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A systematic study was carried out on 638 wheat and paddy grains (including

fresh and stored samples) collected in 2021 from Shanghai, China, to identify the

major mycobiota and their toxigenic abilities. A total of 349 fungi, namely, 252

Fusarium, 53 Aspergillus, and 44 Alternaria, were characterized by morphological

and molecular identification. Fusarium and Aspergillus were more frequently

isolated in paddy with Fusarium sambucinum species complex and Aspergillus

section flavi as the predominant species, respectively. The genus Alternaria was

the most frequently isolated fungal species in wheat. The toxin-producing

potentials of the identified fungi were further evaluated in vitro .

Deoxynevalenol (DON) was produced by 34.5% of Fusarium isolates and

zearalenone (ZEN) was produced by 47.6% of them, and one isolate also

processed the abilities for fumonisin B1 (FB1), B2 (FB2), and B3 (FB3)

productions. Aflatoxin B1 (AFB1), B2 (AFB2), and G1 (AFG1) were only generated

by Aspergillus section flavi, with the production rate of 65.5%, 27.6%, and 13.8%,

respectively. Alternariol (AOH) was the most prevalent Alternaria toxin, which

could be produced by 95.5% of the isolates, followed by alternariol monomethyl

ether (AME) (72.7%), altenuene (ALT) (52.3%), tenuazonic acid (TeA) (45.5%),

tentoxin (TEN) (29.5%), and altenusin (ALS) (4.5%). A combinational analysis of

mycobiota and toxigenic ability allowed us to provide comprehensive

information about the production mechanisms of mycotoxins in wheat and

paddy in a specific geographic area, and will be helpful for developing efficient

prevention and control programs.
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1 Introduction

Paddy (Oryza sativa L.) and wheat (Triticum aestivum L.),

widely cultured crops in the world, are considered as the most

important staple foods in China (Hou et al., 2015). Shanghai, the

center of China’s economy and trade (Wang and Zhang, 2005),

imports most of its consumed wheat and paddy grains

(approximately 80.0%) from other cities, such as Anhui,

Shandong, and Heilongjiang. The quality and safety of the stored

grains are essential, and any deterioration may lead to a significant

impact on consumer and animal health.

In Shanghai, the typical subtropical monsoon climate provides

favorable conditions for fungal infections of grains (Chen et al.,

2008; Qiu et al., 2014). With suitable temperature and surface

moisture, fungal spores present on the kernels can germinate and

grow, and then destroy the kernels, leading to yield loss and quality

reduction (Lacey and Magan, 1991; Kosiak et al., 2004). Some

fungal species can also produce a range of mycotoxins (Luo et al.,

2021), which are chemically or heat stable, and difficult to be

degraded, leading to various adverse health effects including

teratogenicity, carcinogenicity, mutagenicity, immunotoxicity, or

neurotoxicity (Haque et al., 2020; Suman, 2021). Mycotoxin

contamination is considered to be one of the most serious food

safety problems in the world (Ali et al., 2022).

In China, many studies have reported the serious contaminations

of mycotoxins in wheat and paddy grains, mainly focusing on

Fusarium toxins [e.g., deoxynevalenol (DON), zearalenone (ZEN),

fumonisin B1 (FB1), B2 (FB2), and B3 (FB3)] (Han et al., 2014; Qiu

et al., 2019; Yan et al., 2020), Aspergillus toxins [e.g., aflatoxin B1
(AFB1), B2 (AFB2), G1 (AFG1), and G2 (AFG2)] (Sun et al., 2011; Li

et al., 2014), and Alternaria toxins [e.g., alternariol (AOH), alternariol

monomethyl ether (AME), tenuazonic acid (TeA), tentoxin (TEN),

altenuene (ALT), and altenusin (ALS)] (Li et al., 2001; XuW. J. et al.,

2016; Jiang et al., 2021). A 3-year (2010–2012) survey, conducted in

Jiangsu province, China, showed that DON was the most important

mycotoxin, which was found in 74.4% of wheat samples at levels

ranging from 14.5 to 41,157.1 mg/kg (mean, 488.0 mg/kg), while ZEN
was detected in 12.8% of samples at levels ranging from 10.1 to

3,048.9 mg/kg (mean, 73.0 mg/kg) (Ji et al., 2014). Owing to the

widespread occurrence and high toxicities, comprehensive

information on the production mechanisms of typical mycotoxins

have become a critical issue.

In general, production of particular mycotoxins by fungi

primarily depends on the fungal species. As reported, DON and

ZEN are mainly produced by F. graminearum and F. culmorum

(Yang et al., 2018; Ekwomadu et al., 2021); AFB1, AFB2, AFG1, and

AFG2 are mainly produced by A. flavus and A. parasiticus (Tsai and

Yu, 1999; Diaz et al., 2009); Alternaria toxins are mainly produced by

A. alternata, A. padwickii, etc. (Ntasiou et al., 2015; Turzhanova et al.,

2020). Certain mycotoxins in grains could also be produced by others

fungal species. Fumonisins are mainly produced by species of

Fusarium fujikuroi complex such as F. verticillioides, F.

proliferatum, and F. fujikuroi, but they could also be produced by

Aspergillus spp. (Frisvad et al., 2007). The toxigenic abilities of the

strains belonging to the same species vary in types and concentrations

of the produced mycotoxins. The same fungi might even produce
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different mycotoxins under different environmental conditions. A.

alternata was known to produce Alternaria toxins, but it could also

produce fumonisins (Chen et al., 1993; Abbas and Riley, 1996;

Mirocha et al., 1996). To date, although mycotoxin contamination

in wheat and paddy grains in Shanghai, China has been reported

(Xing et al., 1997; Fan et al., 2021; Huang et al., 2022), little was

known about the occurrence of the main toxigenic fungi and their

abilities for mycotoxin production.

Based on these considerations, the aims of this work were to (1)

investigate the presence of fungal microorganisms, with particular

attention to toxigenic species, in 638 wheat and paddy samples

collected from Shanghai, China in 2021; and (2) evaluate the

mycotoxin-producing potentials of the main isolates including

Aspergillus spp., Fusarium spp., and Alternaria spp.
2 Materials and methods

2.1 Chemicals and reagents

The mycotoxin standards (purity>98%) of AFB1, AFB2, AFG1,

AFG2, DON, ZEN, AOH, AME, TeA, TEN, ALT, ALS, FB1, FB2,

and FB3 (Supplementary Figure 1) were purchased from Qingdao

pribolab (Qingdao, China). All standards were dissolved in

acetonitrile to prepare 1.0 mg/ml of stock solutions and stored at

−20 ± 2°C. Water was purified by a Milli-Q system (Millipore,

Brussels, Belgium).

Methanol, acetonitrile, formic acid, and ammonium acetate

(HPLC grade) were purchased from Merck (Darmstadt,

Germany). Sodium chloride (NaCl, analytical grade) and

anhydrous magnesium sulfate (MgSO4, analytical grade) were

supplied by ANPEL (Shanghai, China).
2.2 Grain samples

A total of 638 grain samples, namely, 365 wheat (56 fresh wheat

and 309 stored wheat) and 273 paddy (119 fresh paddy and 154

stored paddy), were collected from Shanghai Pujiang Warehousing

Co., Ltd. (Shanghai, China) in 2021. The fresh grains were the

samples freshly collected from different parts of China

(Supplementary Figure 2) and shipped to Shanghai for storage

(Table 1). The stored grains were the samples stored in the barns of

Shanghai for 2–5 years with good ventilation and controllable

temperature (10–20°C) and humidity (50%–60%) conditions. All

collected samples (each approximately 500 g) were stored in pre-

sterilized polyethylene bags at 4.0 ± 0.5°C until analysis.
2.3 Isolation and identification of
fungal strains

Seeds were soaked in 75% ethanol for 2 min, and then were

rinsed three times by sterile water. The surface moisture of the seeds

was wiped with sterilized absorbent paper. The seeds were then

placed on the surface of potato dextrose agar (PDA) in petri dishes
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(90 mm diameter, 8 kernels/plate) and incubated at 28 ± 2°C for 4

days. The fungal strains were purified by subculture of single

conidia (Dong et al., 2021) and stored as spores in 30% glycerol

at −80 ± 2°C.

The isolated fungi were firstly identified by the morphological

observations according to the previous studies (Reddy et al., 2010;

Nagaraja et al., 2016; Tralamazza et al., 2018) and then were

validated by PCR analysis (Munitz et al., 2014). All fungal strains

were inoculated on PDA and cultured for 7 days at 28 ± 2°C in the

dark. DNA was extracted from fungal strains according to the

CTAB protocol and dissolved in 50 µl of TE (pH 8.0, 10 mM Tris

and 1 mM EDTA) (Brandfass and Karlovsky, 2008). The universal

primers ITS1 (5-TCCGTAGGTGAACCTGCGG-3) and ITS4 (5-

TCCTCCGCTTATTGATATGC-3) were selected and the total

volume of the PCR amplification was 50 ml. The PCR reaction

conditions were as follows: 95°C for 5 min, followed by 35 cycles at

95°C for 30 s, 58°C for 30 s, 72°C for 1 min, and finally 72°C

extension for 7 min. PCR products were purified by the AxyPrep

DNA gel recovery kit, and sequenced with ABI 3730XL Analyzer

(Applied Biosystems) (Sunagawa et al., 2021). The ITS sequences

were compared with the sequences in the National Center for

Biotechnology Information (NCBI) GenBank database by the

Basic Local Alignment Search Tool (BLAST) (Supplementary

Table 1). The isolates were identified with the sequences

similarity in the range of 99%–100%.
2.4 Mycotoxin production by the isolated
fungal strains

The toxigenic abilities of the fungal strains, which were confirmed

as Fusarium, Aspergillus, or Alternaria, were evaluated in PDA.

Samples were prepared following the method described previously

(Fan et al., 2021). Briefly, the isolated fungal strains were cultured on

PDA (9 mm diameter agar disc) at 28 ± 2°C for 7 days in

quintuplicate (n = 5). The medium was dried at 50 ± 2°C (Shi

et al., 2016), and the weight of medium was recorded for calculation

of the mycotoxin production. Then, it was transferred into a 50-ml

centrifuge tube and extracted with 10 ml of acetonitrile/water/formic

acid (84/15/1, v/v/v) by shaking for 30 min and ultrasonicating for

40 min. After centrifugation at 4,000 g for 10 min, the supernatant
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was collected and evaporated under a soft stream of nitrogen gas at

45°C. The residues were redissolved in 1 ml of acetonitrile/water

containing 5 mmol/L ammonium acetate (20/80, v/v). Finally, the

solution was passed through a 0.22-mm filter membrane prior to

ultrahigh-performance liquid chromatography-tandem mass

spectrometry (UPLC-MS/MS) analysis.
2.5 UPLC-MS/MS analysis

UPLC analysis was performed on a Waters Acquity UPLC

system (Waters, Milford, MA, USA). Separation was achieved on a

Waters XBridge® BEH-C18 XP column (130 Å, 2.5 µm, 3.0 ×

100 mm, PN: 186006035) at 40°C. The mobile phase consisted of

(A) acetonitrile and (B) water containing 5 mmol/L ammonium

acetate, and a linear gradient elution program was applied as

follows: initial, 10% A; 1 min, 10% A; 3 min, 70% A; 5 min, 90%

A; 6 min, 90% A; 6.1 min, 10%; 8 min, 10% A. The mobile phase

flow rate was 0.4 ml/min.

The separated compounds were analyzed by a Waters XEVO

TQMS mass spectrometer (Waters, Milford, MA, USA) with an

electrospray ionization source operated in negative mode (ESI−) for

ZEN and ALS, and in positive mode (ESI+) for the other

mycotoxins. Multiple reaction monitoring (MRM) mode was

established as shown in Supplementary Table 2. The source

parameters are set as follows: capillary voltage of 2.5 kV for ESI+

and 1.5 kV for ESI−, ion source temperature of 150°C, and

desolvation temperature of 500°C. The gas flow rates were 7.0 bar

for nebulizing gas and 1,000 L/h for desolvation gas, respectively.

TargetLynx XS software was used to process the data (Waters

Corporation, Milford, MA, USA).
2.6 Statistics

Tables were plotted using Microsoft Office Excel 2019

(Microsoft Corp., Redmond, WA, USA). Mycotoxin analysis was

performed using TargetLynx XS software (Waters Corporation,

Milford, MA, USA). The statistical analysis was performed using

IBM SPSS Statistics soft version 26.0 (SPSS Inc., Chicago, IL, USA).

The effect of fungal species on the production of mycotoxins was
TABLE 1 Information of the collected grain samples.

Type Origin Storage Time (years) Wheat Paddy

Fresh grains

Jiangsu 0 35 41

Shanghai 0 0 76

Shandong 0 19 0

Anhui 0 2 2

Store grains

Jiangsu 2 178 0

Shanghai 3 0 60

Shandong 5 131 0

Heilongjiang 4 0 94
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analyzed by a Chi-square test. Meanwhile, the effect of wheat/paddy

and fresh/stored on the production of mycotoxins by fungi was

analyzed by one-way ANOVA based on t-test, differences with p

value ≤ 0.05 were considered significant. The DNA sequences were

edited and aligned by BLAST at NCBI (http://www.ncbi.nlm.

nih.gov/).
3 Results

3.1 Occurrence of fungal species from 638
wheat and paddy samples in
Shanghai, China

A total of 349 fungal isolates (see Supplementary Table 1 for

details) were obtained from 638 wheat and paddy samples in

Shanghai, China (Table 2). The number of isolates (298) from

paddy were much more than those (51) from wheat. The most

prevalent genus was Fusarium with 252 isolates recovered. Among

these, 242 isolates were isolated from fresh paddy grains. According

to the morphological study and ITS sequences, Fusarium species

were further characterized as members of the certain species

complex (SC). Fusarium sambucinum SC were identified to be the

predominant fungi. It is worth noting that 45.4% of the samples

were infected with more than one Fusarium strain.

Aspergillus spp. (53) were also isolated but at a relatively lower

frequency (15.2%) compared to Fusarium spp. (72.2%). All

Aspergillus isolates were identified from stored grains with more

strains (40) from paddy than that (13) from wheat. Aspergillus

section flavi and A. fumigatus were the dominant species.

Conversely, a total of 44 Alternaria spp. were isolated, most of

which were from fresh grains (32), and no strains were found in

stored paddy grains.
3.2 Toxigenic abilities of the main isolates

The toxin-producing potentials of the 349 isolates belonging to

Fusarium spp., Aspergillus spp., and Alternaria spp. were evaluated
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(Supplementary Table 3). All the isolates were cultured in PDA for 7

days at 28 ± 2°C. As shown in Table 3, among 252 Fusarium strains,

87 (34.5%) isolates could produce DON, and 120 (47.6%) could

produce ZEN. One out of three Fusarium isolates from stored wheat

could produce DON, with a level of 44.2 mg/kg, much higher than

those from fresh wheat grains. As potential producers of

fumonisins, all the Fusarium isolates were further analyzed. Only

one Fusarium fujikuroi SC stain isolated from fresh paddy was

found to produce fumonisins with the concentrations of 128.1 mg/

kg for FB1, 39.2 mg/kg for FB2, and 38.9 mg/kg for FB3, respectively.

The abilities of Aspergillus isolates to produce AFB1, AFB2,

AFG1, and AFG2 were evaluated (Table 4). Among 53 Aspergillus

strains, only 29 Aspergillus section flavi could produce AFBS, from

which, 19 (35.8%) produced AFB1, 8 (15.1%) produced AFB2, 4

(7.5%) produced AFG1, and no one could produce AFG2. The

highest levels of AFB1, AFB2, and AFG1 were 155.5 mg/kg, 19.0 mg/

kg, and 0.6 mg/kg, respectively, which were produced by the same

Aspergillus section flavi isolate.

The abilities of Alternaria isolates (44) were also assayed for

their productions of six Alternaria toxins, including AOH, AME,

TeA, TEN, ALT, and ALS (Table 5). A total of 95.5% Alternaria

isolates could produce at least one Alternaria toxin. AOH was the

most prevalent Alternaria toxin, which could be produced by 95.5%

of the isolates, followed by AME (72.7%), ALT (52.3%), TeA

(45.5%), and TEN (29.5%). Only two Alternaria isolates produced

ALS, both of which were isolated from wheat grains.
4 Discussion

Shanghai is the economic and financial center of China rather

than a major agricultural city and most of wheat and paddy

consumed in this city were supplied by other areas of China.

Mycotoxins, a series of secondary metabolites produced by

various mold species in grains, especially wheat and paddy during

storage, have become important impactors on human and animal

health. Consequently, the presence and toxigenic abilities of the

harmful fungi in the stored grains are of great concern. In this study,

a total of 638 wheat and paddy grains were collected from Shanghai,
TABLE 2 Number of isolates from different grains.

Fungi
Wheat (n = 365) Paddy (n = 273)

Total Number Proportion (%)
Fresh (n = 56) Stored (n = 309) Fresh (n = 119) Stored (n = 154)

Fusarium sambucinum SC 3 1 141 0 145 41.5

Fusarium fujikuroi SC 0 0 4 3 7 2.0

Other Fusarium spp. 1 2 97 0 100 28.7

Aspergillus section flavi 0 9 0 20 29 8.3

Aspergillus fumigatus 0 0 0 12 12 3.4

Other Aspergillus spp. 0 4 0 8 12 3.4

Alternaria spp. 19 12 13 0 44 12.6

Total 23 28 255 43 349 100
n denotes the number of samples.
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China in 2021, and the presence of probable toxigenic fungi

including Fusarium spp., Aspergillus spp., and Alternaria spp.

And their toxin-producing potentials were thoroughly

investigated (Figure 1). To the best of our knowledge, this is the

first survey conducted on wheat and rice grains (including fresh and

stored samples) consumed in Shanghai, China that took into

consideration both contaminating fungi and their toxigenic

abilities. However, the morphological study in combination with

ITS region analysis was insufficient to distinguish the specific

sections but only provided genera information. Further molecular

identification is required to accurately identify the species of

Fusarium, Aspergillus, and Alternaria.

The differences of occurrence and toxigenic abilities of

Fusarium, Aspergillus, and Alternaria species from wheat and

paddy grains in Shanghai, China, were compared. The results

showed that Fusarium spp. were the predominant species in fresh

grains, and Aspergillus spp. were predominant in stored grains. The

serious contaminations of Fusarium spp. in fresh samples might be

due to the colonization of the fungi in the field, poor management,

or damp conditions during the harvesting phase and transportation

(Magan and Aldred, 2007; Magan et al., 2010). Aspergillus spp. is

normally considered as the fungi developed in stored commodities

and widely discovered in stored grains (Medina et al., 2006; Riba

et al., 2010; Alkuwari et al., 2022; Tournas and Niazi, 2018; Zhao et

al., 2020). All Aspergillus strains were isolated from stored grains,
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and 47.5% could produce AFBs. Interestingly, all the isolated

Alternaria spp. were capable of producing at least one Alternaria

toxin, whether in fresh or in stored grains.

Among the fungal communities recovered, Fusarium spp. were

the dominant fungi in paddy grains. Most of the isolated Fusarium

spp. produced DON and ZEN, and a large number of the Fusarium

isolates could even co-produce DON and ZEN. The co-

contaminations of DON and ZEN in wheat and paddy grains

have been widely reported in literatures (Qiu and Shi, 2014; Dong

et al., 2020; Fan et al., 2021), proving these organisms to be the

common spoilers of grains. On the other hand, the co-occurrence of

different Fusarium toxins might cause joint toxicities to humans

and animals, which should be paid more attention in the future.

With regard to Aspergillus spp., the incidence was lower than

that indicated by other authors, who collected the samples mainly

from diseased grains (Chehri et al., 2015). As the predominant

Aspergillus spp., Aspergillus section flavi might be associated with

warmer geographical regions, similar to the previous studies

conducted in Turkey, Iran, Australia, and Argentina (Berghofer

et al., 2003; Vaamonde et al., 2003; Baydar et al., 2005; Chehri et al.,

2015). Among 53 Aspergillus isolates, only Aspergillus section flavi

could produce AFBs. The same results were discovered by Riba et al.

in Algerian wheat, in which A. flavus was the only aflatoxigenic

fungus among all the Aspergillus isolates (Riba et al., 2010).

Different toxigenic abilities have also been described, in that some
TABLE 4 Aspergillus toxin-producing potentials of Aspergillus isolates from different grains in Shanghai, China.

Grains (Asper-
gillus isolates) Type

AFB1 AFB2 AFG1 AFG2

No. a Average level
(range b) (mg/kg) No. Average level

(range) (mg/kg) No. Average level
(range) (mg/kg) No. Average level

(range) (mg/kg)

Wheat (n = 13)

Fresh (n
= 0)

0 / 0 / 0 / 0 /

Stored
(n = 13)

2 1.78 (0.02–3.5) 1 0.2 (0.2) 0 / 0 /

Paddy (n = 40)

Fresh (n
= 0)

0 / 0 / 0 / 0 /

Stored
(n = 40)

17 24.0 (0.1–155.5) 7 5.6 (0.01–19.0) 4 0.2 (0.1–0.6) 0 /
n denotes the number of Aspergillus isolates. a means the number of positive samples of isolates.
TABLE 3 Fusarium toxin-producing potentials of Fusarium species isolated from different grains in Shanghai, China.

Grains (Fusarium
isolates) Type

DON ZEN

No. of positive samples
of isolates

Average level
(range) (mg/kg)

No. of positive samples
of isolates

Average level
(range) (mg/kg)

Wheat (n = 7)

Fresh (n =
4)

3 0.3 (0.2–0.5) 3 6.1 (0.3–9.3)

Stored (n
= 3)

1 44.2 (44.2) 1 3.8 (3.8)

Paddy (n = 245)

Fresh (n =
242)

83 2.0 (0.1–18.4) 116 28.82 (0.01–893.3)

Stored (n
= 3)

0 / 0 /
n denotes the number of Fusarium isolates.
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fungi could produce four AFBs (AFB1, AFB2, AFG1, and AFG2),

while others only produced either three or two AFBs (Saleemi

et al., 2010).

In recent years, Alternaria spp. have been pointed out as

important contaminants in grains, especially in some regions with

warm and humid climates (Li and Yoshizawa, 2000; Li et al., 2001).

The incidence of Alternaria spp. in the current study was lower than
Frontiers in Plant Science 06
that in Anhui province (100.0%), where the temperature and

humidity were higher (Xu W. et al., 2016). In comparison to

paddy, Alternaria spp. were more frequently found in wheat

samples, which was in good agreement with the previous studies

in China (Li et al., 2001; Xu W. et al., 2016). Almost all the isolates

(95.5%) could produce at least one Alternaria toxin, among which

AOH, AME, TeA, and TEN were the most frequently found, similar
FIGURE 1

The distributions of Fusarium spp., Aspergillus spp., and Alternaria spp. in different grains in Shanghai, China, and their toxigenic abilities.
TABLE 5 Alternaria toxin-producing potentials of Alternaria isolates from different grains in Shanghai, China.

Grains
(Alternaria
isolates)

Type

AOH AME TeA TEN ALT ALS

No.a
Average
level

(range)
(mg/kg)

No.

Average
level

(range)
(mg/kg)

No.

Average
level

(range)
(mg/kg)

No.

Average
level

(range)
(mg/kg)

No.

Average
level

(range)
(mg/kg)

No.

Average
level

(range)
(mg/kg)

Wheat (n =
31)

Fresh
(n =
19)

18
322.6 (2.7–
2,328.1)

15
91.2 (0.5–
770.0)

10
240.2 (2.6–
1,410.0)

4
14.6 (0.5–
45.2)

9
216.8
(16.1–
1,395.2)

1
275.8
(275.8)

Stored
(n =
12)

12
258.3 (3.7–
1,654.0)

8
321.5 (0.2–
2,261.0)

7
64.3 (2.7–
191.5)

5
0.6 (0.1–
1.4)

7
81.1 (14.7–
205.2)

1
424.5
(424.5)

Paddy (n =
13)

Fresh
(n =
13)

12
233.4 (3.1–
1,441.1)

9
47.2 (11.0–
175.5)

3
144.1
(11.1–
245.1)

4
2.4 (0.1–
5.6)

7
80.6 (3.1–
278.1)

0 /

Stored
(n = 0)

0 / 0 / 0 / 0 / 0 / 0 /
fr
n denotes the number of Alternaria isolates. a means the number of positive samples of isolates.
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to the surveys from Germany (Muller and Korn, 2013), Canada

(Scott et al., 2012), and Russia (Orina et al., 2022). Potential health

risks related to the contaminations of Alternaria toxins in grains

were thus proposed.
5 Conclusions

In the present study, the occurrence and toxigenic abilities of

Fusarium, Aspergillus, and Alternaria species from wheat and paddy

grains in Shanghai, China, were evaluated. Fusarium spp. were the

main species in fresh grains, and Aspergillus spp. were predominant

in stored grains. Toxin-producing potentials were different

depending on the types and sources of the isolated fungi, from

which a series of typical mycotoxins including DON, ZEN, AFBs,

FBs, and Alternaria toxins could be generated. Co-productions of

different secondary metabolites by toxigenic fungi could lead to co-

contaminations of multiple mycotoxins, posing potentially

additional health risks to humans and animals.
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