGB (red-green-blue), LiDAR (light detection and ranging), and VNIR (visible near infrared hyperspectral) sensors in maize experiments from 2020 and 2021.

GDD) Grain Filling (900+ GDD)

Plot
VolumeL NDVIV CCR CC

10%L
Height
95%L

Plot
VolumeL NDVIV

0.92 0.91 0.77 0.84 0.97 0.95 0.84

0.89 b 0.94 b 0.77 b

0.95 a 0.96 a 0.91 a

0.94 a 0.9 a 0.98 ab 0.97 a

0.94 a 0.9 a 0.98 a 0.97 a

0.92 a 0.85 ab 0.97 bc 0.95 b

0.91 a 0.78 bc 0.94 d 0.94 c

0.94 a 0.86 ab 0.98 ab 0.96 a

0.93 a 0.88 a 0.98 a 0.96 a

0.87 b 0.75 c 0.97 c 0.91 d

0.923 NS
0.567
NS

0.951
NS

0.722 NS 0.792 NS 0.328 NS
0.937
NS

<0.001 ***
0.192
NS

0.081
NS

0.328 NS 0.938 NS <0.001 ***
<0.001
***

0.023 *
0.569
NS

0.27
NS

0.005 ** <0.001 *** <0.001 ***
0.851
NS

0.258 NS
0.585
NS

0.996
NS

0.756 NS 0.177 NS 0.202 NS
0.996
NS

ts. Where ANOVA was significant, letters following the traits indicate significant differences between treatments at
oved and the mean can be used for the trait.
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Vegetative (0 - 650 GDD) Flowering (650 - 900

CCR CC
10%L

Height
95%L

Plot
VolumeL NDVIV CCR CC

10%L
Height
95%L

Mean 0.83 0.71 0.83 0.79 0.86 0.75 0.7 0.94

Maize 2020 0.85 a 0.81 a 0.82 a 0.86 a

Maize 2021 0.81 b 0.57 b 0.75 b 0.53 b

RS1234 0.87 a 0.86 a 0.82 a 0.89 a 0.8 a

RS23 0.86 ab 0.86 a 0.84 a 0.88 a 0.75 ab

RS14 0.85 ab 0.83 a 0.78 a 0.89 a 0.75 ab

RS1 0.78 c 0.83 a 0.79 a 0.9 a 0.66 bc

RS2 0.82 bc 0.86 a 0.84 a 0.86 a 0.63 bc

RS3 0.82 abc 0.84 a 0.82 a 0.87 a 0.76 ab

RS4 0.79 c 0.76 b 0.65 b 0.74 b 0.54 c

Trim
ANOVA

0.907
NS†

0.725 NS 0.812 NS 0.807 NS
0.879
NS

0.904
NS

0.74 NS 0.827 NS

Year ANOVA 0.009 **
<0.001
***

0.077 NS 0.029 *
0.058
NS

0.131
NS

<0.001
***

0.072 NS

RS ANOVA 0.003 ** 0.617 NS 0.035 * 0.003 **
<0.001
***

0.134
NS

0.005 ** 0.143 NS

RS x Y
ANOVA

0.342
NS

0.93 NS 0.59 NS 0.968 NS
<0.001
***

0.262
NS

0.093 NS 0.967 NS

Significant differences were declared using ANOVA between plot trimming (Trim) techniques, years (Y), row segments (RS), and interaction (RS x Y) effec
r< 0.05. The same letters signify no significant differences between treatments. Where there were not significant differences in ANOVA, values were rem
CC, Canopy Cover; R, From RGB sensor; L, From LiDAR sensor; V, From VNIR-hyperspectral sensor; RS, Row Segment; Y, Year.
† = ANOVA significance based on p-value: >0.05= NS,<0.05 = *,<0.01 = **,<0.001 = ***.
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between row segment and year was significant for both sorghum

and maize. Thus, the effect of row segment was assessed for each

year individually (Figure 3). Prediction accuracy of sorghum

biomass ranged from 0.74 to 0.76 in 2018, 0.64 to 0.68 in 2019,

and 0.69 to 0.75 in 2020. The highest prediction accuracy in 2018

used data from RS1234, though not significantly different from

RS23. In 2019 and 2020, prediction accuracy using data from RS23

was significantly greater than all other row segment combinations.

Remote sensing data from outer rows (RS14, RS1, or RS4) generally

resulted in a significant decrease in prediction accuracy compared

to remote sensing data including inner rows (RS23, RS1234, RS2, or

RS3), except in 2018 where prediction accuracy from RS14 and

RS23 and RS2, RS3, and RS4 were not significantly different.

Average maize grain yield was 10.9 Mg ha-1 (range: 3.2 to 14.8)

in 2020 and 9.3 Mg ha-1 (range: 4.8 to 12.9) in 2021. Prediction

accuracy of maize grain yield ranged from 0.53 to 0.68 in 2020 and

0.48 to 0.66 in 2021. Remote sensing data from RS3 and RS4

resulted in a prediction accuracy significantly higher than all other

row segment combinations evaluated in 2020. Prediction accuracy

using remote sensing data from RS23 was significantly greater

than RS1234 which was significantly greater than RS14. The

prediction accuracy of maize grain yield using data from RS1

was significantly lower than all other row segment combinations

in 2020. However, prediction accuracy of maize grain yield in 2021

from RS1234 was significantly greater than all other RS

combinations. Prediction accuracy from remote sensing data

from RS14 was significantly greater than RS23. Prediction

accuracy from RS3 was not significantly different from RS23,

but it was significantly greater than RS1, RS2, and RS4. Remote

sensing data from RS14 (outer rows) resulted in a significantly

higher prediction accuracy when compared to RS1 and RS4 (single

outer rows).
Frontiers in Plant Science 09
4 Discussion

4.1 Implications of row selection and plot
trimming in remote sensing

Phenotyping capabilities have been the limiting factor to greater

genetic gain in breeding programs based on the time consuming,

laborious, costly, and often destructive nature of the endeavor

(Cobb et al., 2013; Yang et al., 2017). Additionally, some traits,

such as canopy cover, are difficult to quantitatively measure and are

reduced to subjective estimates. High-throughput phenotyping

through remote sensing can be used to produce large quantities

of data on breeding plots that can be used per se or in end-season

yield predictions to increase genetic gain in plant breeding. Key

research questions related to processing of remote sensing data in

breeding trials include the impact of row selection, plot trimming,

and number of RS in a plot have not been quantitatively explored.

The border effect has been well documented in previous

agronomic studies and has led to an emphasis on measurements

of traits from the inner rows of multi-row plots (Bird, 1929; Genter,

1958; Gomez, 1972; Kramer et al., 1982; Bowman, 1989; Ceccarelli

and Grando, 1996; Petersen, 1994; Reynolds – Braun, 2022)

(Supplemental Figure 1). Nevertheless, border effect of remote

sensing traits has been less documented. In this experiment, the

border effect was evaluated based on repeatability and yield

prediction accuracy using representative remote sensing traits

related to geometric and chemistry-related responses (Tables 3, 4;

Figure 3). The impact of border rows can be observed by comparing

all rows RS1234, inner rows (RS23), and outer rows (RS14) or

comparing single inner rows (RS2 and RS3) with single outer rows

(RS1 and RS4). Repeatability of remote sensing traits was often

improved or not significantly different when considering whole
FIGURE 3

Prediction accuracy based on correlation (r) of support vector regression using all remote sensing traits from various row segments throughout the
growing season to predict end-season biomass in sorghum or grain yield in maize. Error bars represent the standard deviation of the prediction
accuracies. Letters above the bars represent significant differences between row segments using LSD (r< 0.05). Different letters represent significant
differences between different row segments.
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plots rather than inner-plot rows. Prediction accuracy of end-

season yield was often improved by considering just the inner-

rows of a four-row plot. These results agree with Zhang et al. (2019)

where soybean yield was best predicted when 20 to 80% of the plot

area was used as it minimized border effect. Since yield was

harvested from the inner rows in our study, it is possible that

prediction accuracy from the inner-row segments was favorably

biased and different results could have been obtained if yield had

been determined using the harvest of all rows. Nevertheless, as yield

is often harvested from the inner-plot rows in breeding

experiments, this comparison has the most relevance. A follow-up

study of interest could be to harvest each row of a plot individually

to better associate yield and remote sensing data collection.

The significance of row selection indicated the presence of a

border effect, which suggested that trimming the two ends of the

plots could similarly impact results. Anderson et al. (2019) did not

use any plot trimming technique. Malambo et al. (2017) trimmed

20 cm from the proximal and terminal ends of plots with a length

7.6 m in maize and 5.6 m in sorghum. Masjedi et al. (2018) trimmed

40 cm from the proximal and terminal ends of each plot of length

3 m in sorghum. Krause et al. (2019) trimmed 50 cm from the

proximal and terminal ends of each plot in wheat experiments with

plot lengths of 2.8 to 4 m. Tirado et al. (2020) created 20 bins within

each row segment and evaluated the middle 12 bins for their

analysis in maize with plot lengths of 3.65 m. While various

methods have been used, none of these studies evaluated

differences between plot trimming techniques. In our study, there

was not a significant difference in repeatability values in all remote

sensing data with and without 40 cm removed from the proximal

and terminal ends of the plot boundary (Tables 3, 4). The row

selection grid in our experiment was created early in the growing

season (V2-V4) when row segments were clearly visually separated.

The plot segmentation process created segments that were defined

by the end plants in each row. While plants continue to grow

throughout the growing season, the grid remained unchanged. One

hypothesis that explained the non-significant plot trimming effect

was that plants grew outside of the bounding boxes developed early

in the growing season, and this material was not included in the

bounding box for trait measurements. Nevertheless, there is limited

downside to plot trimming and it remains an effective measure to

eliminate potential alley effect.

The number of row segments in a plot is an important

consideration in experimental design constrained by the number

of genotypes, replications, seed, and land area available. Generally,

fewer row segments are used in the early stages of a breeding

program to evaluate many genotypes and remove unfavorable

genotypes based on highly heritable traits (i.e. disease resistance,

plant height, etc.) (Acquaah, 2012). More row segments are used in

advanced stages of a breeding program where yield performance is

of primary concern. Nevertheless, remote sensing could enable

researchers to evaluate plots with fewer row segments with

greater accuracy and remove the necessity of plots with more row

segments. In our study, RS1 and RS4 (single outer rows) and RS14

(outer rows) best represent one-row and two-row plots,

respectively, as the border effect was present in these row

segments. Remote sensing trait repeatability and prediction
Frontiers in Plant Science 10
accuracy of either biomass in sorghum or grain yield in maize

were generally improved as the number of RSs increased in both

maize and sorghum. While this study only evaluated a maximum of

four-row plots, it is likely that repeatability of remote sensing traits

and prediction accuracy could be further increased using plots with

more RS.
4.2 Implications and future work

The results of this study indicate that basic agronomic

principles should be implemented to maximize the value of

remote sensing data for plant breeding purposes. Plot trimming

and excluding exterior rows should be used to limit the border effect

from the alleys and neighboring plots. The number of RS in a plot is

an important consideration when designing an experiment and

should be increased when possible. Nevertheless, this experiment

did not evaluate the tradeoff value of increasing the number of RS in

a plot in comparison to increasing the number of replications in the

experiment. Additionally, future studies should evaluate larger plot

sizes extending beyond the four-row plot size used in this study.

Finally, while plot trimming was not a significant factor in this

study, it should be evaluated in experiments with different plot

lengths or using other row segmentation techniques.
5 Conclusions

Remote sensing is a rapidly advancing area of phenomics

enabling an increase in the amount of in-season data that can be

evaluated. Within breeding programs, this data can be used per se or

to predict end-season yield in the growing season. This study was

performed to evaluate the importance of a border effect, plot

trimming, and number of row segments used in remote sensing

data in maize and sorghum. Generally, repeatability was improved

when remote sensing data from more row segments was used in the

analysis, and prediction accuracy was improved when excluding

outer rows. While results in this study obtained using trimmed plots

were not significantly different from when they were not trimmed, it

should be considered in future studies to minimize any potential

alley effect. Implementing these basic practices could help to

maximize the value of remote sensing data and increase selection

efficiency in a breeding program.
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Singh, R., et al. (2019). Hyperspectral reflectance-derived relationship matrices for genomic
prediction of grain yield in wheat. G3 9 (4), 1231–1247. doi: 10.1534/g3.118.200856

Kuhn, M. (2008). Building predictive models in r using the caret package. J. Stat.
Softw. 28 (5), 1–26. doi: 10.18637/jss.v028.i05

LaForest, L., Hasheminasab, S., Zhou, T., Flatt, E., and Habib, A. (2019). New
strategies for time delay estimation during system calibration for UAV-based GNSS/
INS-assisted imaging systems. Remote Sens. 11 (15), 1–36. doi: 10.3390/rs11151811

Li, J., Shi, Y., Veeranampalayam-Sivakumar, A.-N., and Schachtman, D. P. (2018).
Elucidating sorghum biomass, nitrogen and chlorophyll contents with spectral and
morphological traits derived from unmanned aircraft system. Front. Plant Sci. 9.
doi: 10.3389/fpls.2018.01406

Lin, Y. C., and Habib, A. (2021). Quality control and crop characterization
framework for multi-temporal UAV LiDAR data over mechanized agricultural fields.
Remote Sens. Environ. 256, 112299. doi: 10.1016/j.rse.2021.112299

Maes, W. H., and Steppe, K. (2019). Perspectives for remote sensing with unmanned
aerial vehicles in precision agriculture. Trends Plant Sci. 24 (2), 152–164. doi: 10.1016/
j.tplants.2018.11.007

Malambo, L., Popescu, S., Murray, S., Putman, E., Pugh, N., Horne, D., et al. (2017).
Multitemporal field-based plant height estimation using 3D point clouds generated
from small unmanned aerial systems high-resolution imagery. Int. J. Appl. Earth
Observ. Geoinform. 64 (2018), 31–42. doi: 10.1016/j.jag.2017.08.01

Masjedi, A., Crawford, M., Carpenter, N., and Tuinstra, M. (2020). Multi-temporal
predictive modelling of sorghum biomass using UAV-based hyperspectral and LiDAR
data. Remote Sens. 12, 1–35. doi: 10.3390/rs12213587

Masjedi, A., Zhao, J., Thompson, A. M., Yang, K., Flatt, J. E., Crawford, M. M., et al.
(2018). “Sorghum biomass prediction using UAV-based remote sensing data and crop
model simulation,” in 38th IEEE International Geoscience and Remote Sensing
Symposium (IGARSS) (Valencia Spain. Piscataway, NJ United States). 7719–7722.
doi: 10.1109/IGARSS.2018.8519034

Mathews, A. J., and Jensen, J. L. (2013). Visualizing and quantifying vineyard canopy
LAI using an unmanned aerial vehicle (UAV) collected high density structure from
motion point cloud. Remote Sens. 5, 2164–2183. doi: 10.3390/rs5052164

McMurtrey, J. E., Chappelle, E. W., Kim, M. S., Meisinger, J. J., and Corp, L. A.
(1994). Distinguishing nitrogen fertilization levels in field corn (Zea mays l.) with
actively induced fluorescence and passive reflectance measurements. Remote Sens.
Environ. 47 (1), 36–44. doi: 10.1016/0034-4257(94)90125-2

Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., and Rakitin, V. Y. (1999). Non-
destructive optical detection of pigment changes during leaf senescence and fruit
ripening. Physiol. Plantarum 106 (1), 135–141. doi: 10.1034/j.1399-3054.1999.106119.x

Moreira, F., Oliveira, H., Lopez, M., Abughali, B., Gomes, G., Cherkauer, K., et al.
(2021). High-throughput phenotyping and random regression models reveal temporal
genetic control of soybean biomass production. Front. Plant Sci. 12. doi: 10.3389/
fpls.2021/715983

Nyquist, W., and Baker, R. (1991). Estimation of heritability and prediction of
selection response in plant populations. Crit. Rev. Plant Sci. 10 (3), 235–322.
doi: 10.1080/07352689109382313

Petersen, R. G. (1994). Agricultural field experiments: design and analysis (Boca
Raton: CRC Press).

Piepho, H. P., andMöhring, J. (2007). Computing heritability and selection response from
unbalanced plant breeding trials. Genetics 177, 1881–1888. doi: 10.1534/genetics.107.074229

Pugh, N. A., Horne, D. W., Murray, S. C., Carvalho, G., Malambo, L., Jung, J., et al.
(2018). Temporal estimates of crop growth in sorghum and maize breeding enabled by
unmanned aerial systems. Plant Phenome J. 1, 1–10. doi: 10.2135/tppj2017.08.0006

Ravi, R., Hasheminasab, S. M., Zhou, T., Masjedi, A., Quijano, K., Flatt, J. E., et al.
(2019). “UAV-based multi-sensor multi-platform integration for high throughput
phenotyping,” in Proc. SPIE 11008, Autonomous Air and Ground Sensing Systems for
Frontiers in Plant Science 12
Agricultural Optimization and Phenotyping IV, 110080E. p. 13. doi: 10.1117/
12.2519190

Ravi, R., Lin, Y.-J., Elbahnasawy, M., Shamseldin, T., and Habib, A. (2018).
“Simultaneous system calibration of a multi-lidar multicamera mobile mapping
platform,” in IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, Vol. 11. 1694–1714. doi: 10.1109/JSTARS.2018.2812796

Ray, D. K., Mueller, N. D., West, P. C., and Foley, J. A. (2013). Yield trends are
insufficient to double global crop production by 2050. PloS One 8 (6), 1–8. doi: 10.1371/
journal.pone.0066428

R Core Team (2022) R: a language and environment for statistical computing.
Available at: http://www.r-project.org/ (Accessed January 20, 2022).

Reynolds, M. P., and Braun, H. J. (2022). “Wheat improvement,” in Wheat
improvement. Eds. M. P. Reynolds and H. J. Braun (Cham: Springer). doi: 10.1007/
978-3-030-90673-3_1

Rondeaux, G., Steven, M., and Baret, F. (1996). Optimization of soil-adjusted vegetation
indices. Remote Sens. Environ. 55 (2), 95–107. doi: 10.1016/0034-4257(95)00186-7

Sims, D. A., and Gamon, J. A. (2002). Relationships between leaf pigment content
and spectral reflectance across a wide range of species, leaf structures, and
developmental stages. Remote Sens. Environ. 81 (2-3), 337–354. doi: 10.1016/S0034-
4257(02)00010-X

Tattaris, M., Reynolds, M. P., and Chapman, S. C. (2016). A direct comparison of
remote sensing approaches for high-throughput phenotyping in plant breeding. Front.
Plant Sci. 7. doi: 10.3389/fpls.2016.01131

Tirado, S., Hirsch, C., and Springer, N. (2020). UAV-based imaging platform for
monitoring maize growth throughout development. Plant Direct 2020 (00), 1–11.
doi: 10.1002/pld3.230

Toledo, C. A., Crawford, M., and Vyn, T. (2022). “Maize yield prediction based on
multi-modality remote sensing and LSTM models in nitrogen management practice
trials,” in IEEE 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution
in Remote Sensing (WHISPERS) Rome, Italy. pp. 1–7. doi: 10.1109/
WHISPERS56178.2022.9955086

Vogelmann, J. E., Rock, B. N., and Moss, D. M. (1993). “Red edge spectral
measurements from sugar maple leaves,” in International Journal of Remote Sensing,
Vol. 14. 1563–1575. doi: 10.1080/01431169308953986

Watanabe, K., Guo, W., Arai, K., Takanashi, H., Kajiya-Kanegae, H., Kobayashi, M.,
et al. (2017). High-throughput phenotyping of sorghum plant height using an
unmanned aerial vehicle and its application to genomic prediction modeling. Front.
Plant Sci. 8. doi: 10.3389/fpls.2017.00421

Yang, C., Baireddy, S., Cai, E., Crawford, M., and Delp, E. J. (2021a). “Field-based
plot extraction using UAV RGB images,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision. 1390–1398. doi: 10.48550/arXiv.2109.00632

Yang, K., Chapman, S., Carpenter, N., Hammer, G., McLean, G., Zheng, B., et al.
(2021b). Integrating crop growth models with remote sensing for predicting biomass
yield of sorghum. In Silico Plants 3, 1–19. doi: 10.1093/insilicoplants/diab001

Yang, C.-M., Cheng, C.-H., and Chen, R.-K. (2007). Changes in spectral
characteristics of rice canopy infested with brown planthopper and leaffolder. Crop
Sci. 47, 329–335. doi: 10.2135/cropsci2006.05.0335

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017). Unmanned aerial
vehicle remote sensing for field-based crop phenotyping: current status and
perspectives. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01111

Zaman-Allah, M., Vergara, O., Araus, J. L., Tarekegne, A., Magorokosho, C., Zarco-
Tejada, P. J., et al. (2015). Unmanned aerial platform-based multi-spectral imaging for
field phenotyping of maize. Plant Methods 11 (35), 1–10. doi: 10.1186/s13007-015-
0078-2
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